Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/Mips/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td |
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips64 instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def shamt_64 : Operand<i64>; // Unsigned Operand def uimm16_64 : Operand<i64> { let PrintMethod = "printUnsignedImm"; } // Transformation Function - get Imm - 32. def Subtract32 : SDNodeXForm<imm, [{ return getImm(N, (unsigned)N->getZExtValue() - 32); }]>; // shamt must fit in 6 bits. def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Shifts // 64-bit shift instructions. let DecoderNamespace = "Mips64" in { class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm, SDNode OpNode>: shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt6, shamt, CPU64Regs>; // Mul, Div class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>: Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>; class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>: Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>; multiclass Atomic2Ops64<PatFrag Op, string Opstr> { def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>; def _P8 : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]> { let isCodeGenOnly = 1; } } multiclass AtomicCmpSwap64<PatFrag Op, string Width> { def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>; def _P8 : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>, Requires<[IsN64]> { let isCodeGenOnly = 1; } } } let usesCustomInserter = 1, Predicates = [HasMips64], DecoderNamespace = "Mips64" in { defm ATOMIC_LOAD_ADD_I64 : Atomic2Ops64<atomic_load_add_64, "load_add_64">; defm ATOMIC_LOAD_SUB_I64 : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">; defm ATOMIC_LOAD_AND_I64 : Atomic2Ops64<atomic_load_and_64, "load_and_64">; defm ATOMIC_LOAD_OR_I64 : Atomic2Ops64<atomic_load_or_64, "load_or_64">; defm ATOMIC_LOAD_XOR_I64 : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">; defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">; defm ATOMIC_SWAP_I64 : Atomic2Ops64<atomic_swap_64, "swap_64">; defm ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap64<atomic_cmp_swap_64, "64">; } //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// let DecoderNamespace = "Mips64" in { /// Arithmetic Instructions (ALU Immediate) def DADDiu : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16, CPU64Regs>; def DANDi : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>; def SLTi64 : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>; def SLTiu64 : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>; def ORi64 : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>; def XORi64 : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>; def LUi64 : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>; /// Arithmetic Instructions (3-Operand, R-Type) def DADDu : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>; def DSUBu : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>; def SLT64 : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>; def SLTu64 : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>; def AND64 : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>; def OR64 : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>; def XOR64 : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>; def NOR64 : LogicNOR<0x00, 0x27, "nor", CPU64Regs>; /// Shift Instructions def DSLL : shift_rotate_imm64<0x38, 0x00, "dsll", shl>; def DSRL : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>; def DSRA : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>; def DSLLV : shift_rotate_reg<0x14, 0x00, "dsllv", shl, CPU64Regs>; def DSRLV : shift_rotate_reg<0x16, 0x00, "dsrlv", srl, CPU64Regs>; def DSRAV : shift_rotate_reg<0x17, 0x00, "dsrav", sra, CPU64Regs>; } // Rotate Instructions let Predicates = [HasMips64r2], DecoderNamespace = "Mips64" in { def DROTR : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>; def DROTRV : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>; } let DecoderNamespace = "Mips64" in { /// Load and Store Instructions /// aligned defm LB64 : LoadM64<0x20, "lb", sextloadi8>; defm LBu64 : LoadM64<0x24, "lbu", zextloadi8>; defm LH64 : LoadM64<0x21, "lh", sextloadi16_a>; defm LHu64 : LoadM64<0x25, "lhu", zextloadi16_a>; defm LW64 : LoadM64<0x23, "lw", sextloadi32_a>; defm LWu64 : LoadM64<0x27, "lwu", zextloadi32_a>; defm SB64 : StoreM64<0x28, "sb", truncstorei8>; defm SH64 : StoreM64<0x29, "sh", truncstorei16_a>; defm SW64 : StoreM64<0x2b, "sw", truncstorei32_a>; defm LD : LoadM64<0x37, "ld", load_a>; defm SD : StoreM64<0x3f, "sd", store_a>; /// unaligned defm ULH64 : LoadM64<0x21, "ulh", sextloadi16_u, 1>; defm ULHu64 : LoadM64<0x25, "ulhu", zextloadi16_u, 1>; defm ULW64 : LoadM64<0x23, "ulw", sextloadi32_u, 1>; defm USH64 : StoreM64<0x29, "ush", truncstorei16_u, 1>; defm USW64 : StoreM64<0x2b, "usw", truncstorei32_u, 1>; defm ULD : LoadM64<0x37, "uld", load_u, 1>; defm USD : StoreM64<0x3f, "usd", store_u, 1>; /// Load-linked, Store-conditional def LLD : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>; def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]> { let isCodeGenOnly = 1; } def SCD : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>; def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]> { let isCodeGenOnly = 1; } /// Jump and Branch Instructions def JR64 : JumpFR<0x00, 0x08, "jr", CPU64Regs>; def BEQ64 : CBranch<0x04, "beq", seteq, CPU64Regs>; def BNE64 : CBranch<0x05, "bne", setne, CPU64Regs>; def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>; def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>; def BLEZ64 : CBranchZero<0x06, 0, "blez", setle, CPU64Regs>; def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>; } let DecoderNamespace = "Mips64" in def JALR64 : JumpLinkReg<0x00, 0x09, "jalr", CPU64Regs>; let DecoderNamespace = "Mips64" in { /// Multiply and Divide Instructions. def DMULT : Mult64<0x1c, "dmult", IIImul>; def DMULTu : Mult64<0x1d, "dmultu", IIImul>; def DSDIV : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>; def DUDIV : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>; def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>; def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>; def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>; def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>; /// Sign Ext In Register Instructions. def SEB64 : SignExtInReg<0x10, "seb", i8, CPU64Regs>; def SEH64 : SignExtInReg<0x18, "seh", i16, CPU64Regs>; /// Count Leading def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>; def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>; /// Double Word Swap Bytes/HalfWords def DSBH : SubwordSwap<0x24, 0x2, "dsbh", CPU64Regs>; def DSHD : SubwordSwap<0x24, 0x5, "dshd", CPU64Regs>; def LEA_ADDiu64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>; } let Uses = [SP_64], DecoderNamespace = "Mips64" in def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>, Requires<[IsN64]> { let isCodeGenOnly = 1; } let DecoderNamespace = "Mips64" in { def RDHWR64 : ReadHardware<CPU64Regs, HWRegs64>; def DEXT : ExtBase<3, "dext", CPU64Regs>; def DINS : InsBase<7, "dins", CPU64Regs>; def DSLL64_32 : FR<0x3c, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt), "dsll\t$rd, $rt, 32", [], IIAlu>; def SLL64_32 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt), "sll\t$rd, $rt, 0", [], IIAlu>; let isCodeGenOnly = 1 in def SLL64_64 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPU64Regs:$rt), "sll\t$rd, $rt, 0", [], IIAlu>; } //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // extended loads let Predicates = [NotN64] in { def : Pat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>; def : Pat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>; def : Pat<(i64 (extloadi16_a addr:$src)), (LH64 addr:$src)>; def : Pat<(i64 (extloadi16_u addr:$src)), (ULH64 addr:$src)>; def : Pat<(i64 (extloadi32_a addr:$src)), (LW64 addr:$src)>; def : Pat<(i64 (extloadi32_u addr:$src)), (ULW64 addr:$src)>; def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>; } let Predicates = [IsN64] in { def : Pat<(i64 (extloadi1 addr:$src)), (LB64_P8 addr:$src)>; def : Pat<(i64 (extloadi8 addr:$src)), (LB64_P8 addr:$src)>; def : Pat<(i64 (extloadi16_a addr:$src)), (LH64_P8 addr:$src)>; def : Pat<(i64 (extloadi16_u addr:$src)), (ULH64_P8 addr:$src)>; def : Pat<(i64 (extloadi32_a addr:$src)), (LW64_P8 addr:$src)>; def : Pat<(i64 (extloadi32_u addr:$src)), (ULW64_P8 addr:$src)>; def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>; } // hi/lo relocs def : Pat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>; def : Pat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>; def : Pat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>; def : Pat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>; def : Pat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>; def : Pat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>; def : Pat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>; def : Pat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>; def : Pat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>; def : Pat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>; def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)), (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>; def : Pat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)), (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>; def : Pat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)), (DADDiu CPU64Regs:$hi, tjumptable:$lo)>; def : Pat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)), (DADDiu CPU64Regs:$hi, tconstpool:$lo)>; def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaltlsaddr:$lo)), (DADDiu CPU64Regs:$hi, tglobaltlsaddr:$lo)>; def : WrapperPat<tglobaladdr, DADDiu, CPU64Regs>; def : WrapperPat<tconstpool, DADDiu, CPU64Regs>; def : WrapperPat<texternalsym, DADDiu, CPU64Regs>; def : WrapperPat<tblockaddress, DADDiu, CPU64Regs>; def : WrapperPat<tjumptable, DADDiu, CPU64Regs>; def : WrapperPat<tglobaltlsaddr, DADDiu, CPU64Regs>; defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64, ZERO_64>; // setcc patterns defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>; defm : SetlePats<CPU64Regs, SLT64, SLTu64>; defm : SetgtPats<CPU64Regs, SLT64, SLTu64>; defm : SetgePats<CPU64Regs, SLT64, SLTu64>; defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>; // select MipsDynAlloc def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>; // truncate def : Pat<(i32 (trunc CPU64Regs:$src)), (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>; // 32-to-64-bit extension def : Pat<(i64 (anyext CPURegs:$src)), (SLL64_32 CPURegs:$src)>; def : Pat<(i64 (zext CPURegs:$src)), (DSRL (DSLL64_32 CPURegs:$src), 32)>; def : Pat<(i64 (sext CPURegs:$src)), (SLL64_32 CPURegs:$src)>; // Sign extend in register def : Pat<(i64 (sext_inreg CPU64Regs:$src, i32)), (SLL64_64 CPU64Regs:$src)>; // bswap pattern def : Pat<(bswap CPU64Regs:$rt), (DSHD (DSBH CPU64Regs:$rt))>;