Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/X86/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp |
//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" #include "X86InstrInfo.h" #include "X86JITInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "X86Relocations.h" #include "X86.h" #include "llvm/LLVMContext.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { template<class CodeEmitter> class Emitter : public MachineFunctionPass { const X86InstrInfo *II; const TargetData *TD; X86TargetMachine &TM; CodeEmitter &MCE; MachineModuleInfo *MMI; intptr_t PICBaseOffset; bool Is64BitMode; bool IsPIC; public: static char ID; explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) : MachineFunctionPass(ID), II(0), TD(0), TM(tm), MCE(mce), PICBaseOffset(0), Is64BitMode(false), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} Emitter(X86TargetMachine &tm, CodeEmitter &mce, const X86InstrInfo &ii, const TargetData &td, bool is64) : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm), MCE(mce), PICBaseOffset(0), Is64BitMode(is64), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Machine Code Emitter"; } void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<MachineModuleInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } private: void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, intptr_t Disp = 0, intptr_t PCAdj = 0, bool Indirect = false); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, intptr_t PCAdj = 0); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj = 0); void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t Adj = 0, bool IsPCRel = true); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitRegModRMByte(unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); void emitConstant(uint64_t Val, unsigned Size); void emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj = 0); }; template<class CodeEmitter> char Emitter<CodeEmitter>::ID = 0; } // end anonymous namespace. /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code /// to the specified templated MachineCodeEmitter object. FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, JITCodeEmitter &JCE) { return new Emitter<JITCodeEmitter>(TM, JCE); } template<class CodeEmitter> bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { MMI = &getAnalysis<MachineModuleInfo>(); MCE.setModuleInfo(MMI); II = TM.getInstrInfo(); TD = TM.getTargetData(); Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; do { DEBUG(dbgs() << "JITTing function '" << MF.getFunction()->getName() << "'\n"); MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const MCInstrDesc &Desc = I->getDesc(); emitInstruction(*I, &Desc); // MOVPC32r is basically a call plus a pop instruction. if (Desc.getOpcode() == X86::MOVPC32r) emitInstruction(*I, &II->get(X86::POP32r)); ++NumEmitted; // Keep track of the # of mi's emitted } } } while (MCE.finishFunction(MF)); return false; } /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. static unsigned determineREX(const MachineInstr &MI) { unsigned REX = 0; const MCInstrDesc &Desc = MI.getDesc(); // Pseudo instructions do not need REX prefix byte. if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) return 0; if (Desc.TSFlags & X86II::REX_W) REX |= 1 << 3; unsigned NumOps = Desc.getNumOperands(); if (NumOps) { bool isTwoAddr = NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. unsigned i = isTwoAddr ? 1 : 0; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { unsigned Reg = MO.getReg(); if (X86II::isX86_64NonExtLowByteReg(Reg)) REX |= 0x40; } } switch (Desc.TSFlags & X86II::FormMask) { case X86II::MRMInitReg: if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= (1 << 0) | (1 << 2); break; case X86II::MRMSrcReg: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << 0; } break; } case X86II::MRMSrcMem: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e))) REX |= 1 << 2; unsigned Bit = 0; for (; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } default: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 0; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << 2; } break; } } } return REX; } /// emitPCRelativeBlockAddress - This method keeps track of the information /// necessary to resolve the address of this block later and emits a dummy /// value. /// template<class CodeEmitter> void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { // Remember where this reference was and where it is to so we can // deal with it later. MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), X86::reloc_pcrel_word, MBB)); MCE.emitWordLE(0); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction. /// template<class CodeEmitter> void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, intptr_t Disp /* = 0 */, intptr_t PCAdj /* = 0 */, bool Indirect /* = false */) { intptr_t RelocCST = Disp; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MachineRelocation MR = Indirect ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, const_cast<GlobalValue *>(GV), RelocCST, false) : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, const_cast<GlobalValue *>(GV), RelocCST, false); MCE.addRelocation(MR); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(Disp); else MCE.emitWordLE((int32_t)Disp); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; // X86 never needs stubs because instruction selection will always pick // an instruction sequence that is large enough to hold any address // to a symbol. // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) bool NeedStub = false; MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES, RelocCST, 0, NeedStub)); if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(0); else MCE.emitWordLE(0); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp /* = 0 */, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, RelocCST)); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(Disp); else MCE.emitWordLE((int32_t)Disp); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, RelocCST)); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(0); else MCE.emitWordLE(0); } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ MCE.emitByte(ModRMByte(3, RegOpcodeFld, X86_MC::getX86RegNum(ModRMReg))); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... MCE.emitByte(ModRMByte(SS, Index, Base)); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { MCE.emitByte(Val & 255); Val >>= 8; } } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, const TargetMachine &TM) { // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer // mechanism as 32-bit mode. if (TM.getSubtarget<X86Subtarget>().is64Bit() && !