Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/SelectionDAG/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp |
//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file performs vector type splitting and scalarization for LegalizeTypes. // Scalarization is the act of changing a computation in an illegal one-element // vector type to be a computation in its scalar element type. For example, // implementing <1 x f32> arithmetic in a scalar f32 register. This is needed // as a base case when scalarizing vector arithmetic like <4 x f32>, which // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32 // types. // Splitting is the act of changing a computation in an invalid vector type to // be a computation in two vectors of half the size. For example, implementing // <128 x f32> operations in terms of two <64 x f32> operations. // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // Result Vector Scalarization: <1 x ty> -> ty. //===----------------------------------------------------------------------===// void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Scalarize node result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ScalarizeVectorResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif report_fatal_error("Do not know how to scalarize the result of this " "operator!\n"); case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break; case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break; case ISD::BUILD_VECTOR: R = N->getOperand(0); break; case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break; case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break; case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break; case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break; case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break; case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break; case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break; case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break; case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break; case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break; case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break; case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break; case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break; case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break; case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break; case ISD::ANY_EXTEND: case ISD::CTLZ: case ISD::CTPOP: case ISD::CTTZ: case ISD::FABS: case ISD::FCEIL: case ISD::FCOS: case ISD::FEXP: case ISD::FEXP2: case ISD::FFLOOR: case ISD::FLOG: case ISD::FLOG10: case ISD::FLOG2: case ISD::FNEARBYINT: case ISD::FNEG: case ISD::FP_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FRINT: case ISD::FSIN: case ISD::FSQRT: case ISD::FTRUNC: case ISD::SIGN_EXTEND: case ISD::SINT_TO_FP: case ISD::TRUNCATE: case ISD::UINT_TO_FP: case ISD::ZERO_EXTEND: R = ScalarizeVecRes_UnaryOp(N); break; case ISD::ADD: case ISD::AND: case ISD::FADD: case ISD::FDIV: case ISD::FMUL: case ISD::FPOW: case ISD::FREM: case ISD::FSUB: case ISD::MUL: case ISD::OR: case ISD::SDIV: case ISD::SREM: case ISD::SUB: case ISD::UDIV: case ISD::UREM: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: R = ScalarizeVecRes_BinOp(N); break; } // If R is null, the sub-method took care of registering the result. if (R.getNode()) SetScalarizedVector(SDValue(N, ResNo), R); } SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) { SDValue LHS = GetScalarizedVector(N->getOperand(0)); SDValue RHS = GetScalarizedVector(N->getOperand(1)); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); return GetScalarizedVector(Op); } SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) { EVT NewVT = N->getValueType(0).getVectorElementType(); return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NewVT, N->getOperand(0)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) { EVT NewVT = N->getValueType(0).getVectorElementType(); SDValue Op0 = GetScalarizedVector(N->getOperand(0)); return DAG.getConvertRndSat(NewVT, N->getDebugLoc(), Op0, DAG.getValueType(NewVT), DAG.getValueType(Op0.getValueType()), N->getOperand(3), N->getOperand(4), cast<CvtRndSatSDNode>(N)->getCvtCode()); } SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) { return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), N->getValueType(0).getVectorElementType(), N->getOperand(0), N->getOperand(1)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) { EVT NewVT = N->getValueType(0).getVectorElementType(); SDValue Op = GetScalarizedVector(N->getOperand(0)); return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), NewVT, Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) { SDValue Op = GetScalarizedVector(N->getOperand(0)); return DAG.getNode(ISD::FPOWI, N->getDebugLoc(), Op.getValueType(), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) { // The value to insert may have a wider type than the vector element type, // so be sure to truncate it to the element type if necessary. SDValue Op = N->getOperand(1); EVT EltVT = N->getValueType(0).getVectorElementType(); if (Op.getValueType() != EltVT) // FIXME: Can this happen for floating point types? Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op); return Op; } SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) { assert(N->isUnindexed() && "Indexed vector load?"); SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getExtensionType(), N->getValueType(0).getVectorElementType(), N->getDebugLoc(), N->getChain(), N->getBasePtr(), DAG.getUNDEF(N->getBasePtr().getValueType()), N->getPointerInfo(), N->getMemoryVT().getVectorElementType(), N->isVolatile(), N->isNonTemporal(), N->isInvariant(), N->getOriginalAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Result.getValue(1)); return Result; } SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) { // Get the dest type - it doesn't always match the input type, e.g. int_to_fp. EVT DestVT = N->getValueType(0).getVectorElementType(); SDValue Op = GetScalarizedVector(N->getOperand(0)); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op); } SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) { EVT EltVT = N->getValueType(0).getVectorElementType(); EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType(); SDValue LHS = GetScalarizedVector(N->getOperand(0)); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), EltVT, LHS, DAG.getValueType(ExtVT)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) { // If the operand is wider than the vector element type then it is implicitly // truncated. Make that explicit here. EVT EltVT = N->getValueType(0).getVectorElementType(); SDValue InOp = N->getOperand(0); if (InOp.getValueType() != EltVT) return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp); return InOp; } SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) { SDValue Cond = GetScalarizedVector(N->getOperand(0)); SDValue LHS = GetScalarizedVector(N->getOperand(1)); TargetLowering::BooleanContent ScalarBool = TLI.getBooleanContents(false); TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true); if (ScalarBool != VecBool) { EVT CondVT = Cond.getValueType(); switch (ScalarBool) { case TargetLowering::UndefinedBooleanContent: break; case TargetLowering::ZeroOrOneBooleanContent: assert(VecBool == TargetLowering::UndefinedBooleanContent || VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent); // Vector read from all ones, scalar expects a single 1 so mask. Cond = DAG.getNode(ISD::AND, N->getDebugLoc(), CondVT, Cond, DAG.getConstant(1, CondVT)); break; case TargetLowering::ZeroOrNegativeOneBooleanContent: assert(VecBool == TargetLowering::UndefinedBooleanContent || VecBool == TargetLowering::ZeroOrOneBooleanContent); // Vector reads from a one, scalar from all ones so sign extend. Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), CondVT, Cond, DAG.getValueType(MVT::i1)); break; } } return DAG.getNode(ISD::SELECT, N->getDebugLoc(), LHS.getValueType(), Cond, LHS, GetScalarizedVector(N->getOperand(2))); } SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) { SDValue LHS = GetScalarizedVector(N->getOperand(1)); return DAG.getNode(ISD::SELECT, N->getDebugLoc(), LHS.getValueType(), N->getOperand(0), LHS, GetScalarizedVector(N->getOperand(2))); } SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) { SDValue LHS = GetScalarizedVector(N->getOperand(2)); return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, GetScalarizedVector(N->getOperand(3)), N->getOperand(4)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) { assert(N->getValueType(0).isVector() == N->getOperand(0).getValueType().isVector() && "Scalar/Vector type mismatch"); if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N); SDValue LHS = GetScalarizedVector(N->getOperand(0)); SDValue RHS = GetScalarizedVector(N->getOperand(1)); DebugLoc DL = N->getDebugLoc(); // Turn it into a scalar SETCC. return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) { return DAG.getUNDEF(N->getValueType(0).getVectorElementType()); } SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) { // Figure out if the scalar is the LHS or RHS and return it. SDValue Arg = N->getOperand(2).getOperand(0); if (Arg.getOpcode() == ISD::UNDEF) return DAG.getUNDEF(N->getValueType(0).getVectorElementType()); unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue(); return GetScalarizedVector(N->getOperand(Op)); } SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) { assert(N->getValueType(0).isVector() && N->getOperand(0).getValueType().isVector() && "Operand types must be vectors"); SDValue LHS = GetScalarizedVector(N->getOperand(0)); SDValue RHS = GetScalarizedVector(N->getOperand(1)); EVT NVT = N->getValueType(0).getVectorElementType(); DebugLoc DL = N->getDebugLoc(); // Turn it into a scalar SETCC. SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2)); // Vectors may have a different boolean contents to scalars. Promote the // value appropriately. ISD::NodeType ExtendCode = TargetLowering::getExtendForContent(TLI.getBooleanContents(true)); return