Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/PowerPC/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp |
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCTargetMachine.h" #include "PPCHazardRecognizers.h" #include "MCTargetDesc/PPCPredicates.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/STLExtras.h" #define GET_INSTRINFO_CTOR #include "PPCGenInstrInfo.inc" namespace llvm { extern cl::opt<bool> DisablePPC32RS; extern cl::opt<bool> DisablePPC64RS; } using namespace llvm; PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), TM(tm), RI(*TM.getSubtargetImpl(), *this) {} /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for /// this target when scheduling the DAG. ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( const TargetMachine *TM, const ScheduleDAG *DAG) const { unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2) { const InstrItineraryData *II = TM->getInstrItineraryData(); return new PPCScoreboardHazardRecognizer(II, DAG); } return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG); } /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer /// to use for this target when scheduling the DAG. ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( const InstrItineraryData *II, const ScheduleDAG *DAG) const { unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); // Most subtargets use a PPC970 recognizer. if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2) { const TargetInstrInfo *TII = TM.getInstrInfo(); assert(TII && "No InstrInfo?"); return new PPCHazardRecognizer970(*TII); } return new PPCScoreboardHazardRecognizer(II, DAG); } unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::LD: case PPC::LWZ: case PPC::LFS: case PPC::LFD: if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFI()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::STD: case PPC::STW: case PPC::STFS: case PPC::STFD: if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFI()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } // commuteInstruction - We can commute rlwimi instructions, but only if the // rotate amt is zero. We also have to munge the immediates a bit. MachineInstr * PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { MachineFunction &MF = *MI->getParent()->getParent(); // Normal instructions can be commuted the obvious way. if (MI->getOpcode() != PPC::RLWIMI) return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); // Cannot commute if it has a non-zero rotate count. if (MI->getOperand(3).getImm() != 0) return 0; // If we have a zero rotate count, we have: // M = mask(MB,ME) // Op0 = (Op1 & ~M) | (Op2 & M) // Change this to: // M = mask((ME+1)&31, (MB-1)&31) // Op0 = (Op2 & ~M) | (Op1 & M) // Swap op1/op2 unsigned Reg0 = MI->getOperand(0).getReg(); unsigned Reg1 = MI->getOperand(1).getReg(); unsigned Reg2 = MI->getOperand(2).getReg(); bool Reg1IsKill = MI->getOperand(1).isKill(); bool Reg2IsKill = MI->getOperand(2).isKill(); bool ChangeReg0 = false; // If machine instrs are no longer in two-address forms, update // destination register as well. if (Reg0 == Reg1) { // Must be two address instruction! assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && "Expecting a two-address instruction!"); Reg2IsKill = false; ChangeReg0 = true; } // Masks. unsigned MB = MI->getOperand(4).getImm(); unsigned ME = MI->getOperand(5).getImm(); if (NewMI) { // Create a new instruction. unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); bool Reg0IsDead = MI->getOperand(0).isDead(); return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) .addReg(Reg2, getKillRegState(Reg2IsKill)) .addReg(Reg1, getKillRegState(Reg1IsKill)) .addImm((ME+1) & 31) .addImm((MB-1) & 31); } if (ChangeReg0) MI->getOperand(0).setReg(Reg2); MI->getOperand(2).setReg(Reg1); MI->getOperand(1).setReg(Reg2); MI->getOperand(2).setIsKill(Reg1IsKill); MI->getOperand(1).setIsKill(Reg2IsKill); // Swap the mask around. MI->getOperand(4).setImm((ME+1) & 31); MI->getOperand(5).setImm((MB-1) & 31); return MI; } void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL; BuildMI(MBB, MI, DL, get(PPC::NOP)); } // Branch analysis. bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return false; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (LastInst->getOpcode() == PPC::B) { if (!LastInst->getOperand(0).isMBB()) return true; TBB = LastInst->getOperand(0).getMBB(); return false; } else if (LastInst->getOpcode() == PPC::BCC) { if (!LastInst->getOperand(2).isMBB()) return true; // Block ends with fall-through condbranch. TBB = LastInst->getOperand(2).getMBB(); Cond.push_back(LastInst->getOperand(0)); Cond.push_back(LastInst->getOperand(1)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with PPC::B and PPC:BCC, handle it. if (SecondLastInst->getOpcode() == PPC::BCC && LastInst->getOpcode() == PPC::B) { if (!SecondLastInst->getOperand(2).isMBB() || !LastInst->getOperand(0).isMBB()) return true; TBB = SecondLastInst->getOperand(2).getMBB(); Cond.push_back(SecondLastInst->getOperand(0)); Cond.push_back(SecondLastInst->getOperand(1)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two PPC:Bs, handle it. The second one is not // executed, so remove it. if (SecondLastInst->getOpcode() == PPC::B && LastInst->getOpcode() == PPC::B) { if (!SecondLastInst->getOperand(0).isMBB()) return true; TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return 0; --I; } if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (I->getOpcode() != PPC::BCC) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"); // One-way branch. if (FBB == 0) { if (Cond.empty()) // Unconditional branch BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); else // Conditional branch BuildMI(&MBB, DL, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); return 1; } // Two-way Conditional Branch. BuildMI(&MBB, DL, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); return 2; } void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { unsigned Opc; if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::OR; else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) Opc = PPC::OR8; else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) Opc = PPC::FMR; else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::MCRF; else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::VOR; else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::CROR; else llvm_unreachable("Impossible reg-to-reg copy"); const MCInstrDesc &MCID = get(Opc); if (MCID.getNumOperands() == 3) BuildMI(MBB, I, DL, MCID, DestReg) .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); else BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); } // This function returns true if a CR spill is necessary and false otherwise. bool PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl<MachineInstr*> &NewMIs) const{ DebugLoc DL; if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) { if (SrcReg != PPC::LR) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else { // FIXME: this spills LR immediately to memory in one step. To do this, // we use R11, which we know cannot be used in the prolog/epilog. This is // a hack. NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11)); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(PPC::R11, getKillRegState(isKill)), FrameIdx)); } } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) { if (SrcReg != PPC::LR8) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else { // FIXME: this spills LR immediately to memory in one step. To do this, // we use X11, which we know cannot be used in the prolog/epilog. This is // a hack. NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11)); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) .addReg(PPC::X11, getKillRegState(isKill)), FrameIdx)); } } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) { if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); return true; } else { // FIXME: We need a scatch reg here. The trouble with using R0 is that // it's possible for the stack frame to be so big the save location is // out of range of immediate offsets, necessitating another register. // We hack this on Darwin by reserving R2. It's probably broken on Linux // at the moment. bool is64Bit = TM.getSubtargetImpl()->isPPC64(); // We need to store the CR in the low 4-bits of the saved value. First, // issue a MFCR to save all of the CRBits. unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? (is64Bit ? PPC::X2 : PPC::R2) : (is64Bit ? PPC::X0 : PPC::R0); NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::MFCR8pseud : PPC::MFCRpseud), ScratchReg) .addReg(SrcReg, getKillRegState(isKill))); // If the saved register wasn't CR0, shift the bits left so that they are // in CR0's slot. if (SrcReg != PPC::CR0) { unsigned ShiftBits = getPPCRegisterNumbering(SrcReg)*4; // rlwinm scratch, scratch, ShiftBits, 0, 31. NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::RLWINM8 : PPC::RLWINM), ScratchReg) .addReg(ScratchReg).addImm(ShiftBits) .addImm(0).addImm(31)); } NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(is64Bit ? PPC::STW8 : PPC::STW)) .addReg(ScratchReg, getKillRegState(isKill)), FrameIdx)); } } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) { // FIXME: We use CRi here because there is no mtcrf on a bit. Since the // backend currently only uses CR1EQ as an individual bit, this should // not cause any bug. If we need other uses of CR bits, the following // code may be invalid. unsigned Reg = 0; if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) Reg = PPC::CR0; else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) Reg = PPC::CR1; else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) Reg = PPC::CR2; else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) Reg = PPC::CR3; else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) Reg = PPC::CR4; else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) Reg = PPC::CR5; else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) Reg = PPC::CR6; else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) Reg = PPC::CR7; return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, PPC::CRRCRegisterClass, NewMIs); } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) { // We don't have indexed addressing for vector loads. Emit: // R0 = ADDI FI# // STVX VAL, 0, R0 // // FIXME: We use R0 here, because it isn't available for