Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/SelectionDAG/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp |
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::LegalizeVectors method. // // The vector legalizer looks for vector operations which might need to be // scalarized and legalizes them. This is a separate step from Legalize because // scalarizing can introduce illegal types. For example, suppose we have an // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the // operation, which introduces nodes with the illegal type i64 which must be // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; // the operation must be unrolled, which introduces nodes with the illegal // type i8 which must be promoted. // // This does not legalize vector manipulations like ISD::BUILD_VECTOR, // or operations that happen to take a vector which are custom-lowered; // the legalization for such operations never produces nodes // with illegal types, so it's okay to put off legalizing them until // SelectionDAG::Legalize runs. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; namespace { class VectorLegalizer { SelectionDAG& DAG; const TargetLowering &TLI; bool Changed; // Keep track of whether anything changed /// LegalizedNodes - For nodes that are of legal width, and that have more /// than one use, this map indicates what regularized operand to use. This /// allows us to avoid legalizing the same thing more than once. DenseMap<SDValue, SDValue> LegalizedNodes; // Adds a node to the translation cache void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); } // Legalizes the given node SDValue LegalizeOp(SDValue Op); // Assuming the node is legal, "legalize" the results SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); // Implements unrolling a VSETCC. SDValue UnrollVSETCC(SDValue Op); // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB // isn't legal. // Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if // SINT_TO_FLOAT and SHR on vectors isn't legal. SDValue ExpandUINT_TO_FLOAT(SDValue Op); // Implement vselect in terms of XOR, AND, OR when blend is not supported // by the target. SDValue ExpandVSELECT(SDValue Op); SDValue ExpandLoad(SDValue Op); SDValue ExpandStore(SDValue Op); SDValue ExpandFNEG(SDValue Op); // Implements vector promotion; this is essentially just bitcasting the // operands to a different type and bitcasting the result back to the // original type. SDValue PromoteVectorOp(SDValue Op); public: bool Run(); VectorLegalizer(SelectionDAG& dag) : DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} }; bool VectorLegalizer::Run() { // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) LegalizeOp(SDValue(I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); LegalizedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); return Changed; } SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { // Generic legalization: just pass the operand through. for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); return Result.getValue(Op.getResNo()); } SDValue VectorLegalizer::LegalizeOp(SDValue Op) { // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDNode* Node = Op.getNode(); // Legalize the operands SmallVector<SDValue, 8> Ops; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0); if (Op.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); ISD::LoadExtType ExtType = LD->getExtensionType(); if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT())) return TranslateLegalizeResults(Op, Result); Changed = true; return LegalizeOp(ExpandLoad(Op)); } } else if (Op.getOpcode() == ISD::STORE) { StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); EVT StVT = ST->getMemoryVT(); EVT ValVT = ST->getValue().getValueType(); if (StVT.isVector() && ST->isTruncatingStore()) switch (TLI.getTruncStoreAction(ValVT, StVT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: return TranslateLegalizeResults(Op, Result); case TargetLowering::Custom: Changed = true; return LegalizeOp(TLI.LowerOperation(Result, DAG)); case TargetLowering::Expand: Changed = true; return LegalizeOp(ExpandStore(Op)); } } bool HasVectorValue = false; for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); J != E; ++J) HasVectorValue |= J->isVector(); if (!HasVectorValue) return TranslateLegalizeResults(Op, Result); EVT QueryType; switch (Op.getOpcode()) { default: return TranslateLegalizeResults(Op, Result); case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: case ISD::CTLZ: case ISD::CTTZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTPOP: case ISD::SELECT: case ISD::VSELECT: case ISD::SELECT_CC: case ISD::SETCC: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FNEG: case ISD::FABS: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FPOWI: case ISD::FPOW: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FFLOOR: case ISD::SIGN_EXTEND_INREG: QueryType = Node->getValueType(0); break; case ISD::FP_ROUND_INREG: QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: QueryType = Node->getOperand(0).getValueType(); break; } switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { case TargetLowering::Promote: // "Promote" the operation by bitcasting Result = PromoteVectorOp(Op); Changed = true; break; case TargetLowering::Legal: break; case TargetLowering::Custom: { SDValue Tmp1 = TLI.LowerOperation(Op, DAG); if (Tmp1.getNode()) { Result = Tmp1; break; } // FALL THROUGH } case TargetLowering::Expand: if (Node->getOpcode() == ISD::VSELECT) Result = ExpandVSELECT(Op); else if (Node->getOpcode() == ISD::UINT_TO_FP) Result = ExpandUINT_TO_FLOAT(Op); else if (Node->getOpcode() == ISD::FNEG) Result = ExpandFNEG(Op); else if (Node->getOpcode() == ISD::SETCC) Result = UnrollVSETCC(Op); else Result = DAG.UnrollVectorOp(Op.getNode()); break; } // Make sure that the generated code is itself legal. if (Result != Op) { Result = LegalizeOp(Result); Changed = true; } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) { // Vector "promotion" is basically just bitcasting and doing the operation // in a different type. For example, x86 promotes ISD::AND on v2i32 to // v1i64. EVT VT = Op.getValueType(); assert(Op.getNode()->getNumValues() == 1 && "Can't