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) return false; // Return true if this is a reference to a stub containing the address of the // global, not the global itself. return isGlobalStubReference(GVOp.getTargetFlags()); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t Adj /* = 0 */, bool IsPCRel /* = true */) { // If this is a simple integer displacement that doesn't require a relocation, // emit it now. if (!RelocOp) { emitConstant(DispVal, 4); return; } // Otherwise, this is something that requires a relocation. Emit it as such // now. unsigned RelocType = Is64BitMode ? (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (RelocOp->isGlobal()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. If the MCE supports using RIP directly // do it, otherwise fallback to absolute (this is determined by IsPCRel). // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), Adj, Indirect); } else if (RelocOp->isSymbol()) { emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); } else if (RelocOp->isCPI()) { emitConstPoolAddress(RelocOp->getIndex(), RelocType, RelocOp->getOffset(), Adj); } else { assert(RelocOp->isJTI() && "Unexpected machine operand!"); emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); } } template<class CodeEmitter> void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, unsigned Op,unsigned RegOpcodeField, intptr_t PCAdj) { const MachineOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; const MachineOperand *DispForReloc = 0; // Figure out what sort of displacement we have to handle here. if (Op3.isGlobal()) { DispForReloc = &Op3; } else if (Op3.isSymbol()) { DispForReloc = &Op3; } else if (Op3.isCPI()) { if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); DispVal += Op3.getOffset(); } } else if (Op3.isJTI()) { if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); } } else { DispVal = Op3.getImm(); } const MachineOperand &Base = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); // Handle %rip relative addressing. if (BaseReg == X86::RIP || (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode assert(IndexReg.getReg() == 0 && Is64BitMode && "Invalid rip-relative address"); MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj, true); return; } // Indicate that the displacement will use an pcrel or absolute reference // by default. MCEs able to resolve addresses on-the-fly use pcrel by default // while others, unless explicit asked to use RIP, use absolute references. bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; // Is a SIB byte needed? // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. unsigned BaseRegNo = -1U; if (BaseReg != 0 && BaseReg != X86::RIP) BaseRegNo = X86_MC::getX86RegNum(BaseReg); if (// The SIB byte must be used if there is an index register. IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. BaseRegNo != N86::ESP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!Is64BitMode || BaseReg != 0)) { if (BaseReg == 0 || // [disp32] in X86-32 mode BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj, true); return; } // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it // by emitting a displacement of 0 below. if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); return; } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (!DispForReloc && isDisp8(DispVal)) { MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(DispVal, 1); return; } // Otherwise, emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); return; } // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=4, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispForReloc) { // Emit the normal disp32 encoding. MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispVal == 0 && BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding... MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg()); else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) IndexRegNo = 4; emitSIBByte(SS, IndexRegNo, 5); } else { unsigned BaseRegNo = X86_MC::getX86RegNum(BaseReg); unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg()); else IndexRegNo = 4; // For example [ESP+1*<noreg>+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? if (ForceDisp8) { emitConstant(DispVal, 1); } else if (DispVal != 0 || ForceDisp32) { emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); } } static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II, unsigned Opcode) { const MCInstrDesc *Desc = &II->get(Opcode); MI.setDesc(*Desc); return Desc; } template<class CodeEmitter> void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc) { DEBUG(dbgs() << MI); // If this is a pseudo instruction, lower it. switch (Desc->getOpcode()) { case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break; case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break; case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break; case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break; case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break; case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break; case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break; case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break; case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break; case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break; case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break; case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break; case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break; case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break; case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break; case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break; case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break; } MCE.processDebugLoc(MI.getDebugLoc(), true); unsigned Opcode = Desc->Opcode; // Emit the lock opcode prefix as needed. if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0); // Emit segment override opcode prefix as needed. switch (Desc->TSFlags & X86II::SegOvrMask) { case X86II::FS: MCE.emitByte(0x64); break; case X86II::GS: MCE.emitByte(0x65); break; default: llvm_unreachable("Invalid segment!"); case 0: break; // No segment override! } // Emit the repeat opcode prefix as needed. if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); // Emit the operand size opcode prefix as needed. if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66); // Emit the address size opcode prefix as needed. if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67); bool Need0FPrefix = false; switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A case