DAG.getNode(ExtendCode, DL, NVT, Res); } //===----------------------------------------------------------------------===// // Operand Vector Scalarization <1 x ty> -> ty. //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (Res.getNode() == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to scalarize this operator's operand!"); case ISD::BITCAST: Res = ScalarizeVecOp_BITCAST(N); break; case ISD::CONCAT_VECTORS: Res = ScalarizeVecOp_CONCAT_VECTORS(N); break; case ISD::EXTRACT_VECTOR_ELT: Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break; case ISD::STORE: Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs /// to be scalarized, it must be <1 x ty>. Convert the element instead. SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) { SDValue Elt = GetScalarizedVector(N->getOperand(0)); return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0), Elt); } /// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one - /// use a BUILD_VECTOR instead. SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) { SmallVector<SDValue, 8> Ops(N->getNumOperands()); for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) Ops[i] = GetScalarizedVector(N->getOperand(i)); return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0), &Ops[0], Ops.size()); } /// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to /// be scalarized, it must be <1 x ty>, so just return the element, ignoring the /// index. SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { SDValue Res = GetScalarizedVector(N->getOperand(0)); if (Res.getValueType() != N->getValueType(0)) Res = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Res); return Res; } /// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be /// scalarized, it must be <1 x ty>. Just store the element. SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){ assert(N->isUnindexed() && "Indexed store of one-element vector?"); assert(OpNo == 1 && "Do not know how to scalarize this operand!"); DebugLoc dl = N->getDebugLoc(); if (N->isTruncatingStore()) return DAG.getTruncStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)), N->getBasePtr(), N->getPointerInfo(), N->getMemoryVT().getVectorElementType(), N->isVolatile(), N->isNonTemporal(), N->getAlignment()); return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)), N->getBasePtr(), N->getPointerInfo(), N->isVolatile(), N->isNonTemporal(), N->getOriginalAlignment()); } //===----------------------------------------------------------------------===// // Result Vector Splitting //===----------------------------------------------------------------------===// /// SplitVectorResult - This method is called when the specified result of the /// specified node is found to need vector splitting. At this point, the node /// may also have invalid operands or may have other results that need /// legalization, we just know that (at least) one result needs vector /// splitting. void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Split node result: "; N->dump(&DAG); dbgs() << "\n"); SDValue Lo, Hi; // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) return; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SplitVectorResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to split the result of this operator!"); case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; case ISD::VSELECT: case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break; case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break; case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break; case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break; case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break; case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break; case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break; case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break; case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break; case ISD::LOAD: SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break; case ISD::SETCC: SplitVecRes_SETCC(N, Lo, Hi); break; case ISD::VECTOR_SHUFFLE: SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi); break; case ISD::ANY_EXTEND: case ISD::CONVERT_RNDSAT: case ISD::CTLZ: case ISD::CTTZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTPOP: case ISD::FABS: case ISD::FCEIL: case ISD::FCOS: case ISD::FEXP: case ISD::FEXP2: case ISD::FFLOOR: case ISD::FLOG: case ISD::FLOG10: case ISD::FLOG2: case ISD::FNEARBYINT: case ISD::FNEG: case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FRINT: case ISD::FSIN: case ISD::FSQRT: case ISD::FTRUNC: case ISD::SIGN_EXTEND: case ISD::SINT_TO_FP: case ISD::TRUNCATE: case ISD::UINT_TO_FP: case ISD::ZERO_EXTEND: SplitVecRes_UnaryOp(N, Lo, Hi); break; case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::SDIV: case ISD::UDIV: case ISD::FDIV: case ISD::FPOW: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::UREM: case ISD::SREM: case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.getNode()) SetSplitVector(SDValue(N, ResNo), Lo, Hi); } void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue LHSLo, LHSHi; GetSplitVector(N->getOperand(0), LHSLo, LHSHi); SDValue RHSLo, RHSHi; GetSplitVector(N->getOperand(1), RHSLo, RHSHi); DebugLoc dl = N->getDebugLoc(); Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo); Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi); } void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) { // We know the result is a vector. The input may be either a vector or a // scalar value. EVT LoVT, HiVT; GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); DebugLoc dl = N->getDebugLoc(); SDValue InOp = N->getOperand(0); EVT InVT = InOp.getValueType(); // Handle some special cases efficiently. switch (getTypeAction(InVT)) { case TargetLowering::TypeLegal: case TargetLowering::TypePromoteInteger: case TargetLowering::TypeSoftenFloat: case TargetLowering::TypeScalarizeVector: case TargetLowering::TypeWidenVector: break; case TargetLowering::TypeExpandInteger: case TargetLowering::TypeExpandFloat: // A scalar to vector conversion, where the scalar needs expansion. // If the vector is being split in two then we can just convert the // expanded pieces. if (LoVT == HiVT) { GetExpandedOp(InOp, Lo, Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); return; } break; case TargetLowering::TypeSplitVector: // If the input is a vector that needs to be split, convert each split // piece of the input now. GetSplitVector(InOp, Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); return; } // In the general case, convert the input to an integer and split it by hand. EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits()); EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits()); if (TLI.isBigEndian()) std::swap(LoIntVT, HiIntVT); SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); } void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT LoVT, HiVT; DebugLoc dl = N->getDebugLoc(); GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); unsigned LoNumElts = LoVT.getVectorNumElements(); SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts); Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size()); SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end()); Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size()); } void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS"); DebugLoc dl = N->getDebugLoc(); unsigned NumSubvectors = N->getNumOperands() / 2; if (NumSubvectors == 1) { Lo = N->getOperand(0); Hi = N->getOperand(1); return; } EVT LoVT, HiVT; GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors); Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size()); SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end()); Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size()); } void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(1); DebugLoc dl = N->getDebugLoc(); EVT LoVT, HiVT; GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx); uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, DAG.getIntPtrConstant(IdxVal + LoVT.getVectorNumElements())); } void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi) { DebugLoc dl = N->getDebugLoc(); GetSplitVector(N->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1)); Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1)); } void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue LHSLo, LHSHi; GetSplitVector(N->getOperand(0), LHSLo, LHSHi); DebugLoc dl = N->getDebugLoc(); EVT LoVT, HiVT; GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT); Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, DAG.getValueType(LoVT)); Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, DAG.getValueType(HiVT)); } void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Vec = N->getOperand(0); SDValue Elt = N->getOperand(1); SDValue Idx = N->getOperand(2); DebugLoc dl = N->getDebugLoc(); GetSplitVector(Vec, Lo, Hi); if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) { unsigned IdxVal = CIdx->getZExtValue(); unsigned LoNumElts = Lo.getValueType().getVectorNumElements(); if (IdxVal < LoNumElts) Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Lo.getValueType(), Lo, Elt, Idx); else Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt, DAG.getIntPtrConstant(IdxVal - LoNumElts)); return; } // Spill the vector to the stack. EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); SDValue StackPtr = DAG.CreateStackTemporary(VecVT); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo(), false, false, 0); // Store the new element. This may be larger than the vector element type, // so use a truncating store. SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx); Type *VecType = VecVT.getTypeForEVT(*DAG.getContext()); unsigned Alignment = TLI.getTargetData()->getPrefTypeAlignment(VecType); Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT, false, false, 0); // Load the Lo part from the stack slot. Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), false, false, false, 0); // Increment the pointer to the other part. unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, DAG.getIntPtrConstant(IncrementSize)); // Load the Hi part from the stack slot. Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), false, false, false, MinAlign(Alignment, IncrementSize)); } void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT LoVT, HiVT; DebugLoc dl = N->getDebugLoc(); GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0)); Hi = DAG.getUNDEF(HiVT); } void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi) { assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!"); EVT LoVT, HiVT; DebugLoc dl = LD->getDebugLoc(); GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT); ISD::LoadExtType ExtType = LD->getExtensionType(); SDValue Ch = LD->getChain(); SDValue Ptr = LD->getBasePtr(); SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); EVT MemoryVT = LD->getMemoryVT(); unsigned Alignment = LD->getOriginalAlignment(); bool isVolatile = LD->isVolatile(); bool isNonTemporal = LD->isNonTemporal(); bool isInvariant = LD->isInvariant(); EVT LoMemVT, HiMemVT; GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT); Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset, LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal, isInvariant, Alignment); unsigned IncrementSize = LoMemVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset, LD->getPointerInfo().getWithOffset(IncrementSize), HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(LD, 1), Ch); } void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0).isVector() && N->getOperand(0).getValueType().isVector() && "Operand types must be vectors"); EVT LoVT, HiVT; DebugLoc DL = N->getDebugLoc(); GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); // Split the input. EVT InVT = N->getOperand(0).getValueType(); SDValue LL, LH, RL, RH; EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), LoVT.getVectorNumElements()); LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0), DAG.getIntPtrConstant(0)); LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0), DAG.getIntPtrConstant(InNVT.getVectorNumElements())); RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1), DAG.getIntPtrConstant(0)); RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1), DAG.getIntPtrConstant(InNVT.getVectorNumElements())); Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); } void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi) { // Get the dest types - they may not match the input types, e.g. int_to_fp. EVT LoVT, HiVT; DebugLoc dl = N->getDebugLoc(); GetSplitDestVTs(N->getValueType(0), LoVT, HiVT); // If the input also splits, handle it directly for a compile time speedup. // Otherwise split it by hand. EVT InVT = N->getOperand(0).getValueType(); if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) { GetSplitVector(N->getOperand(0), Lo, Hi); } else { EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), LoVT.getVectorNumElements()); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0), DAG.getIntPtrConstant(0)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0), DAG.getIntPtrConstant(InNVT.getVectorNumElements())); } if (N->getOpcode() == ISD::FP_ROUND) { Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1)); Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1)); } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) { SDValue DTyOpLo = DAG.getValueType(LoVT); SDValue DTyOpHi = DAG.getValueType(HiVT); SDValue STyOpLo = DAG.getValueType(Lo.getValueType()); SDValue STyOpHi = DAG.getValueType(Hi.getValueType()); SDValue RndOp = N->getOperand(3); SDValue SatOp = N->getOperand(4); ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp, CvtCode); Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp, CvtCode); } else { Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo); Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi); } } void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, SDValue &Hi) { // The low and high parts of the original input give four input vectors. SDValue Inputs[4]; DebugLoc dl = N->getDebugLoc(); GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]); GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]); EVT NewVT = Inputs[0].getValueType(); unsigned NewElts = NewVT.getVectorNumElements(); // If Lo or Hi uses elements from at most two of the four input vectors, then // express it as a vector shuffle of those two inputs. Otherwise extract the // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. SmallVector<int, 16> Ops; for (unsigned High = 0; High < 2; ++High) { SDValue &Output = High ? Hi : Lo; // Build a shuffle mask for the output, discovering on the fly which // input vectors to use as shuffle operands (recorded in InputUsed). // If building a suitable shuffle vector proves too hard, then bail // out with useBuildVector set. unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered. unsigned FirstMaskIdx = High * NewElts; bool useBuildVector = false; for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { // The mask element. This indexes into the input. int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset); // The input vector this mask element indexes into. unsigned Input = (unsigned)Idx / NewElts; if (Input >= array_lengthof(Inputs)) { // The mask element does not index into any input vector. Ops.push_back(-1); continue; } // Turn the index into an offset from the start of the input vector. Idx -= Input * NewElts; // Find or create a shuffle vector operand to hold this input. unsigned OpNo; for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { if (InputUsed[OpNo] == Input) { // This input vector is already an operand. break; } else if (InputUsed[OpNo] == -1U) { // Create a new operand for this input vector. InputUsed[OpNo] = Input; break; } } if (OpNo >= array_lengthof(InputUsed)) { // More than two input vectors used! Give up on trying to create a // shuffle vector. Insert all elements into a BUILD_VECTOR instead. useBuildVector = true; break; } // Add the mask index for the new shuffle vector. Ops.push_back(Idx + OpNo * NewElts); } if (useBuildVector) { EVT EltVT = NewVT.getVectorElementType(); SmallVector<SDValue, 16> SVOps; // Extract the input elements by hand. for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { // The mask element. This indexes into the input. int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset); // The input vector this mask element indexes into. unsigned Input = (unsigned)Idx / NewElts; if (Input >= array_lengthof(Inputs)) { // The mask element is "undef" or indexes off the end of the input. SVOps.push_back(DAG.getUNDEF(EltVT)); continue; } // Turn the index into an offset from the start of the input vector. Idx -= Input * NewElts; // Extract the vector element by hand. SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Inputs[Input], DAG.getIntPtrConstant(Idx))); } // Construct the Lo/Hi output using a BUILD_VECTOR. Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size()); } else if (InputUsed[0] == -1U) { // No input vectors were used! The result is undefined. Output = DAG.getUNDEF(NewVT); } else { SDValue Op0 = Inputs[InputUsed[0]]; // If only one input was used, use an undefined vector for the other. SDValue Op1 = InputUsed[1] == -1U ? DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]]; // At least one input vector was used. Create a new shuffle vector. Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]); } Ops.clear(); } } //===----------------------------------------------------------------------===// // Operand Vector Splitting //===----------------------------------------------------------------------===// /// SplitVectorOperand - This method is called when the specified operand of the /// specified node is found to need vector splitting. At this point, all of the /// result types of the node are known to be legal, but other operands of the /// node may need legalization as well as the specified one. bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Split node operand: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (Res.getNode() == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SplitVectorOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to split this operator's operand!"); case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break; case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break; case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break; case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break; case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break; case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break; case ISD::STORE: Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo); break; case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: case ISD::FP_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::FTRUNC: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Res = SplitVecOp_UnaryOp(N); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) { // The result has a legal vector type, but the input needs splitting. EVT ResVT = N->getValueType(0); SDValue Lo, Hi; DebugLoc dl = N->getDebugLoc(); GetSplitVector(N->getOperand(0), Lo, Hi); EVT InVT = Lo.getValueType(); EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(), InVT.getVectorNumElements()); Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo); Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); } SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) { // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will // end up being split all the way down to individual components. Convert the // split pieces into integers and reassemble. SDValue Lo, Hi; GetSplitVector(N->getOperand(0), Lo, Hi); Lo = BitConvertToInteger(Lo); Hi = BitConvertToInteger(Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0), JoinIntegers(Lo, Hi)); } SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) { // We know that the extracted result type is legal. EVT SubVT = N->getValueType(0); SDValue Idx = N->getOperand(1); DebugLoc dl = N->getDebugLoc(); SDValue Lo, Hi; GetSplitVector(N->getOperand(0), Lo, Hi); uint64_t LoElts = Lo.getValueType().getVectorNumElements(); uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); if (IdxVal < LoElts) { assert(IdxVal + SubVT.getVectorNumElements() <= LoElts && "Extracted subvector crosses vector split!"); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx); } else { return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi, DAG.getConstant(IdxVal - LoElts, Idx.getValueType())); } } SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(1); EVT VecVT = Vec.getValueType(); if (isa<ConstantSDNode>(Idx)) { uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!"); SDValue Lo, Hi; GetSplitVector(Vec, Lo, Hi); uint64_t LoElts = Lo.getValueType().getVectorNumElements(); if (IdxVal < LoElts) return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0); return SDValue(DAG.UpdateNodeOperands(N, Hi, DAG.getConstant(IdxVal - LoElts, Idx.getValueType())), 0); } // Store the vector to the stack. EVT EltVT = VecVT.getVectorElementType(); DebugLoc dl = N->getDebugLoc(); SDValue StackPtr = DAG.CreateStackTemporary(VecVT); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo(), false, false, 0); // Load back the required element. StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx); return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr, MachinePointerInfo(), EltVT, false, false, 0); } SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) { assert(N->isUnindexed() && "Indexed store of vector?"); assert(OpNo == 1 && "Can only split the stored value"); DebugLoc DL = N->getDebugLoc(); bool isTruncating = N->isTruncatingStore(); SDValue Ch = N->getChain(); SDValue Ptr = N->getBasePtr(); EVT MemoryVT = N->getMemoryVT(); unsigned Alignment = N->getOriginalAlignment(); bool isVol = N->isVolatile(); bool isNT = N->isNonTemporal(); SDValue Lo, Hi; GetSplitVector(N->getOperand(1), Lo, Hi); EVT LoMemVT, HiMemVT; GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT); unsigned IncrementSize = LoMemVT.getSizeInBits()/8; if (isTruncating) Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), LoMemVT, isVol, isNT, Alignment); else Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), isVol, isNT, Alignment); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); if (isTruncating) Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), HiMemVT, isVol, isNT, Alignment); else Hi = DAG.getStore(Ch, DL, Hi, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), isVol, isNT, Alignment); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); } SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) { DebugLoc DL = N->getDebugLoc(); // The input operands all must have the same type, and we know the result the // result type is valid. Convert this to a buildvector which extracts all the // input elements. // TODO: If the input elements are power-two vectors, we could convert this to // a new CONCAT_VECTORS node with elements that are half-wide. SmallVector<SDValue, 32> Elts; EVT EltVT = N->getValueType(0).getVectorElementType(); for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { SDValue Op = N->getOperand(op); for (unsigned i = 0, e = Op.getValueType().getVectorNumElements(); i != e; ++i) { Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op, DAG.getIntPtrConstant(i))); } } return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), &Elts[0], Elts.size()); } SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) { assert(N->getValueType(0).isVector() && N->getOperand(0).getValueType().isVector() && "Operand types must be vectors"); // The result has a legal vector type, but the input needs splitting. SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes; DebugLoc DL = N->getDebugLoc(); GetSplitVector(N->getOperand(0), Lo0, Hi0); GetSplitVector(N->getOperand(1), Lo1, Hi1); unsigned PartElements = Lo0.getValueType().getVectorNumElements(); EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements); EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements); LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2)); HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2)); SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes); return PromoteTargetBoolean(Con, N->getValueType(0)); } SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) { // The result has a legal vector type, but the input needs splitting. EVT ResVT = N->getValueType(0); SDValue Lo, Hi; DebugLoc DL = N->getDebugLoc(); GetSplitVector(N->getOperand(0), Lo, Hi); EVT InVT = Lo.getValueType(); EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(), InVT.getVectorNumElements()); Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1)); Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1)); return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); } //===----------------------------------------------------------------------===// // Result Vector Widening //===----------------------------------------------------------------------===// void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Widen node result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); // See if the target wants to custom widen this node. if (CustomWidenLowerNode(N, N->getValueType(ResNo))) return; SDValue Res = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "WidenVectorResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to widen the result of this operator!"); case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break; case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break; case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break; case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break; case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break; case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break; case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break; case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break; case ISD::LOAD: Res = WidenVecRes_LOAD(N); break; case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break; case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break; case ISD::VSELECT: case ISD::SELECT: Res = WidenVecRes_SELECT(N); break; case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break; case ISD::SETCC: Res = WidenVecRes_SETCC(N); break; case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break; case ISD::VECTOR_SHUFFLE: Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N)); break; case ISD::ADD: case ISD::AND: case ISD::BSWAP: case ISD::FADD: case ISD::FCOPYSIGN: case ISD::FDIV: case ISD::FMUL: case ISD::FPOW: case ISD::FREM: case ISD::FSUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::OR: case ISD::SDIV: case ISD::SREM: case ISD::UDIV: case ISD::UREM: case ISD::SUB: case ISD::XOR: Res = WidenVecRes_Binary(N); break; case ISD::FPOWI: Res = WidenVecRes_POWI(N); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: Res = WidenVecRes_Shift(N); break; case ISD::ANY_EXTEND: case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SIGN_EXTEND: case ISD::SINT_TO_FP: case ISD::TRUNCATE: case ISD::UINT_TO_FP: case ISD::ZERO_EXTEND: Res = WidenVecRes_Convert(N); break; case ISD::CTLZ: case ISD::CTPOP: case ISD::CTTZ: case ISD::FABS: case ISD::FCEIL: case ISD::FCOS: case ISD::FEXP: case ISD::FEXP2: case ISD::FFLOOR: case ISD::FLOG: case ISD::FLOG10: case ISD::FLOG2: case ISD::FNEARBYINT: case ISD::FNEG: case ISD::FRINT: case ISD::FSIN: case ISD::FSQRT: case ISD::FTRUNC: Res = WidenVecRes_Unary(N); break; } // If Res is null, the sub-method took care of registering the result. if (Res.getNode()) SetWidenedVector(SDValue(N, ResNo), Res); } SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) { // Binary op widening. unsigned Opcode = N->getOpcode(); DebugLoc dl = N->getDebugLoc(); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); EVT WidenEltVT = WidenVT.getVectorElementType(); EVT VT = WidenVT; unsigned NumElts = VT.getVectorNumElements(); while (!TLI.isTypeLegal(VT) && NumElts != 1) { NumElts = NumElts / 2; VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); } if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) { // Operation doesn't trap so just widen as normal. SDValue InOp1 = GetWidenedVector(N->getOperand(0)); SDValue InOp2 = GetWidenedVector(N->getOperand(1)); return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2); } // No legal vector version so unroll the vector operation and then widen. if (NumElts == 1) return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements()); // Since the operation can trap, apply operation on the original vector. EVT MaxVT = VT; SDValue InOp1 = GetWidenedVector(N->getOperand(0)); SDValue InOp2 = GetWidenedVector(N->getOperand(1)); unsigned CurNumElts = N->getValueType(0).getVectorNumElements(); SmallVector<SDValue, 16> ConcatOps(CurNumElts); unsigned ConcatEnd = 0; // Current ConcatOps index. int Idx = 0; // Current Idx into input vectors. // NumElts := greatest legal vector size (at most WidenVT) // while (orig. vector has unhandled elements) { // take munches of size NumElts from the beginning and add to ConcatOps // NumElts := next smaller supported vector size or 1 // } while (CurNumElts != 0) { while (CurNumElts >= NumElts) { SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1, DAG.getIntPtrConstant(Idx)); SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2, DAG.getIntPtrConstant(Idx)); ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2); Idx += NumElts; CurNumElts -= NumElts; } do { NumElts = NumElts / 2; VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); } while (!TLI.isTypeLegal(VT) && NumElts != 1); if (NumElts == 1) { for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) { SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp1, DAG.getIntPtrConstant(Idx)); SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp2, DAG.getIntPtrConstant(Idx)); ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT, EOp1, EOp2); } CurNumElts = 0; } } // Check to see if we have a single operation with the widen type. if (ConcatEnd == 1) { VT = ConcatOps[0].getValueType(); if (VT == WidenVT) return ConcatOps[0]; } // while (Some element of ConcatOps is not of type MaxVT) { // From the end of ConcatOps, collect elements of the same type and put // them into an op of the next