RA. NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), FrameIdx, 0, 0)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX)) .addReg(SrcReg, getKillRegState(isKill)) .addReg(PPC::R0) .addReg(PPC::R0)); } else { llvm_unreachable("Unknown regclass!"); } return false; } void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); SmallVector<MachineInstr*, 4> NewMIs; if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); FuncInfo->setSpillsCR(); } for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); const MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), MFI.getObjectAlignment(FrameIdx)); NewMIs.back()->addMemOperand(MF, MMO); } bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl<MachineInstr*> &NewMIs)const{ if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) { if (DestReg != PPC::LR) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), DestReg), FrameIdx)); } else { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), PPC::R11), FrameIdx)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11)); } } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) { if (DestReg != PPC::LR8) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), FrameIdx)); } else { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), PPC::X11), FrameIdx)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::X11)); } } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), FrameIdx)); } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), FrameIdx)); } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) { if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::RESTORE_CR), DestReg) , FrameIdx)); return true; } else { // FIXME: We need a scatch reg here. The trouble with using R0 is that // it's possible for the stack frame to be so big the save location is // out of range of immediate offsets, necessitating another register. // We hack this on Darwin by reserving R2. It's probably broken on Linux // at the moment. unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? PPC::R2 : PPC::R0; NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), ScratchReg), FrameIdx)); // If the reloaded register isn't CR0, shift the bits right so that they are // in the right CR's slot. if (DestReg != PPC::CR0) { unsigned ShiftBits = getPPCRegisterNumbering(DestReg)*4; // rlwinm r11, r11, 32-ShiftBits, 0, 31. NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0) .addImm(31)); } NewMIs.push_back(BuildMI(MF, DL, get(TM.getSubtargetImpl()->isPPC64() ? PPC::MTCRF8 : PPC::MTCRF), DestReg) .addReg(ScratchReg)); } } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) { unsigned Reg = 0; if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) Reg = PPC::CR0; else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) Reg = PPC::CR1; else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) Reg = PPC::CR2; else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) Reg = PPC::CR3; else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) Reg = PPC::CR4; else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) Reg = PPC::CR5; else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) Reg = PPC::CR6; else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) Reg = PPC::CR7; return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, PPC::CRRCRegisterClass, NewMIs); } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) { // We don't have indexed addressing for vector loads. Emit: // R0 = ADDI FI# // Dest = LVX 0, R0 // // FIXME: We use R0 here, because it isn't available for RA. NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), FrameIdx, 0, 0)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0) .addReg(PPC::R0)); } else { llvm_unreachable("Unknown regclass!"); } return false; } void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); SmallVector<MachineInstr*, 4> NewMIs; DebugLoc DL; if (MI != MBB.end()) DL = MI->getDebugLoc(); if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs)) { PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); FuncInfo->setSpillsCR(); } for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); const MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), MFI.getObjectAlignment(FrameIdx)); NewMIs.back()->addMemOperand(MF, MMO); } MachineInstr* PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE)); addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr); return &*MIB; } bool PPCInstrInfo:: ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); // Leave the CR# the same, but invert the condition. Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); return false; } /// GetInstSize - Return the number of bytes of code the specified /// instruction may be. This returns the maximum number of bytes. /// unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { switch (MI->getOpcode()) { case PPC::INLINEASM: { // Inline Asm: Variable size. const MachineFunction *MF = MI->getParent()->getParent(); const char *AsmStr = MI->getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } case PPC::PROLOG_LABEL: case PPC::EH_LABEL: case PPC::GC_LABEL: case PPC::DBG_VALUE: return 0; case PPC::BL8_NOP_ELF: case PPC::BLA8_NOP_ELF: return 8; default: return 4; // PowerPC instructions are all 4 bytes } }