Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/IPO/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp |
//===- MergeFunctions.cpp - Merge identical functions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass looks for equivalent functions that are mergable and folds them. // // A hash is computed from the function, based on its type and number of // basic blocks. // // Once all hashes are computed, we perform an expensive equality comparison // on each function pair. This takes n^2/2 comparisons per bucket, so it's // important that the hash function be high quality. The equality comparison // iterates through each instruction in each basic block. // // When a match is found the functions are folded. If both functions are // overridable, we move the functionality into a new internal function and // leave two overridable thunks to it. // //===----------------------------------------------------------------------===// // // Future work: // // * virtual functions. // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup // and call, this is irrelevant, and we'd like to fold such functions. // // * switch from n^2 pair-wise comparisons to an n-way comparison for each // bucket. // // * be smarter about bitcasts. // // In order to fold functions, we will sometimes add either bitcast instructions // or bitcast constant expressions. Unfortunately, this can confound further // analysis since the two functions differ where one has a bitcast and the // other doesn't. We should learn to look through bitcasts. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mergefunc" #include "llvm/Transforms/IPO.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include <vector> using namespace llvm; STATISTIC(NumFunctionsMerged, "Number of functions merged"); STATISTIC(NumThunksWritten, "Number of thunks generated"); STATISTIC(NumAliasesWritten, "Number of aliases generated"); STATISTIC(NumDoubleWeak, "Number of new functions created"); /// Creates a hash-code for the function which is the same for any two /// functions that will compare equal, without looking at the instructions /// inside the function. static unsigned profileFunction(const Function *F) { FunctionType *FTy = F->getFunctionType(); FoldingSetNodeID ID; ID.AddInteger(F->size()); ID.AddInteger(F->getCallingConv()); ID.AddBoolean(F->hasGC()); ID.AddBoolean(FTy->isVarArg()); ID.AddInteger(FTy->getReturnType()->getTypeID()); for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) ID.AddInteger(FTy->getParamType(i)->getTypeID()); return ID.ComputeHash(); } namespace { /// ComparableFunction - A struct that pairs together functions with a /// TargetData so that we can keep them together as elements in the DenseSet. class ComparableFunction { public: static const ComparableFunction EmptyKey; static const ComparableFunction TombstoneKey; static TargetData * const LookupOnly; ComparableFunction(Function *Func, TargetData *TD) : Func(Func), Hash(profileFunction(Func)), TD(TD) {} Function *getFunc() const { return Func; } unsigned getHash() const { return Hash; } TargetData *getTD() const { return TD; } // Drops AssertingVH reference to the function. Outside of debug mode, this // does nothing. void release() { assert(Func && "Attempted to release function twice, or release empty/tombstone!"); Func = NULL; } private: explicit ComparableFunction(unsigned Hash) : Func(NULL), Hash(Hash), TD(NULL) {} AssertingVH<Function> Func; unsigned Hash; TargetData *TD; }; const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0); const ComparableFunction ComparableFunction::TombstoneKey = ComparableFunction(1); TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1); } namespace llvm { template <> struct DenseMapInfo<ComparableFunction> { static ComparableFunction getEmptyKey() { return ComparableFunction::EmptyKey; } static ComparableFunction getTombstoneKey() { return ComparableFunction::TombstoneKey; } static unsigned getHashValue(const ComparableFunction &CF) { return CF.getHash(); } static bool isEqual(const ComparableFunction &LHS, const ComparableFunction &RHS); }; } namespace { /// FunctionComparator - Compares two functions to determine whether or not /// they will generate machine code with the same behaviour. TargetData is /// used if available. The comparator always fails conservatively (erring on the /// side of claiming that two functions are different). class FunctionComparator { public: FunctionComparator(const TargetData *TD, const Function *F1, const Function *F2) : F1(F1), F2(F2), TD(TD) {} /// Test whether the two functions have equivalent behaviour. bool compare(); private: /// Test whether two basic blocks have equivalent behaviour. bool compare(const BasicBlock *BB1, const BasicBlock *BB2); /// Assign or look