X86II::A6: // 0F A6 case X86II::A7: // 0F A7 Need0FPrefix = true; break; case X86II::REP: break; // already handled. case X86II::T8XS: // F3 0F 38 case X86II::XS: // F3 0F MCE.emitByte(0xF3); Need0FPrefix = true; break; case X86II::T8XD: // F2 0F 38 case X86II::TAXD: // F2 0F 3A case X86II::XD: // F2 0F MCE.emitByte(0xF2); Need0FPrefix = true; break; case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: llvm_unreachable("Invalid prefix!"); case 0: break; // No prefix! } // Handle REX prefix. if (Is64BitMode) { if (unsigned REX = determineREX(MI)) MCE.emitByte(0x40 | REX); } // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) MCE.emitByte(0x0F); switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::T8XD: // F2 0F 38 case X86II::T8XS: // F3 0F 38 case X86II::T8: // 0F 38 MCE.emitByte(0x38); break; case X86II::TAXD: // F2 0F 38 case X86II::TA: // 0F 3A MCE.emitByte(0x3A); break; case X86II::A6: // 0F A6 MCE.emitByte(0xA6); break; case X86II::A7: // 0F A7 MCE.emitByte(0xA7); break; } // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc->getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) != -1) ++CurOp; else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1,MCOI::TIED_TO)== 0) // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 --NumOps; unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); switch (Desc->TSFlags & X86II::FormMask) { default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: // Remember the current PC offset, this is the PIC relocation // base address. switch (Opcode) { default: llvm_unreachable("pseudo instructions should be removed before code" " emission"); break; // Do nothing for Int_MemBarrier - it's just a comment. Add a debug // to make it slightly easier to see. case X86::Int_MemBarrier: DEBUG(dbgs() << "#MEMBARRIER\n"); break; case TargetOpcode::INLINEASM: // We allow inline assembler nodes with empty bodies - they can // implicitly define registers, which is ok for JIT. if (MI.getOperand(0).getSymbolName()[0]) report_fatal_error("JIT does not support inline asm!"); break; case TargetOpcode::PROLOG_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::EH_LABEL: MCE.emitLabel(MI.getOperand(0).getMCSymbol()); break; case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: break; case X86::MOVPC32r: { // This emits the "call" portion of this pseudo instruction. MCE.emitByte(BaseOpcode); emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); // Remember PIC base. PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); X86JITInfo *JTI = TM.getJITInfo(); JTI->setPICBase(MCE.getCurrentPCValue()); break; } } CurOp = NumOps; break; case X86II::RawFrm: { MCE.emitByte(BaseOpcode); if (CurOp == NumOps) break; const MachineOperand &MO = MI.getOperand(CurOp++); DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); if (MO.isMBB()) { emitPCRelativeBlockAddress(MO.getMBB()); break; } if (MO.isGlobal()) { emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, MO.getOffset(), 0); break; } if (MO.isSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); break; } // FIXME: Only used by hackish MCCodeEmitter, remove when dead. if (MO.isJTI()) { emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); break; } assert(MO.isImm() && "Unknown RawFrm operand!"); if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { // Fix up immediate operand for pc relative calls. intptr_t Imm = (intptr_t)MO.getImm(); Imm = Imm - MCE.getCurrentPCValue() - 4; emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); } else emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } case X86II::AddRegFrm: { MCE.emitByte(BaseOpcode + X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg())); if (CurOp == NumOps) break; const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri64i32) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? // This should not occur on Darwin for relocatable objects. if (Opcode == X86::MOV64ri) rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO1, TM); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, Indirect); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); break; } case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp).getReg(), X86_MC::getX86RegNum(MI.getOperand(CurOp+1).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, X86_MC::getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands) .getReg())); CurOp += X86::AddrNumOperands + 1; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } case X86II::MRMSrcReg: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; case X86II::MRMSrcMem: { int AddrOperands = X86::AddrNumOperands; intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? X86II::getSizeOfImm(Desc->TSFlags) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp+1, X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj); CurOp += AddrOperands + 1; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp++).getReg(), (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); if (CurOp == NumOps) break; const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO1, TM); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, Indirect); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ? (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj); CurOp += X86::AddrNumOperands; if (CurOp == NumOps) break; const MachineOperand &MO = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO.isImm()) { emitConstant(MO.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64mi32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO, TM); emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, Indirect); } else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), rt); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), rt); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), rt); break; } case X86II::MRMInitReg: MCE.emitByte(BaseOpcode); // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). emitRegModRMByte(MI.getOperand(CurOp).getReg(), X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg())); ++CurOp; break; case X86II::MRM_C1: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC1); break; case X86II::MRM_C8: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC8); break; case X86II::MRM_C9: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC9); break; case X86II::MRM_E8: MCE.emitByte(BaseOpcode); MCE.emitByte(0xE8); break; case X86II::MRM_F0: MCE.emitByte(BaseOpcode); MCE.emitByte(0xF0); break; } if (!MI.isVariadic() && CurOp != NumOps) { #ifndef NDEBUG dbgs() << "Cannot encode all operands of: " << MI << "\n"; #endif llvm_unreachable(0); } MCE.processDebugLoc(MI.getDebugLoc(), false); }