Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Support/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Support/DAGDeltaAlgorithm.cpp |
//===--- DAGDeltaAlgorithm.cpp - A DAG Minimization Algorithm --*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===// // // The algorithm we use attempts to exploit the dependency information by // minimizing top-down. We start by constructing an initial root set R, and // then iteratively: // // 1. Minimize the set R using the test predicate: // P'(S) = P(S union pred*(S)) // // 2. Extend R to R' = R union pred(R). // // until a fixed point is reached. // // The idea is that we want to quickly prune entire portions of the graph, so we // try to find high-level nodes that can be eliminated with all of their // dependents. // // FIXME: The current algorithm doesn't actually provide a strong guarantee // about the minimality of the result. The problem is that after adding nodes to // the required set, we no longer consider them for elimination. For strictly // well formed predicates, this doesn't happen, but it commonly occurs in // practice when there are unmodelled dependencies. I believe we can resolve // this by allowing the required set to be minimized as well, but need more test // cases first. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DAGDeltaAlgorithm.h" #include "llvm/ADT/DeltaAlgorithm.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <iterator> #include <map> using namespace llvm; namespace { class DAGDeltaAlgorithmImpl { friend class DeltaActiveSetHelper; public: typedef DAGDeltaAlgorithm::change_ty change_ty; typedef DAGDeltaAlgorithm::changeset_ty changeset_ty; typedef DAGDeltaAlgorithm::changesetlist_ty changesetlist_ty; typedef DAGDeltaAlgorithm::edge_ty edge_ty; private: typedef std::vector<change_ty>::iterator pred_iterator_ty; typedef std::vector<change_ty>::iterator succ_iterator_ty; typedef std::set<change_ty>::iterator pred_closure_iterator_ty; typedef std::set<change_ty>::iterator succ_closure_iterator_ty; DAGDeltaAlgorithm &DDA; const changeset_ty &Changes; const std::vector<edge_ty> &Dependencies; std::vector<change_ty> Roots; /// Cache of failed test results. Successful test results are never cached /// since we always reduce following a success. We maintain an independent /// cache from that used by the individual delta passes because we may get /// hits across multiple individual delta invocations. mutable std::set<changeset_ty> FailedTestsCache; // FIXME: Gross. std::map<change_ty, std::vector<change_ty> > Predecessors; std::map<change_ty, std::vector<change_ty> > Successors; std::map<change_ty, std::set<change_ty> > PredClosure; std::map<change_ty, std::set<change_ty> > SuccClosure; private: pred_iterator_ty pred_begin(change_ty Node) { assert(Predecessors.count(Node) && "Invalid node!"); return Predecessors[Node].begin(); } pred_iterator_ty pred_end(change_ty Node) { assert(Predecessors.count(Node) && "Invalid node!"); return Predecessors[Node].end(); } pred_closure_iterator_ty pred_closure_begin(change_ty Node) { assert(PredClosure.count(Node) && "Invalid node!"); return PredClosure[Node].begin(); } pred_closure_iterator_ty pred_closure_end(change_ty Node) { assert(PredClosure.count(Node) && "Invalid node!"); return PredClosure[Node].end(); } succ_iterator_ty succ_begin(change_ty Node) { assert(Successors.count(Node) && "Invalid node!"); return Successors[Node].begin(); } succ_iterator_ty succ_end(change_ty Node) { assert(Successors.count(Node) && "Invalid node!"); return Successors[Node].end(); } succ_closure_iterator_ty succ_closure_begin(change_ty Node) { assert(SuccClosure.count(Node) && "Invalid