up previously assigned numbers for the two values, and /// return whether the numbers are equal. Numbers are assigned in the order /// visited. bool enumerate(const Value *V1, const Value *V2); /// Compare two Instructions for equivalence, similar to /// Instruction::isSameOperationAs but with modifications to the type /// comparison. bool isEquivalentOperation(const Instruction *I1, const Instruction *I2) const; /// Compare two GEPs for equivalent pointer arithmetic. bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); bool isEquivalentGEP(const GetElementPtrInst *GEP1, const GetElementPtrInst *GEP2) { return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); } /// Compare two Types, treating all pointer types as equal. bool isEquivalentType(Type *Ty1, Type *Ty2) const; // The two functions undergoing comparison. const Function *F1, *F2; const TargetData *TD; DenseMap<const Value *, const Value *> id_map; DenseSet<const Value *> seen_values; }; } // Any two pointers in the same address space are equivalent, intptr_t and // pointers are equivalent. Otherwise, standard type equivalence rules apply. bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const { if (Ty1 == Ty2) return true; if (Ty1->getTypeID() != Ty2->getTypeID()) { if (TD) { LLVMContext &Ctx = Ty1->getContext(); if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true; if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true; } return false; } switch (Ty1->getTypeID()) { default: llvm_unreachable("Unknown type!"); // Fall through in Release mode. case Type::IntegerTyID: case Type::VectorTyID: // Ty1 == Ty2 would have returned true earlier. return false; case Type::VoidTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: return true; case Type::PointerTyID: { PointerType *PTy1 = cast<PointerType>(Ty1); PointerType *PTy2 = cast<PointerType>(Ty2); return PTy1->getAddressSpace() == PTy2->getAddressSpace(); } case Type::StructTyID: { StructType *STy1 = cast<StructType>(Ty1); StructType *STy2 = cast<StructType>(Ty2); if (STy1->getNumElements() != STy2->getNumElements()) return false; if (STy1->isPacked() != STy2->isPacked()) return false; for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) return false; } return true; } case Type::FunctionTyID: { FunctionType *FTy1 = cast<FunctionType>(Ty1); FunctionType *FTy2 = cast<FunctionType>(Ty2); if (FTy1->getNumParams() != FTy2->getNumParams() || FTy1->isVarArg() != FTy2->isVarArg()) return false; if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) return false; for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) return false; } return true; } case Type::ArrayTyID: { ArrayType *ATy1 = cast<ArrayType>(Ty1); ArrayType *ATy2 = cast<ArrayType>(Ty2); return ATy1->getNumElements() == ATy2->getNumElements() && isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); } } } // Determine whether the two operations are the same except that pointer-to-A // and pointer-to-B are equivalent. This should be kept in sync with // Instruction::isSameOperationAs. bool FunctionComparator::isEquivalentOperation(const Instruction *I1, const Instruction *I2) const { // Differences from Instruction::isSameOperationAs: // * replace type comparison with calls to isEquivalentType. // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top // * because of the above, we don't test for the tail bit on calls later on if (I1->getOpcode() != I2->getOpcode() || I1->getNumOperands() != I2->getNumOperands() || !isEquivalentType(I1->getType(), I2->getType()) || !I1->hasSameSubclassOptionalData(I2)) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) if (!isEquivalentType(I1->getOperand(i)->getType(), I2->getOperand(i)->getType())) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() && LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() && SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); if (const CallInst *CI = dyn_cast<CallInst>(I1)) return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && CI->getAttributes() == cast<CallInst>(I2)->getAttributes(); if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes(); if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() && CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); return true; } // Determine whether two GEP operations perform the same underlying arithmetic. bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2) { // When we have target data, we can reduce the GEP down to the value in bytes // added to the address. if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end()); SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end()); uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), Indices1); uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), Indices2); return Offset1 == Offset2; } if (GEP1->getPointerOperand()->getType() != GEP2->getPointerOperand()->getType()) return false; if (GEP1->getNumOperands() != GEP2->getNumOperands()) return false; for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) return false; } return true; } // Compare two values used by the two functions under pair-wise comparison. If // this is the first time the values are seen, they're added to the mapping so // that we will detect mismatches on next use. bool FunctionComparator::enumerate(const Value *V1, const Value *V2) { // Check for function @f1 referring to itself and function @f2 referring to // itself, or referring to each other, or both referring to either of them. // They're all equivalent if the two functions are otherwise equivalent. if (V1 == F1 && V2 == F2) return true; if (V1 == F2 && V2 == F1) return true; if (const Constant *C1 = dyn_cast<Constant>(V1)) { if (V1 == V2) return true; const Constant *C2 = dyn_cast<Constant>(V2); if (!C2) return false; // TODO: constant expressions with GEP or references to F1 or F2. if (C1->isNullValue() && C2->isNullValue() && isEquivalentType(C1->getType(), C2->getType())) return true; // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1 // then they must have equal bit patterns. return C1->getType()->canLosslesslyBitCastTo(C2->getType()) && C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType()); } if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2)) return V1 == V2; // Check that V1 maps to V2. If we find a value that V1 maps to then we simply // check whether it's equal to V2. When there is no mapping then we need to // ensure that V2 isn't already equivalent to something else. For this // purpose, we track the V2 values in a set. const Value *&map_elem = id_map[V1]; if (map_elem) return map_elem == V2; if (!seen_values.insert(V2).second) return false; map_elem = V2; return true; } // Test whether two basic blocks have equivalent behaviour. bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) { BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); do { if (!enumerate(F1I, F2I)) return false; if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); if (!GEP2) return false; if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) return false; if (!isEquivalentGEP(GEP1, GEP2)) return false; } else { if (!isEquivalentOperation(F1I, F2I)) return false; assert(F1I->getNumOperands() == F2I->getNumOperands()); for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { Value *OpF1 = F1I->getOperand(i); Value *OpF2 = F2I->getOperand(i); if (!enumerate(OpF1, OpF2)) return false; if (OpF1->getValueID() != OpF2->getValueID() || !isEquivalentType(OpF1->getType(), OpF2->getType())) return false; } } ++F1I, ++F2I; } while (F1I != F1E && F2I != F2E); return F1I == F1E && F2I == F2E; } // Test whether the two functions have equivalent behaviour. bool FunctionComparator::compare() { // We need to recheck everything, but check the things that weren't included // in the hash first. if (F1->getAttributes() != F2->getAttributes()) return false; if (F1->hasGC() != F2->hasGC()) return false; if (F1->hasGC() && F1->getGC() != F2->getGC()) return false; if (F1->hasSection() != F2->hasSection()) return false; if (F1->hasSection() && F1->getSection() != F2->getSection()) return false; if (F1->isVarArg() != F2->isVarArg()) return false; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (F1->getCallingConv() != F2->getCallingConv()) return false; if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) return false; assert(F1->arg_size() == F2->arg_size() && "Identically typed functions have different numbers of args!"); // Visit the arguments so that they get enumerated in the order they're // passed in. for (Function::const_arg_iterator f1i = F1->arg_begin(), f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { if (!enumerate(f1i, f2i)) llvm_unreachable("Arguments repeat!"); } // We do a CFG-ordered walk since the actual ordering of the blocks in the // linked list is immaterial. Our walk starts at the entry block for both // functions, then takes each block from each terminator in order. As an // artifact, this also means that unreachable blocks are ignored. SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. F1BBs.push_back(&F1->getEntryBlock()); F2BBs.push_back(&F2->getEntryBlock()); VisitedBBs.insert(F1BBs[0]); while (!F1BBs.empty()) { const BasicBlock *F1BB = F1BBs.pop_back_val(); const BasicBlock *F2BB = F2BBs.pop_back_val(); if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB)) return false; const TerminatorInst *F1TI = F1BB->getTerminator(); const TerminatorInst *F2TI = F2BB->getTerminator(); assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(F1TI->getSuccessor(i))) continue; F1BBs.push_back(F1TI->getSuccessor(i)); F2BBs.push_back(F2TI->getSuccessor(i)); } } return