Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/ARM/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/ARM/ARMScheduleV6.td |
//===-- ARMScheduleV6.td - ARM v6 Scheduling Definitions ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the ARM v6 processors. // //===----------------------------------------------------------------------===// // Model based on ARM1176 // // Functional Units def V6_Pipe : FuncUnit; // pipeline // Scheduling information derived from "ARM1176JZF-S Technical Reference Manual" // def ARMV6Itineraries : ProcessorItineraries< [V6_Pipe], [], [ // // No operand cycles InstrItinData<IIC_iALUx , [InstrStage<1, [V6_Pipe]>]>, // // Binary Instructions that produce a result InstrItinData<IIC_iALUi , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iALUr , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>, InstrItinData<IIC_iALUsi , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>, InstrItinData<IIC_iALUsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>, // // Bitwise Instructions that produce a result InstrItinData<IIC_iBITi , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iBITr , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>, InstrItinData<IIC_iBITsi , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>, InstrItinData<IIC_iBITsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>, // // Unary Instructions that produce a result InstrItinData<IIC_iUNAr , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iUNAsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>, // // Zero and sign extension instructions InstrItinData<IIC_iEXTr , [InstrStage<1, [V6_Pipe]>], [1, 1]>, InstrItinData<IIC_iEXTAr , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>, InstrItinData<IIC_iEXTAsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>, // // Compare instructions InstrItinData<IIC_iCMPi , [InstrStage<1, [V6_Pipe]>], [2]>, InstrItinData<IIC_iCMPr , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iCMPsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iCMPsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>, // // Test instructions InstrItinData<IIC_iTSTi , [InstrStage<1, [V6_Pipe]>], [2]>, InstrItinData<IIC_iTSTr , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iTSTsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iTSTsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>, // // Move instructions, unconditional InstrItinData<IIC_iMOVi , [InstrStage<1, [V6_Pipe]>], [2]>, InstrItinData<IIC_iMOVr , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iMOVsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iMOVsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>, InstrItinData<IIC_iMOVix2 , [InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [2]>, InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [3]>, InstrItinData<IIC_iMOVix2ld , [InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [5]>, // // Move instructions, conditional InstrItinData<IIC_iCMOVi , [InstrStage<1, [V6_Pipe]>], [3]>, InstrItinData<IIC_iCMOVr , [InstrStage<1, [V6_Pipe]>], [3, 2]>, InstrItinData<IIC_iCMOVsi , [InstrStage<1, [V6_Pipe]>], [3, 1]>, InstrItinData<IIC_iCMOVsr , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>, InstrItinData<IIC_iCMOVix2 , [InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [4]>, // // MVN instructions InstrItinData<IIC_iMVNi , [InstrStage<1, [V6_Pipe]>], [2]>, InstrItinData<IIC_iMVNr , [InstrStage<1, [V6_Pipe]>], [2, 2]>, InstrItinData<IIC_iMVNsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iMVNsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>, // Integer multiply pipeline // InstrItinData<IIC_iMUL16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>, InstrItinData<IIC_iMAC16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1, 2]>, InstrItinData<IIC_iMUL32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1]>, InstrItinData<IIC_iMAC32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1, 2]>, InstrItinData<IIC_iMUL64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1]>, InstrItinData<IIC_iMAC64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1, 2]>, // Integer load pipeline // // Immediate offset InstrItinData<IIC_iLoad_i , [InstrStage<1, [V6_Pipe]>], [4, 1]>, InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [V6_Pipe]>], [4, 1]>, InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [V6_Pipe]>], [4, 1]>, // // Register offset InstrItinData<IIC_iLoad_r , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>, InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>, InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData<IIC_iLoad_si , [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>, InstrItinData<IIC_iLoad_bh_si, [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>, // // Immediate offset with update InstrItinData<IIC_iLoad_iu , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>, InstrItinData<IIC_iLoad_bh_iu, [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>, // // Register offset with update InstrItinData<IIC_iLoad_ru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>, InstrItinData<IIC_iLoad_bh_ru, [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>, InstrItinData<IIC_iLoad_d_ru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData<IIC_iLoad_siu, [InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>, InstrItinData<IIC_iLoad_bh_siu,[InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>, // // Load multiple, def is the 5th operand. InstrItinData<IIC_iLoad_m , [InstrStage<3, [V6_Pipe]>], [1, 1, 1, 1, 4]>, // // Load multiple + update, defs are the 1st and 5th operands. InstrItinData<IIC_iLoad_mu , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 1, 4]>, // // Load multiple plus branch InstrItinData<IIC_iLoad_mBr, [InstrStage<3, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [1, 2, 1, 1, 4]>, // // iLoadi + iALUr for