Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/MBlaze/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/MBlaze/MBlazeDelaySlotFiller.cpp |
//===-- DelaySlotFiller.cpp - MBlaze delay slot filler --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A pass that attempts to fill instructions with delay slots. If no // instructions can be moved into the delay slot then a NOP is placed there. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "delay-slot-filler" #include "MBlaze.h" #include "MBlazeTargetMachine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(FilledSlots, "Number of delay slots filled"); static cl::opt<bool> MBDisableDelaySlotFiller( "disable-mblaze-delay-filler", cl::init(false), cl::desc("Disable the MBlaze delay slot filter."), cl::Hidden); namespace { struct Filler : public MachineFunctionPass { TargetMachine &TM; const TargetInstrInfo *TII; static char ID; Filler(TargetMachine &tm) : MachineFunctionPass(ID), TM(tm), TII(tm.getInstrInfo()) { } virtual const char *getPassName() const { return "MBlaze Delay Slot Filler"; } bool runOnMachineBasicBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &F) { bool Changed = false; for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Changed |= runOnMachineBasicBlock(*FI); return Changed; } }; char Filler::ID = 0; } // end of anonymous namespace static bool hasImmInstruction(MachineBasicBlock::iterator &candidate) { // Any instruction with an immediate mode operand greater than // 16-bits requires an implicit IMM instruction. unsigned numOper = candidate->getNumOperands(); for (unsigned op = 0; op < numOper; ++op) { MachineOperand &mop = candidate->getOperand(op); // The operand requires more than 16-bits to represent. if (mop.isImm() && (mop.getImm() < -0x8000 || mop.getImm() > 0x7fff)) return true; // We must assume that unknown immediate values require more than // 16-bits to represent. if (mop.isGlobal() || mop.isSymbol() || mop.isJTI() || mop.isCPI()) return true; // FIXME: we could probably check to see if the FP value happens // to not need an IMM instruction. For now we just always // assume that FP values do. if (mop.isFPImm()) return true; } return false; } static unsigned getLastRealOperand(MachineBasicBlock::iterator &instr) { switch (instr->getOpcode()) { default: return instr->getNumOperands(); // These instructions have a variable number of operands but the first two // are the "real" operands that we care about during hazard detection. case MBlaze::BRLID: case MBlaze::BRALID: case MBlaze::BRLD: case MBlaze::BRALD: return 2; } } static bool delayHasHazard(MachineBasicBlock::iterator &candidate, MachineBasicBlock::iterator &slot) { // Hazard check MachineBasicBlock::iterator a = candidate; MachineBasicBlock::iterator b = slot; // MBB layout:- // candidate := a0 = operation(a1, a2) // ...middle bit... // slot := b0 = operation(b1, b2) // Possible hazards:-/ // 1. a1 or a2 was written during the middle bit // 2. a0 was read or written during the middle bit // 3. a0 is one or more of {b0, b1, b2} // 4. b0 is one or more of {a1, a2} // 5. a accesses memory, and the middle bit // contains a store operation. bool a_is_memory = candidate->mayLoad() || candidate->mayStore(); // Determine the number of operands in the slot instruction and in the // candidate instruction. const unsigned aend = getLastRealOperand(a); const unsigned bend = getLastRealOperand(b); // Check hazards type 1, 2 and 5 by scanning the middle bit MachineBasicBlock::iterator m = a; for (++m; m != b; ++m) { for (unsigned aop = 0; aop<aend; ++aop) { bool aop_is_reg = a->getOperand(aop).isReg(); if (!aop_is_reg) continue; bool aop_is_def = a->getOperand(aop).isDef(); unsigned aop_reg = a->getOperand(aop).getReg(); const unsigned mend = getLastRealOperand(m); for (unsigned mop = 0; mop<mend; ++mop) { bool mop_is_reg = m->getOperand(mop).isReg(); if (!mop_is_reg) continue; bool mop_is_def = m->getOperand(mop).isDef(); unsigned mop_reg = m->getOperand(mop).getReg(); if (aop_is_def && (mop_reg == aop_reg)) return true; // Hazard type 2, because aop = a0 else if (mop_is_def && (mop_reg == aop_reg)) return true; // Hazard type 1, because aop in {a1, a2} } } // Check hazard type 5 if (a_is_memory && m->mayStore()) return true; } // Check hazard type 3 & 4 for (unsigned aop = 0; aop<aend; ++aop) { if (a->getOperand(aop).isReg()) { unsigned aop_reg = a->getOperand(aop).getReg(); for (unsigned bop = 0; bop<bend; ++bop) { if (b->getOperand(bop).isReg() && !b->getOperand(bop).isImplicit()) { unsigned bop_reg = b->getOperand(bop).getReg(); if (aop_reg == bop_reg) return true; } } } } return false; } static bool isDelayFiller(MachineBasicBlock &MBB, MachineBasicBlock::iterator candidate) { if (candidate == MBB.begin()) return false; --candidate; return (candidate->hasDelaySlot()); } static bool hasUnknownSideEffects(MachineBasicBlock::iterator &I) { if (!I->hasUnmodeledSideEffects()) return false; unsigned op = I->getOpcode(); if (op == MBlaze::ADDK || op == MBlaze::ADDIK || op == MBlaze::ADDC || op == MBlaze::ADDIC || op == MBlaze::ADDKC || op == MBlaze::ADDIKC || op == MBlaze::RSUBK || op == MBlaze::RSUBIK || op == MBlaze::RSUBC || op == MBlaze::RSUBIC || op == MBlaze::RSUBKC || op == MBlaze::RSUBIKC) return false; return true; } static MachineBasicBlock::iterator findDelayInstr(MachineBasicBlock &MBB,MachineBasicBlock::iterator slot) { MachineBasicBlock::iterator I = slot; while (true) { if (I == MBB.begin()) break; --I; if (I->hasDelaySlot() || I->isBranch() || isDelayFiller(MBB,I) || I->isCall() || I->isReturn() || I->isBarrier() || hasUnknownSideEffects(I)) break; if (hasImmInstruction(I) || delayHasHazard(I,slot)) continue; return I; } return MBB.end(); } /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. /// Currently, we fill delay slots with NOPs. We assume there is only one /// delay slot per delayed instruction. bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) if (I->hasDelaySlot()) { MachineBasicBlock::iterator D = MBB.end(); MachineBasicBlock::iterator J = I; if (!MBDisableDelaySlotFiller) D = findDelayInstr(MBB,I); ++FilledSlots; Changed = true; if (D == MBB.end()) BuildMI(MBB, ++J, I->getDebugLoc(), TII->get(MBlaze::NOP)); else MBB.splice(++J, &MBB, D); } return Changed; } /// createMBlazeDelaySlotFillerPass - Returns a pass that fills in delay /// slots in MBlaze MachineFunctions FunctionPass *llvm::createMBlazeDelaySlotFillerPass(MBlazeTargetMachine &tm) { return new Filler(tm); }