node!"); return SuccClosure[Node].begin(); } succ_closure_iterator_ty succ_closure_end(change_ty Node) { assert(SuccClosure.count(Node) && "Invalid node!"); return SuccClosure[Node].end(); } void UpdatedSearchState(const changeset_ty &Changes, const changesetlist_ty &Sets, const changeset_ty &Required) { DDA.UpdatedSearchState(Changes, Sets, Required); } /// ExecuteOneTest - Execute a single test predicate on the change set \arg S. bool ExecuteOneTest(const changeset_ty &S) { // Check dependencies invariant. DEBUG({ for (changeset_ty::const_iterator it = S.begin(), ie = S.end(); it != ie; ++it) for (succ_iterator_ty it2 = succ_begin(*it), ie2 = succ_end(*it); it2 != ie2; ++it2) assert(S.count(*it2) && "Attempt to run invalid changeset!"); }); return DDA.ExecuteOneTest(S); } public: DAGDeltaAlgorithmImpl(DAGDeltaAlgorithm &_DDA, const changeset_ty &_Changes, const std::vector<edge_ty> &_Dependencies); changeset_ty Run(); /// GetTestResult - Get the test result for the active set \arg Changes with /// \arg Required changes from the cache, executing the test if necessary. /// /// \param Changes - The set of active changes being minimized, which should /// have their pred closure included in the test. /// \param Required - The set of changes which have previously been /// established to be required. /// \return - The test result. bool GetTestResult(const changeset_ty &Changes, const changeset_ty &Required); }; /// Helper object for minimizing an active set of changes. class DeltaActiveSetHelper : public DeltaAlgorithm { DAGDeltaAlgorithmImpl &DDAI; const changeset_ty &Required; protected: /// UpdatedSearchState - Callback used when the search state changes. virtual void UpdatedSearchState(const changeset_ty &Changes, const changesetlist_ty &Sets) { DDAI.UpdatedSearchState(Changes, Sets, Required); } virtual bool ExecuteOneTest(const changeset_ty &S) { return DDAI.GetTestResult(S, Required); } public: DeltaActiveSetHelper(DAGDeltaAlgorithmImpl &_DDAI, const changeset_ty &_Required) : DDAI(_DDAI), Required(_Required) {} }; } DAGDeltaAlgorithmImpl::DAGDeltaAlgorithmImpl(DAGDeltaAlgorithm &_DDA, const changeset_ty &_Changes, const std::vector<edge_ty> &_Dependencies) : DDA(_DDA), Changes(_Changes), Dependencies(_Dependencies) { for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) { Predecessors.insert(std::make_pair(*it, std::vector<change_ty>())); Successors.insert(std::make_pair(*it, std::vector<change_ty>())); } for (std::vector<edge_ty>::const_iterator it = Dependencies.begin(), ie = Dependencies.end(); it != ie; ++it) { Predecessors[it->second].push_back(it->first); Successors[it->first].push_back(it->second); } // Compute the roots. for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) if (succ_begin(*it) == succ_end(*it)) Roots.push_back(*it); // Pre-compute the closure of the successor relation. std::vector<change_ty> Worklist(Roots.begin(), Roots.end()); while (!Worklist.empty()) { change_ty Change = Worklist.back(); Worklist.pop_back(); std::set<change_ty> &ChangeSuccs = SuccClosure[Change]; for (pred_iterator_ty it = pred_begin(Change), ie = pred_end(Change); it != ie; ++it) { SuccClosure[*it].insert(Change); SuccClosure[*it].insert(ChangeSuccs.begin(), ChangeSuccs.end()); Worklist.push_back(*it); } } // Invert to form the predecessor closure map. for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) PredClosure.insert(std::make_pair(*it, std::set<change_ty>())); for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) for (succ_closure_iterator_ty it2 = succ_closure_begin(*it), ie2 = succ_closure_end(*it); it2 != ie2; ++it2) PredClosure[*it2].insert(*it); // Dump useful debug info. DEBUG({ llvm::errs() << "-- DAGDeltaAlgorithmImpl --\n"; llvm::errs() << "Changes: ["; for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) { if (it != Changes.begin()) llvm::errs() << ", "; llvm::errs() << *it; if (succ_begin(*it) != succ_end(*it)) { llvm::errs() << "("; for (succ_iterator_ty it2 = succ_begin(*it), ie2 = succ_end(*it); it2 != ie2; ++it2) { if (it2 != succ_begin(*it)) llvm::errs() << ", "; llvm::errs() << "->" << *it2; } llvm::errs() << ")"; } } llvm::errs() << "]\n"; llvm::errs() << "Roots: ["; for (std::vector<change_ty>::const_iterator it = Roots.begin(), ie = Roots.end(); it != ie; ++it) { if (it != Roots.begin()) llvm::errs() << ", "; llvm::errs() << *it; } llvm::errs() << "]\n"; llvm::errs() << "Predecessor Closure:\n"; for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) { llvm::errs() << format(" %-4d: [", *it); for (pred_closure_iterator_ty it2 = pred_closure_begin(*it), ie2 = pred_closure_end(*it); it2 != ie2; ++it2) { if (it2 != pred_closure_begin(*it)) llvm::errs() << ", "; llvm::errs() << *it2; } llvm::errs() << "]\n"; } llvm::errs() << "Successor Closure:\n"; for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) { llvm::errs() << format(" %-4d: [", *it); for (succ_closure_iterator_ty it2 = succ_closure_begin(*it), ie2 = succ_closure_end(*it); it2 != ie2; ++it2) { if (it2 != succ_closure_begin(*it)) llvm::errs() << ", "; llvm::errs() << *it2; } llvm::errs() << "]\n"; } llvm::errs() << "\n\n"; }); } bool DAGDeltaAlgorithmImpl::GetTestResult(const changeset_ty &Changes, const changeset_ty &Required) { changeset_ty Extended(Required); Extended.insert(Changes.begin(), Changes.end()); for (changeset_ty::const_iterator it = Changes.begin(), ie = Changes.end(); it != ie; ++it) Extended.insert(pred_closure_begin(*it), pred_closure_end(*it)); if (FailedTestsCache.count(Extended)) return false; bool Result = ExecuteOneTest(Extended); if (!Result) FailedTestsCache.insert(Extended); return Result; } DAGDeltaAlgorithm::changeset_ty DAGDeltaAlgorithmImpl::Run() { // The current set of changes we are minimizing, starting at the roots. changeset_ty CurrentSet(Roots.begin(), Roots.end()); // The set of required changes. changeset_ty Required; // Iterate until the active set of changes is empty. Convergence is guaranteed // assuming input was a DAG. // // Invariant: CurrentSet intersect Required == {} // Invariant: Required == (Required union succ*(Required)) while (!CurrentSet.empty()) { DEBUG({ llvm::errs() << "DAG_DD - " << CurrentSet.size() << " active changes, " << Required.size() << " required changes\n"; }); // Minimize the current set of changes. DeltaActiveSetHelper Helper(*this, Required); changeset_ty CurrentMinSet = Helper.Run(CurrentSet); // Update the set of required changes. Since // CurrentMinSet subset CurrentSet // and after the last iteration, // succ(CurrentSet) subset Required // then // succ(CurrentMinSet) subset Required // and our invariant on Required is maintained. Required.insert(CurrentMinSet.begin(), CurrentMinSet.end()); // Replace the current set with the predecssors of the minimized set of // active changes. CurrentSet.clear(); for (changeset_ty::const_iterator it = CurrentMinSet.begin(), ie = CurrentMinSet.end(); it != ie; ++it) CurrentSet.insert(pred_begin(*it), pred_end(*it)); // FIXME: We could enforce CurrentSet intersect Required == {} here if we // wanted to protect against cyclic graphs. } return Required; } void DAGDeltaAlgorithm::anchor() { } DAGDeltaAlgorithm::changeset_ty DAGDeltaAlgorithm::Run(const changeset_ty &Changes, const std::vector<edge_ty> &Dependencies) { return DAGDeltaAlgorithmImpl(*this, Changes, Dependencies).Run(); }