t2LDRpci_pic. InstrItinData<IIC_iLoadiALU, [InstrStage<1, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [3, 1]>, // // Pop, def is the 3rd operand. InstrItinData<IIC_iPop , [InstrStage<3, [V6_Pipe]>], [1, 1, 4]>, // // Pop + branch, def is the 3rd operand. InstrItinData<IIC_iPop_Br, [InstrStage<3, [V6_Pipe]>, InstrStage<1, [V6_Pipe]>], [1, 2, 4]>, // Integer store pipeline // // Immediate offset InstrItinData<IIC_iStore_i , [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iStore_bh_i, [InstrStage<1, [V6_Pipe]>], [2, 1]>, InstrItinData<IIC_iStore_d_i , [InstrStage<1, [V6_Pipe]>], [2, 1]>, // // Register offset InstrItinData<IIC_iStore_r , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>, InstrItinData<IIC_iStore_bh_r, [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>, InstrItinData<IIC_iStore_d_r , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData<IIC_iStore_si , [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>, InstrItinData<IIC_iStore_bh_si, [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>, // // Immediate offset with update InstrItinData<IIC_iStore_iu , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>, InstrItinData<IIC_iStore_bh_iu, [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>, // // Register offset with update InstrItinData<IIC_iStore_ru, [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>, InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>, InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData<IIC_iStore_siu, [InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>, InstrItinData<IIC_iStore_bh_siu,[InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>, // // Store multiple InstrItinData<IIC_iStore_m , [InstrStage<3, [V6_Pipe]>]>, // // Store multiple + update InstrItinData<IIC_iStore_mu , [InstrStage<3, [V6_Pipe]>], [2]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData<IIC_Br , [InstrStage<1, [V6_Pipe]>]>, // VFP // Issue through integer pipeline, and execute in NEON unit. We assume // RunFast mode so that NFP pipeline is used for single-precision when // possible. // // FP Special Register to Integer Register File Move InstrItinData<IIC_fpSTAT , [InstrStage<1, [V6_Pipe]>], [3]>, // // Single-precision FP Unary InstrItinData<IIC_fpUNA32 , [InstrStage<1, [V6_Pipe]>], [5, 2]>, // // Double-precision FP Unary InstrItinData<IIC_fpUNA64 , [InstrStage<1, [V6_Pipe]>], [5, 2]>, // // Single-precision FP Compare InstrItinData<IIC_fpCMP32 , [InstrStage<1, [V6_Pipe]>], [2, 2]>, // // Double-precision FP Compare InstrItinData<IIC_fpCMP64 , [InstrStage<1, [V6_Pipe]>], [2, 2]>, // // Single to Double FP Convert InstrItinData<IIC_fpCVTSD , [InstrStage<1, [V6_Pipe]>], [5, 2]>, // // Double to Single FP Convert InstrItinData<IIC_fpCVTDS , [InstrStage<1, [V6_Pipe]>], [5, 2]>, // // Single-Precision FP to Integer Convert InstrItinData<IIC_fpCVTSI , [InstrStage<1, [V6_Pipe]>], [9, 2]>, // // Double-Precision FP to Integer Convert InstrItinData<IIC_fpCVTDI , [InstrStage<1, [V6_Pipe]>], [9, 2]>, // // Integer to Single-Precision FP Convert InstrItinData<IIC_fpCVTIS , [InstrStage<1, [V6_Pipe]>], [9, 2]>, // // Integer to Double-Precision FP Convert InstrItinData<IIC_fpCVTID , [InstrStage<1, [V6_Pipe]>], [9, 2]>, // // Single-precision FP ALU InstrItinData<IIC_fpALU32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>, // // Double-precision FP ALU InstrItinData<IIC_fpALU64 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>, // // Single-precision FP Multiply InstrItinData<IIC_fpMUL32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>, // // Double-precision FP Multiply InstrItinData<IIC_fpMUL64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2]>, // // Single-precision FP MAC InstrItinData<IIC_fpMAC32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>, // // Double-precision FP MAC InstrItinData<IIC_fpMAC64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>, // // Single-precision Fused FP MAC InstrItinData<IIC_fpFMAC32, [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>, // // Double-precision Fused FP MAC InstrItinData<IIC_fpFMAC64, [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>, // // Single-precision FP DIV InstrItinData<IIC_fpDIV32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>, // // Double-precision FP DIV InstrItinData<IIC_fpDIV64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>, // // Single-precision FP SQRT InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>, // // Double-precision FP SQRT InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>, // // Integer to Single-precision Move InstrItinData<IIC_fpMOVIS, [InstrStage<1, [V6_Pipe]>], [10, 1]>, // // Integer to Double-precision Move InstrItinData<IIC_fpMOVID, [InstrStage<1, [V6_Pipe]>], [10, 1, 1]>, // // Single-precision to Integer Move InstrItinData<IIC_fpMOVSI, [InstrStage<1, [V6_Pipe]>], [10, 1]>, // // Double-precision to Integer Move InstrItinData<IIC_fpMOVDI, [InstrStage<1, [V6_Pipe]>], [10, 10, 1]>, // // Single-precision FP Load InstrItinData<IIC_fpLoad32 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>, // // Double-precision FP Load InstrItinData<IIC_fpLoad64 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>, // // FP Load Multiple InstrItinData<IIC_fpLoad_m , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 5]>, // // FP Load Multiple + update InstrItinData<IIC_fpLoad_mu, [InstrStage<3, [V6_Pipe]>], [3, 2, 1, 1, 5]>, // // Single-precision FP Store InstrItinData<IIC_fpStore32 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>, // // Double-precision FP Store // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData<IIC_fpStore64 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>, // // FP Store Multiple InstrItinData<IIC_fpStore_m, [InstrStage<3, [V6_Pipe]>], [2, 2, 2, 2]>, // // FP Store Multiple + update InstrItinData<IIC_fpStore_mu,[InstrStage<3, [V6_Pipe]>], [3, 2, 2, 2, 2]> ]>;