promote a vector with multiple results!"); EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); DebugLoc dl = Op.getDebugLoc(); SmallVector<SDValue, 4> Operands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (Op.getOperand(j).getValueType().isVector()) Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); else Operands[j] = Op.getOperand(j); } Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size()); return DAG.getNode(ISD::BITCAST, dl, VT, Op); } SDValue VectorLegalizer::ExpandLoad(SDValue Op) { DebugLoc dl = Op.getDebugLoc(); LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); SDValue Chain = LD->getChain(); SDValue BasePTR = LD->getBasePtr(); EVT SrcVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = LD->getExtensionType(); SmallVector<SDValue, 8> LoadVals; SmallVector<SDValue, 8> LoadChains; unsigned NumElem = SrcVT.getVectorNumElements(); unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; for (unsigned Idx=0; Idx<NumElem; Idx++) { SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, Op.getNode()->getValueType(0).getScalarType(), Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), SrcVT.getScalarType(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, DAG.getIntPtrConstant(Stride)); LoadVals.push_back(ScalarLoad.getValue(0)); LoadChains.push_back(ScalarLoad.getValue(1)); } SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LoadChains[0], LoadChains.size()); SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, Op.getNode()->getValueType(0), &LoadVals[0], LoadVals.size()); AddLegalizedOperand(Op.getValue(0), Value); AddLegalizedOperand(Op.getValue(1), NewChain); return (Op.getResNo() ? NewChain : Value); } SDValue VectorLegalizer::ExpandStore(SDValue Op) { DebugLoc dl = Op.getDebugLoc(); StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); SDValue Chain = ST->getChain(); SDValue BasePTR = ST->getBasePtr(); SDValue Value = ST->getValue(); EVT StVT = ST->getMemoryVT(); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); unsigned NumElem = StVT.getVectorNumElements(); // The type of the data we want to save EVT RegVT = Value.getValueType(); EVT RegSclVT = RegVT.getScalarType(); // The type of data as saved in memory. EVT MemSclVT = StVT.getScalarType(); // Cast floats into integers unsigned ScalarSize = MemSclVT.getSizeInBits(); // Round odd types to the next pow of two. if (!isPowerOf2_32(ScalarSize)) ScalarSize = NextPowerOf2(ScalarSize); // Store Stride in bytes unsigned Stride = ScalarSize/8; // Extract each of the elements from the original vector // and save them into memory individually. SmallVector<SDValue, 8> Stores; for (unsigned Idx = 0; Idx < NumElem; Idx++) { SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, DAG.getIntPtrConstant(Idx)); // This scalar TruncStore may be illegal, but we legalize it later. SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, isVolatile, isNonTemporal, Alignment); BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, DAG.getIntPtrConstant(Stride)); Stores.push_back(Store); } SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], Stores.size()); AddLegalizedOperand(Op, TF); return TF; } SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { // Implement VSELECT in terms of XOR, AND, OR // on platforms which do not support blend natively. EVT VT = Op.getOperand(0).getValueType(); DebugLoc DL = Op.getDebugLoc(); SDValue Mask = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); // If we can't even use the basic vector operations of // AND,OR,XOR, we will have to scalarize the op. // Notice that the operation may be 'promoted' which means that it is // 'bitcasted' to another type which is handled. if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Op.getNode()); assert(VT.getSizeInBits() == Op.getOperand(1).getValueType().getSizeInBits() && "Invalid mask size"); // Bitcast the operands to be the same type as the mask. // This is needed when we select between FP types because // the mask is a vector of integers. Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); SDValue AllOnes = DAG.getConstant( APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); } SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { EVT VT = Op.getOperand(0).getValueType(); DebugLoc DL = Op.getDebugLoc(); // Make sure that the SINT_TO_FP and SRL instructions are available. if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Op.getNode()); EVT SVT = VT.getScalarType(); assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); unsigned BW = SVT.getSizeInBits(); SDValue HalfWord = DAG.getConstant(BW/2, VT); // Constants to clear the upper part of the word. // Notice that we can also use SHL+SHR, but using a constant is slightly // faster on x86. uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; SDValue HalfWordMask = DAG.getConstant(HWMask, VT); // Two to the power of half-word-size. SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); // Clear upper part of LO, lower HI SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); // Convert hi and lo to floats // Convert the hi part back to the upper values SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); // Add the two halves return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); } SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), Zero, Op.getOperand(0)); } return DAG.UnrollVectorOp(Op.getNode()); } SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { EVT VT = Op.getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); EVT TmpEltVT = LHS.getValueType().getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SmallVector<SDValue, 8> Ops(NumElems); for (unsigned i = 0; i < NumElems; ++i) { SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, DAG.getIntPtrConstant(i)); SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, DAG.getIntPtrConstant(i)); Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), LHSElem, RHSElem, CC); Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], DAG.getConstant(APInt::getAllOnesValue (EltVT.getSizeInBits()), EltVT), DAG.getConstant(0, EltVT)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); } } bool SelectionDAG::LegalizeVectors() { return VectorLegalizer(*this).Run(); }