larger supported type // } while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) { Idx = ConcatEnd - 1; VT = ConcatOps[Idx--].getValueType(); while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT) Idx--; int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1; EVT NextVT; do { NextSize *= 2; NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize); } while (!TLI.isTypeLegal(NextVT)); if (!VT.isVector()) { // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT SDValue VecOp = DAG.getUNDEF(NextVT); unsigned NumToInsert = ConcatEnd - Idx - 1; for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) { VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, ConcatOps[OpIdx], DAG.getIntPtrConstant(i)); } ConcatOps[Idx+1] = VecOp; ConcatEnd = Idx + 2; } else { // Vector type, create a CONCAT_VECTORS of type NextVT SDValue undefVec = DAG.getUNDEF(VT); unsigned OpsToConcat = NextSize/VT.getVectorNumElements(); SmallVector<SDValue, 16> SubConcatOps(OpsToConcat); unsigned RealVals = ConcatEnd - Idx - 1; unsigned SubConcatEnd = 0; unsigned SubConcatIdx = Idx + 1; while (SubConcatEnd < RealVals) SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx]; while (SubConcatEnd < OpsToConcat) SubConcatOps[SubConcatEnd++] = undefVec; ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NextVT, &SubConcatOps[0], OpsToConcat); ConcatEnd = SubConcatIdx + 1; } } // Check to see if we have a single operation with the widen type. if (ConcatEnd == 1) { VT = ConcatOps[0].getValueType(); if (VT == WidenVT) return ConcatOps[0]; } // add undefs of size MaxVT until ConcatOps grows to length of WidenVT unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements(); if (NumOps != ConcatEnd ) { SDValue UndefVal = DAG.getUNDEF(MaxVT); for (unsigned j = ConcatEnd; j < NumOps; ++j) ConcatOps[j] = UndefVal; } return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumOps); } SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) { SDValue InOp = N->getOperand(0); DebugLoc DL = N->getDebugLoc(); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned WidenNumElts = WidenVT.getVectorNumElements(); EVT InVT = InOp.getValueType(); EVT InEltVT = InVT.getVectorElementType(); EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts); unsigned Opcode = N->getOpcode(); unsigned InVTNumElts = InVT.getVectorNumElements(); if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) { InOp = GetWidenedVector(N->getOperand(0)); InVT = InOp.getValueType(); InVTNumElts = InVT.getVectorNumElements(); if (InVTNumElts == WidenNumElts) { if (N->getNumOperands() == 1) return DAG.getNode(Opcode, DL, WidenVT, InOp); return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1)); } } if (TLI.isTypeLegal(InWidenVT)) { // Because the result and the input are different vector types, widening // the result could create a legal type but widening the input might make // it an illegal type that might lead to repeatedly splitting the input // and then widening it. To avoid this, we widen the input only if // it results in a legal type. if (WidenNumElts % InVTNumElts == 0) { // Widen the input and call convert on the widened input vector. unsigned NumConcat = WidenNumElts/InVTNumElts; SmallVector<SDValue, 16> Ops(NumConcat); Ops[0] = InOp; SDValue UndefVal = DAG.getUNDEF(InVT); for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = UndefVal; SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, &Ops[0], NumConcat); if (N->getNumOperands() == 1) return DAG.getNode(Opcode, DL, WidenVT, InVec); return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1)); } if (InVTNumElts % WidenNumElts == 0) { SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp, DAG.getIntPtrConstant(0)); // Extract the input and convert the shorten input vector. if (N->getNumOperands() == 1) return DAG.getNode(Opcode, DL, WidenVT, InVal); return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1)); } } // Otherwise unroll into some nasty scalar code and rebuild the vector. SmallVector<SDValue, 16> Ops(WidenNumElts); EVT EltVT = WidenVT.getVectorElementType(); unsigned MinElts = std::min(InVTNumElts, WidenNumElts); unsigned i; for (i=0; i < MinElts; ++i) { SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp, DAG.getIntPtrConstant(i)); if (N->getNumOperands() == 1) Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val); else Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1)); } SDValue UndefVal = DAG.getUNDEF(EltVT); for (; i < WidenNumElts; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, &Ops[0], WidenNumElts); } SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue InOp = GetWidenedVector(N->getOperand(0)); SDValue ShOp = N->getOperand(1); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp); } SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue InOp = GetWidenedVector(N->getOperand(0)); SDValue ShOp = N->getOperand(1); EVT ShVT = ShOp.getValueType(); if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) { ShOp = GetWidenedVector(ShOp); ShVT = ShOp.getValueType(); } EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(), ShVT.getVectorElementType(), WidenVT.getVectorNumElements()); if (ShVT != ShWidenVT) ShOp = ModifyToType(ShOp, ShWidenVT); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp); } SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) { // Unary op widening. EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue InOp = GetWidenedVector(N->getOperand(0)); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp); } SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), cast<VTSDNode>(N->getOperand(1))->getVT() .getVectorElementType(), WidenVT.getVectorNumElements()); SDValue WidenLHS = GetWidenedVector(N->getOperand(0)); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, WidenLHS, DAG.getValueType(ExtVT)); } SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo); return GetWidenedVector(WidenVec); } SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) { SDValue InOp = N->getOperand(0); EVT InVT = InOp.getValueType(); EVT VT = N->getValueType(0); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); DebugLoc dl = N->getDebugLoc(); switch (getTypeAction(InVT)) { case TargetLowering::TypeLegal: break; case TargetLowering::TypePromoteInteger: // If the incoming type is a vector that is being promoted, then // we know that the elements are arranged differently and that we // must perform the conversion using a stack slot. if (InVT.isVector()) break; // If the InOp is promoted to the same size, convert it. Otherwise, // fall out of the switch and widen the promoted input. InOp = GetPromotedInteger(InOp); InVT = InOp.getValueType(); if (WidenVT.bitsEq(InVT)) return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp); break; case TargetLowering::TypeSoftenFloat: case TargetLowering::TypeExpandInteger: case TargetLowering::TypeExpandFloat: case TargetLowering::TypeScalarizeVector: case TargetLowering::TypeSplitVector: break; case TargetLowering::TypeWidenVector: // If the InOp is widened to the same size, convert it. Otherwise, fall // out of the switch and widen the widened input. InOp = GetWidenedVector(InOp); InVT = InOp.getValueType(); if (WidenVT.bitsEq(InVT)) // The input widens to the same size. Convert to the widen value. return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp); break; } unsigned WidenSize = WidenVT.getSizeInBits(); unsigned InSize = InVT.getSizeInBits(); // x86mmx is not an acceptable vector element type, so don't try. if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) { // Determine new input vector type. The new input vector type will use // the same element type (if its a vector) or use the input type as a // vector. It is the same size as the type to widen to. EVT NewInVT; unsigned NewNumElts = WidenSize / InSize; if (InVT.isVector()) { EVT InEltVT = InVT.getVectorElementType(); NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenSize / InEltVT.getSizeInBits()); } else { NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts); } if (TLI.isTypeLegal(NewInVT)) { // Because the result and the input are different vector types, widening // the result could create a legal type but widening the input might make // it an illegal type that might lead to repeatedly splitting the input // and then widening it. To avoid this, we widen the input only if // it results in a legal type. SmallVector<SDValue, 16> Ops(NewNumElts); SDValue UndefVal = DAG.getUNDEF(InVT); Ops[0] = InOp; for (unsigned i = 1; i < NewNumElts; ++i) Ops[i] = UndefVal; SDValue NewVec; if (InVT.isVector()) NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, &Ops[0], NewNumElts); else NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, &Ops[0], NewNumElts); return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec); } } return CreateStackStoreLoad(InOp, WidenVT); } SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) { DebugLoc dl = N->getDebugLoc(); // Build a vector with undefined for the new nodes. EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); unsigned WidenNumElts = WidenVT.getVectorNumElements(); SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end()); NewOps.reserve(WidenNumElts); for (unsigned i = NumElts; i < WidenNumElts; ++i) NewOps.push_back(DAG.getUNDEF(EltVT)); return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size()); } SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) { EVT InVT = N->getOperand(0).getValueType(); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); DebugLoc dl = N->getDebugLoc(); unsigned WidenNumElts = WidenVT.getVectorNumElements(); unsigned NumInElts = InVT.getVectorNumElements(); unsigned NumOperands = N->getNumOperands(); bool InputWidened = false; // Indicates we need to widen the input. if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) { if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) { // Add undef vectors to widen to correct length. unsigned NumConcat = WidenVT.getVectorNumElements() / InVT.getVectorNumElements(); SDValue UndefVal = DAG.getUNDEF(InVT); SmallVector<SDValue, 16> Ops(NumConcat); for (unsigned i=0; i < NumOperands; ++i) Ops[i] = N->getOperand(i); for (unsigned i = NumOperands; i != NumConcat; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat); } } else { InputWidened = true; if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) { // The inputs and the result are widen to the same value. unsigned i; for (i=1; i < NumOperands; ++i) if (N->getOperand(i).getOpcode() != ISD::UNDEF) break; if (i == NumOperands) // Everything but the first operand is an UNDEF so just return the // widened first operand. return GetWidenedVector(N->getOperand(0)); if (NumOperands == 2) { // Replace concat of two operands with a shuffle. SmallVector<int, 16> MaskOps(WidenNumElts, -1); for (unsigned i = 0; i < NumInElts; ++i) { MaskOps[i] = i; MaskOps[i + NumInElts] = i + WidenNumElts; } return DAG.getVectorShuffle(WidenVT, dl, GetWidenedVector(N->getOperand(0)), GetWidenedVector(N->getOperand(1)), &MaskOps[0]); } } } // Fall back to use extracts and build vector. EVT EltVT = WidenVT.getVectorElementType(); SmallVector<SDValue, 16> Ops(WidenNumElts); unsigned Idx = 0; for (unsigned i=0; i < NumOperands; ++i) { SDValue InOp = N->getOperand(i); if (InputWidened) InOp = GetWidenedVector(InOp); for (unsigned j=0; j < NumInElts; ++j) Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, DAG.getIntPtrConstant(j)); } SDValue UndefVal = DAG.getUNDEF(EltVT); for (; Idx < WidenNumElts; ++Idx) Ops[Idx] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts); } SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) { DebugLoc dl = N->getDebugLoc(); SDValue InOp = N->getOperand(0); SDValue RndOp = N->getOperand(3); SDValue SatOp = N->getOperand(4); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned WidenNumElts = WidenVT.getVectorNumElements(); EVT InVT = InOp.getValueType(); EVT InEltVT = InVT.getVectorElementType(); EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts); SDValue DTyOp = DAG.getValueType(WidenVT); SDValue STyOp = DAG.getValueType(InWidenVT); ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); unsigned InVTNumElts = InVT.getVectorNumElements(); if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) { InOp = GetWidenedVector(InOp); InVT = InOp.getValueType(); InVTNumElts = InVT.getVectorNumElements(); if (InVTNumElts == WidenNumElts) return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, SatOp, CvtCode); } if (TLI.isTypeLegal(InWidenVT)) { // Because the result and the input are different vector types, widening // the result could create a legal type but widening the input might make // it an illegal type that might lead to repeatedly splitting the input // and then widening it. To avoid this, we widen the input only if // it results in a legal type. if (WidenNumElts % InVTNumElts == 0) { // Widen the input and call convert on the widened input vector. unsigned NumConcat = WidenNumElts/InVTNumElts; SmallVector<SDValue, 16> Ops(NumConcat); Ops[0] = InOp; SDValue UndefVal = DAG.getUNDEF(InVT); for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = UndefVal; InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat); return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, SatOp, CvtCode); } if (InVTNumElts % WidenNumElts == 0) { // Extract the input and convert the shorten input vector. InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp, DAG.getIntPtrConstant(0)); return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, SatOp, CvtCode); } } // Otherwise unroll into some nasty scalar code and rebuild the vector. SmallVector<SDValue, 16> Ops(WidenNumElts); EVT EltVT = WidenVT.getVectorElementType(); DTyOp = DAG.getValueType(EltVT); STyOp = DAG.getValueType(InEltVT); unsigned MinElts = std::min(InVTNumElts, WidenNumElts); unsigned i; for (i=0; i < MinElts; ++i) { SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp, DAG.getIntPtrConstant(i)); Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp, SatOp, CvtCode); } SDValue UndefVal = DAG.getUNDEF(EltVT); for (; i < WidenNumElts; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts); } SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) { EVT VT = N->getValueType(0); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); unsigned WidenNumElts = WidenVT.getVectorNumElements(); SDValue InOp = N->getOperand(0); SDValue Idx = N->getOperand(1); DebugLoc dl = N->getDebugLoc(); if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) InOp = GetWidenedVector(InOp); EVT InVT = InOp.getValueType(); // Check if we can just return the input vector after widening. uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); if (IdxVal == 0 && InVT == WidenVT) return InOp; // Check if we can extract from the vector. unsigned InNumElts = InVT.getVectorNumElements(); if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts) return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx); // We could try widening the input to the right length but for now, extract // the original elements, fill the rest with undefs and build a vector. SmallVector<SDValue, 16> Ops(WidenNumElts); EVT EltVT = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); unsigned i; for (i=0; i < NumElts; ++i) Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, DAG.getIntPtrConstant(IdxVal+i)); SDValue UndefVal = DAG.getUNDEF(EltVT); for (; i < WidenNumElts; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts); } SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) { SDValue InOp = GetWidenedVector(N->getOperand(0)); return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(), InOp.getValueType(), InOp, N->getOperand(1), N->getOperand(2)); } SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) { LoadSDNode *LD = cast<LoadSDNode>(N); ISD::LoadExtType ExtType = LD->getExtensionType(); SDValue Result; SmallVector<SDValue, 16> LdChain; // Chain for the series of load if (ExtType != ISD::NON_EXTLOAD) Result = GenWidenVectorExtLoads(LdChain, LD, ExtType); else Result = GenWidenVectorLoads(LdChain, LD); // If we generate a single load, we can use that for the chain. Otherwise, // build a factor node to remember the multiple loads are independent and // chain to that. SDValue NewChain; if (LdChain.size() == 1) NewChain = LdChain[0]; else NewChain = DAG.getNode(ISD::TokenFactor, LD->getDebugLoc(), MVT::Other, &LdChain[0], LdChain.size()); // Modified the chain - switch anything that used the old chain to use // the new one. ReplaceValueWith(SDValue(N, 1), NewChain); return Result; } SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(), WidenVT, N->getOperand(0)); } SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned WidenNumElts = WidenVT.getVectorNumElements(); SDValue Cond1 = N->getOperand(0); EVT CondVT = Cond1.getValueType(); if (CondVT.isVector()) { EVT CondEltVT = CondVT.getVectorElementType(); EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(), CondEltVT, WidenNumElts); if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector) Cond1 = GetWidenedVector(Cond1); if (Cond1.getValueType() != CondWidenVT) Cond1 = ModifyToType(Cond1, CondWidenVT); } SDValue InOp1 = GetWidenedVector(N->getOperand(1)); SDValue InOp2 = GetWidenedVector(N->getOperand(2)); assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT); return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, Cond1, InOp1, InOp2); } SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) { SDValue InOp1 = GetWidenedVector(N->getOperand(2)); SDValue InOp2 = GetWidenedVector(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), InOp1.getValueType(), N->getOperand(0), N->getOperand(1), InOp1, InOp2, N->getOperand(4)); } SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) { assert(N->getValueType(0).isVector() == N->getOperand(0).getValueType().isVector() && "Scalar/Vector type mismatch"); if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue InOp1 = GetWidenedVector(N->getOperand(0)); SDValue InOp2 = GetWidenedVector(N->getOperand(1)); return DAG.getNode(ISD::SETCC, N->getDebugLoc(), WidenVT, InOp1, InOp2, N->getOperand(2)); } SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) { EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); return DAG.getUNDEF(WidenVT); } SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) { EVT VT = N->getValueType(0); DebugLoc dl = N->getDebugLoc(); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); unsigned NumElts = VT.getVectorNumElements(); unsigned WidenNumElts = WidenVT.getVectorNumElements(); SDValue InOp1 = GetWidenedVector(N->getOperand(0)); SDValue InOp2 = GetWidenedVector(N->getOperand(1)); // Adjust mask based on new input vector length. SmallVector<int, 16> NewMask; for (unsigned i = 0; i != NumElts; ++i) { int Idx = N->getMaskElt(i); if (Idx < (int)NumElts) NewMask.push_back(Idx); else NewMask.push_back(Idx - NumElts + WidenNumElts); } for (unsigned i = NumElts; i != WidenNumElts; ++i) NewMask.push_back(-1); return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]); } SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) { assert(N->getValueType(0).isVector() && N->getOperand(0).getValueType().isVector() && "Operands must be vectors"); EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned WidenNumElts = WidenVT.getVectorNumElements(); SDValue InOp1 = N->getOperand(0); EVT InVT = InOp1.getValueType(); assert(InVT.isVector() && "can not widen non vector type"); EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), WidenNumElts); InOp1 = GetWidenedVector(InOp1); SDValue InOp2 = GetWidenedVector(N->getOperand(1)); // Assume that the input and output will be widen appropriately. If not, // we will have to unroll it at some point. assert(InOp1.getValueType() == WidenInVT && InOp2.getValueType() == WidenInVT && "Input not widened to expected type!"); (void)WidenInVT; return DAG.getNode(ISD::SETCC, N->getDebugLoc(), WidenVT, InOp1, InOp2, N->getOperand(2)); } //===----------------------------------------------------------------------===// // Widen Vector Operand //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Widen node operand " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "WidenVectorOperand op #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to widen this operator's operand!"); case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break; case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break; case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break; case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break; case ISD::STORE: Res = WidenVecOp_STORE(N); break; case ISD::SETCC: Res = WidenVecOp_SETCC(N); break; case ISD::FP_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Res = WidenVecOp_Convert(N); break; } // If Res is null, the sub-method took care of registering the result. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) { // Since the result is legal and the input is illegal, it is unlikely // that we can fix the input to a legal type so unroll the convert // into some scalar code and create a nasty build vector. EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); DebugLoc dl = N->getDebugLoc(); unsigned NumElts = VT.getVectorNumElements(); SDValue InOp = N->getOperand(0); if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) InOp = GetWidenedVector(InOp); EVT InVT = InOp.getValueType(); EVT InEltVT = InVT.getVectorElementType(); unsigned Opcode = N->getOpcode(); SmallVector<SDValue, 16> Ops(NumElts); for (unsigned i=0; i < NumElts; ++i) Ops[i] = DAG.getNode(Opcode, dl, EltVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp, DAG.getIntPtrConstant(i))); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts); } SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) { EVT VT = N->getValueType(0); SDValue InOp = GetWidenedVector(N->getOperand(0)); EVT InWidenVT = InOp.getValueType(); DebugLoc dl = N->getDebugLoc(); // Check if we can convert between two legal vector types and extract. unsigned InWidenSize = InWidenVT.getSizeInBits(); unsigned Size = VT.getSizeInBits(); // x86mmx is not an acceptable vector element type, so don't try. if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) { unsigned NewNumElts = InWidenSize / Size; EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts); if (TLI.isTypeLegal(NewVT)) { SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp, DAG.getIntPtrConstant(0)); } } return CreateStackStoreLoad(InOp, VT); } SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) { // If the input vector is not legal, it is likely that we will not find a // legal vector of the same size. Replace the concatenate vector with a // nasty build vector. EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); DebugLoc dl = N->getDebugLoc(); unsigned NumElts = VT.getVectorNumElements(); SmallVector<SDValue, 16> Ops(NumElts); EVT InVT = N->getOperand(0).getValueType(); unsigned NumInElts = InVT.getVectorNumElements(); unsigned Idx = 0; unsigned NumOperands = N->getNumOperands(); for (unsigned i=0; i < NumOperands; ++i) { SDValue InOp = N->getOperand(i); if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) InOp = GetWidenedVector(InOp); for (unsigned j=0; j < NumInElts; ++j) Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, DAG.getIntPtrConstant(j)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts); } SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) { SDValue InOp = GetWidenedVector(N->getOperand(0)); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), N->getValueType(0), InOp, N->getOperand(1)); } SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { SDValue InOp = GetWidenedVector(N->getOperand(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), N->getValueType(0), InOp, N->getOperand(1)); } SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) { // We have to widen the value but we want only to store the original // vector type. StoreSDNode *ST = cast<StoreSDNode>(N); SmallVector<SDValue, 16> StChain; if (ST->isTruncatingStore()) GenWidenVectorTruncStores(StChain, ST); else GenWidenVectorStores(StChain, ST); if (StChain.size() == 1) return StChain[0]; else return DAG.getNode(ISD::TokenFactor, ST->getDebugLoc(), MVT::Other,&StChain[0],StChain.size()); } SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) { SDValue InOp0 = GetWidenedVector(N->getOperand(0)); SDValue InOp1 = GetWidenedVector(N->getOperand(1)); DebugLoc dl = N->getDebugLoc(); // WARNING: In this code we widen the compare instruction with garbage. // This garbage may contain denormal floats which may be slow. Is this a real // concern ? Should we zero the unused lanes if this is a float compare ? // Get a new SETCC node to compare the newly widened operands. // Only some of the compared elements are legal. EVT SVT = TLI.getSetCCResultType(InOp0.getValueType()); SDValue WideSETCC = DAG.getNode(ISD::SETCC, N->getDebugLoc(), SVT, InOp0, InOp1, N->getOperand(2)); // Extract the needed results from the result vector. EVT ResVT = EVT::getVectorVT(*DAG.getContext(), SVT.getVectorElementType(), N->getValueType(0).getVectorNumElements()); SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC, DAG.getIntPtrConstant(0)); return PromoteTargetBoolean(CC, N->getValueType(0)); } //===----------------------------------------------------------------------===// // Vector Widening Utilities //===----------------------------------------------------------------------===// // Utility function to find the type to chop up a widen vector for load/store // TLI: Target lowering used to determine legal types. // Width: Width left need to load/store. // WidenVT: The widen vector type to load to/store from // Align: If 0, don't allow use of a wider type // WidenEx: If Align is not 0, the amount additional we can load/store from. static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI, unsigned Width, EVT WidenVT, unsigned Align = 0, unsigned WidenEx = 0) { EVT WidenEltVT = WidenVT.getVectorElementType(); unsigned WidenWidth = WidenVT.getSizeInBits(); unsigned WidenEltWidth = WidenEltVT.getSizeInBits(); unsigned AlignInBits = Align*8; // If we have one element to load/store, return it. EVT RetVT = WidenEltVT; if (Width == WidenEltWidth) return RetVT; // See if there is larger legal integer than the element type to load/store unsigned VT; for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE; VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) { EVT MemVT((MVT::SimpleValueType) VT); unsigned MemVTWidth = MemVT.getSizeInBits(); if (MemVT.getSizeInBits() <= WidenEltWidth) break; if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 && isPowerOf2_32(WidenWidth / MemVTWidth) && (MemVTWidth <= Width || (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { RetVT = MemVT; break; } } // See if there is a larger vector type to load/store that has the same vector // element type and is evenly divisible with the WidenVT. for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) { EVT MemVT = (MVT::SimpleValueType) VT; unsigned MemVTWidth = MemVT.getSizeInBits(); if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() && (WidenWidth % MemVTWidth) == 0 && isPowerOf2_32(WidenWidth / MemVTWidth) && (MemVTWidth <= Width || (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT) return MemVT; } } return RetVT; } // Builds a vector type from scalar loads // VecTy: Resulting Vector type // LDOps: Load operators to build a vector type // [Start,End) the list of loads to use. static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy, SmallVector<SDValue, 16>& LdOps, unsigned Start, unsigned End) { DebugLoc dl = LdOps[Start].getDebugLoc(); EVT LdTy = LdOps[Start].getValueType(); unsigned Width = VecTy.getSizeInBits(); unsigned NumElts = Width / LdTy.getSizeInBits(); EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts); unsigned Idx = 1; SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]); for (unsigned i = Start + 1; i != End; ++i) { EVT NewLdTy = LdOps[i].getValueType(); if (NewLdTy != LdTy) { NumElts = Width / NewLdTy.getSizeInBits(); NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts); VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp); // Readjust position and vector position based on new load type Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits(); LdTy = NewLdTy; } VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i], DAG.getIntPtrConstant(Idx++)); } return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp); } SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16> &LdChain, LoadSDNode *LD) { // The strategy assumes that we can efficiently load powers of two widths. // The routines chops the vector into the largest vector loads with the same // element type or scalar loads and then recombines it to the widen vector // type. EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0)); unsigned WidenWidth = WidenVT.getSizeInBits(); EVT LdVT = LD->getMemoryVT(); DebugLoc dl = LD->getDebugLoc(); assert(LdVT.isVector() && WidenVT.isVector()); assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType()); // Load information SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); unsigned Align = LD->getAlignment(); bool isVolatile = LD->isVolatile(); bool isNonTemporal = LD->isNonTemporal(); bool isInvariant = LD->isInvariant(); int LdWidth = LdVT.getSizeInBits(); int WidthDiff = WidenWidth - LdWidth; // Difference unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads // Find the vector type that can load from. EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff); int NewVTWidth = NewVT.getSizeInBits(); SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(), isVolatile, isNonTemporal, isInvariant, Align); LdChain.push_back(LdOp.getValue(1)); // Check if we can load the element with one instruction if (LdWidth <= NewVTWidth) { if (!NewVT.isVector()) { unsigned NumElts = WidenWidth / NewVTWidth; EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts); SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp); return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp); } if (NewVT == WidenVT) return LdOp; assert(WidenWidth % NewVTWidth == 0); unsigned NumConcat = WidenWidth / NewVTWidth; SmallVector<SDValue, 16> ConcatOps(NumConcat); SDValue UndefVal = DAG.getUNDEF(NewVT); ConcatOps[0] = LdOp; for (unsigned i = 1; i != NumConcat; ++i) ConcatOps[i] = UndefVal; return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumConcat); } // Load vector by using multiple loads from largest vector to scalar SmallVector<SDValue, 16> LdOps; LdOps.push_back(LdOp); LdWidth -= NewVTWidth; unsigned Offset = 0; while (LdWidth > 0) { unsigned Increment = NewVTWidth / 8; Offset += Increment; BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Increment)); SDValue L; if (LdWidth < NewVTWidth) { // Our current type we are using is too large, find a better size NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff); NewVTWidth = NewVT.getSizeInBits(); L = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo().getWithOffset(Offset), isVolatile, isNonTemporal, isInvariant, MinAlign(Align, Increment)); LdChain.push_back(L.getValue(1)); if (L->getValueType(0).isVector()) { SmallVector<SDValue, 16> Loads; Loads.push_back(L); unsigned size = L->getValueSizeInBits(0); while (size < LdOp->getValueSizeInBits(0)) { Loads.push_back(DAG.getUNDEF(L->getValueType(0))); size += L->getValueSizeInBits(0); } L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), &Loads[0], Loads.size()); } } else { L = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo().getWithOffset(Offset), isVolatile, isNonTemporal, isInvariant, MinAlign(Align, Increment)); LdChain.push_back(L.getValue(1)); } LdOps.push_back(L); LdWidth -= NewVTWidth; } // Build the vector from the loads operations unsigned End = LdOps.size(); if (!LdOps[0].getValueType().isVector()) // All the loads are scalar loads. return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End); // If the load contains vectors, build the vector using concat vector. // All of the vectors used to loads are power of 2 and the scalars load // can be combined to make a power of 2 vector. SmallVector<SDValue, 16> ConcatOps(End); int i = End - 1; int Idx = End; EVT LdTy = LdOps[i].getValueType(); // First combine the scalar loads to a vector if (!LdTy.isVector()) { for (--i; i >= 0; --i) { LdTy = LdOps[i].getValueType(); if (LdTy.isVector()) break; } ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End); } ConcatOps[--Idx] = LdOps[i]; for (--i; i >= 0; --i) { EVT NewLdTy = LdOps[i].getValueType(); if (NewLdTy != LdTy) { // Create a larger vector ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy, &ConcatOps[Idx], End - Idx); Idx = End - 1; LdTy = NewLdTy; } ConcatOps[--Idx] = LdOps[i]; } if (WidenWidth == LdTy.getSizeInBits()*(End - Idx)) return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[Idx], End - Idx); // We need to fill the rest with undefs to build the vector unsigned NumOps = WidenWidth / LdTy.getSizeInBits(); SmallVector<SDValue, 16> WidenOps(NumOps); SDValue UndefVal = DAG.getUNDEF(LdTy); { unsigned i = 0; for (; i != End-Idx; ++i) WidenOps[i] = ConcatOps[Idx+i]; for (; i != NumOps; ++i) WidenOps[i] = UndefVal; } return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &WidenOps[0],NumOps); } SDValue DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain, LoadSDNode * LD, ISD::LoadExtType ExtType) { // For extension loads, it may not be more efficient to chop up the vector // and then extended it. Instead, we unroll the load and build a new vector. EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0)); EVT LdVT = LD->getMemoryVT(); DebugLoc dl = LD->getDebugLoc(); assert(LdVT.isVector() && WidenVT.isVector()); // Load information SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); unsigned Align = LD->getAlignment(); bool isVolatile = LD->isVolatile(); bool isNonTemporal = LD->isNonTemporal(); EVT EltVT = WidenVT.getVectorElementType(); EVT LdEltVT = LdVT.getVectorElementType(); unsigned NumElts = LdVT.getVectorNumElements(); // Load each element and widen unsigned WidenNumElts = WidenVT.getVectorNumElements(); SmallVector<SDValue, 16> Ops(WidenNumElts); unsigned Increment = LdEltVT.getSizeInBits() / 8; Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, LD->getPointerInfo(), LdEltVT, isVolatile, isNonTemporal, Align); LdChain.push_back(Ops[0].getValue(1)); unsigned i = 0, Offset = Increment; for (i=1; i < NumElts; ++i, Offset += Increment) { SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Offset)); Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, LD->getPointerInfo().getWithOffset(Offset), LdEltVT, isVolatile, isNonTemporal, Align); LdChain.push_back(Ops[i].getValue(1)); } // Fill the rest with undefs SDValue UndefVal = DAG.getUNDEF(EltVT); for (; i != WidenNumElts; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size()); } void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST) { // The strategy assumes that we can efficiently store powers of two widths. // The routines chops the vector into the largest vector stores with the same // element type or scalar stores. SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); unsigned Align = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); SDValue ValOp = GetWidenedVector(ST->getValue()); DebugLoc dl = ST->getDebugLoc(); EVT StVT = ST->getMemoryVT(); unsigned StWidth = StVT.getSizeInBits(); EVT ValVT = ValOp.getValueType(); unsigned ValWidth = ValVT.getSizeInBits(); EVT ValEltVT = ValVT.getVectorElementType(); unsigned ValEltWidth = ValEltVT.getSizeInBits(); assert(StVT.getVectorElementType() == ValEltVT); int Idx = 0; // current index to store unsigned Offset = 0; // offset from base to store while (StWidth != 0) { // Find the largest vector type we can store with EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT); unsigned NewVTWidth = NewVT.getSizeInBits(); unsigned Increment = NewVTWidth / 8; if (NewVT.isVector()) { unsigned NumVTElts = NewVT.getVectorNumElements(); do { SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp, DAG.getIntPtrConstant(Idx)); StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, ST->getPointerInfo().getWithOffset(Offset), isVolatile, isNonTemporal, MinAlign(Align, Offset))); StWidth -= NewVTWidth; Offset += Increment; Idx += NumVTElts; BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Increment)); } while (StWidth != 0 && StWidth >= NewVTWidth); } else { // Cast the vector to the scalar type we can store unsigned NumElts = ValWidth / NewVTWidth; EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts); SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp); // Readjust index position based on new vector type Idx = Idx * ValEltWidth / NewVTWidth; do { SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp, DAG.getIntPtrConstant(Idx++)); StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, ST->getPointerInfo().getWithOffset(Offset), isVolatile, isNonTemporal, MinAlign(Align, Offset))); StWidth -= NewVTWidth; Offset += Increment; BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Increment)); } while (StWidth != 0 && StWidth >= NewVTWidth); // Restore index back to be relative to the original widen element type Idx = Idx * NewVTWidth / ValEltWidth; } } } void DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST) { // For extension loads, it may not be more efficient to truncate the vector // and then store it. Instead, we extract each element and then store it. SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); unsigned Align = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); SDValue ValOp = GetWidenedVector(ST->getValue()); DebugLoc dl = ST->getDebugLoc(); EVT StVT = ST->getMemoryVT(); EVT ValVT = ValOp.getValueType(); // It must be true that we the widen vector type is bigger than where // we need to store. assert(StVT.isVector() && ValOp.getValueType().isVector()); assert(StVT.bitsLT(ValOp.getValueType())); // For truncating stores, we can not play the tricks of chopping legal // vector types and bit cast it to the right type. Instead, we unroll // the store. EVT StEltVT = StVT.getVectorElementType(); EVT ValEltVT = ValVT.getVectorElementType(); unsigned Increment = ValEltVT.getSizeInBits() / 8; unsigned NumElts = StVT.getVectorNumElements(); SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp, DAG.getIntPtrConstant(0)); StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, ST->getPointerInfo(), StEltVT, isVolatile, isNonTemporal, Align)); unsigned Offset = Increment; for (unsigned i=1; i < NumElts; ++i, Offset += Increment) { SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Offset)); SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp, DAG.getIntPtrConstant(0)); StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, ST->getPointerInfo().getWithOffset(Offset), StEltVT, isVolatile, isNonTemporal, MinAlign(Align, Offset))); } } /// Modifies a vector input (widen or narrows) to a vector of NVT. The /// input vector must have the same element type as NVT. SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) { // Note that InOp might have been widened so it might already have // the right width or it might need be narrowed. EVT InVT = InOp.getValueType(); assert(InVT.getVectorElementType() == NVT.getVectorElementType() && "input and widen element type must match"); DebugLoc dl = InOp.getDebugLoc(); // Check if InOp already has the right width. if (InVT == NVT) return InOp; unsigned InNumElts = InVT.getVectorNumElements(); unsigned WidenNumElts = NVT.getVectorNumElements(); if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) { unsigned NumConcat = WidenNumElts / InNumElts; SmallVector<SDValue, 16> Ops(NumConcat); SDValue UndefVal = DAG.getUNDEF(InVT); Ops[0] = InOp; for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = UndefVal; return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat); } if (WidenNumElts < InNumElts && InNumElts % WidenNumElts) return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp, DAG.getIntPtrConstant(0)); // Fall back to extract and build. SmallVector<SDValue, 16> Ops(WidenNumElts); EVT EltVT = NVT.getVectorElementType(); unsigned MinNumElts = std::min(WidenNumElts, InNumElts); unsigned Idx; for (Idx = 0; Idx < MinNumElts; ++Idx) Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, DAG.getIntPtrConstant(Idx)); SDValue UndefVal = DAG.getUNDEF(EltVT); for ( ; Idx < WidenNumElts; ++Idx) Ops[Idx] = UndefVal; return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts); }