true; } namespace { /// MergeFunctions finds functions which will generate identical machine code, /// by considering all pointer types to be equivalent. Once identified, /// MergeFunctions will fold them by replacing a call to one to a call to a /// bitcast of the other. /// class MergeFunctions : public ModulePass { public: static char ID; MergeFunctions() : ModulePass(ID), HasGlobalAliases(false) { initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M); private: typedef DenseSet<ComparableFunction> FnSetType; /// A work queue of functions that may have been modified and should be /// analyzed again. std::vector<WeakVH> Deferred; /// Insert a ComparableFunction into the FnSet, or merge it away if it's /// equal to one that's already present. bool insert(ComparableFunction &NewF); /// Remove a Function from the FnSet and queue it up for a second sweep of /// analysis. void remove(Function *F); /// Find the functions that use this Value and remove them from FnSet and /// queue the functions. void removeUsers(Value *V); /// Replace all direct calls of Old with calls of New. Will bitcast New if /// necessary to make types match. void replaceDirectCallers(Function *Old, Function *New); /// Merge two equivalent functions. Upon completion, G may be deleted, or may /// be converted into a thunk. In either case, it should never be visited /// again. void mergeTwoFunctions(Function *F, Function *G); /// Replace G with a thunk or an alias to F. Deletes G. void writeThunkOrAlias(Function *F, Function *G); /// Replace G with a simple tail call to bitcast(F). Also replace direct uses /// of G with bitcast(F). Deletes G. void writeThunk(Function *F, Function *G); /// Replace G with an alias to F. Deletes G. void writeAlias(Function *F, Function *G); /// The set of all distinct functions. Use the insert() and remove() methods /// to modify it. FnSetType FnSet; /// TargetData for more accurate GEP comparisons. May be NULL. TargetData *TD; /// Whether or not the target supports global aliases. bool HasGlobalAliases; }; } // end anonymous namespace char MergeFunctions::ID = 0; INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } bool MergeFunctions::runOnModule(Module &M) { bool Changed = false; TD = getAnalysisIfAvailable<TargetData>(); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) Deferred.push_back(WeakVH(I)); } FnSet.resize(Deferred.size()); do { std::vector<WeakVH> Worklist; Deferred.swap(Worklist); DEBUG(dbgs() << "size of module: " << M.size() << '\n'); DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); // Insert only strong functions and merge them. Strong function merging // always deletes one of them. for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); I != E; ++I) { if (!*I) continue; Function *F = cast<Function>(*I); if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && !F->mayBeOverridden()) { ComparableFunction CF = ComparableFunction(F, TD); Changed |= insert(CF); } } // Insert only weak functions and merge them. By doing these second we // create thunks to the strong function when possible. When two weak // functions are identical, we create a new strong function with two weak // weak thunks to it which are identical but not mergable. for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); I != E; ++I) { if (!*I) continue; Function *F = cast<Function>(*I); if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && F->mayBeOverridden()) { ComparableFunction CF = ComparableFunction(F, TD); Changed |= insert(CF); } } DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n'); } while (!Deferred.empty()); FnSet.clear(); return Changed; } bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS, const ComparableFunction &RHS) { if (LHS.getFunc() == RHS.getFunc() && LHS.getHash() == RHS.getHash()) return true; if (!LHS.getFunc() || !RHS.getFunc()) return false; // One of these is a special "underlying pointer comparison only" object. if (LHS.getTD() == ComparableFunction::LookupOnly || RHS.getTD() == ComparableFunction::LookupOnly) return false; assert(LHS.getTD() == RHS.getTD() && "Comparing functions for different targets"); return FunctionComparator(LHS.getTD(), LHS.getFunc(), RHS.getFunc()).compare(); } // Replace direct callers of Old with New. void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { Value::use_iterator TheIter = UI; ++UI; CallSite CS(*TheIter); if (CS && CS.isCallee(TheIter)) { remove(CS.getInstruction()->getParent()->getParent()); TheIter.getUse().set(BitcastNew); } } } // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { if (HasGlobalAliases && G->hasUnnamedAddr()) { if (G->hasExternalLinkage() || G->hasLocalLinkage() || G->hasWeakLinkage()) { writeAlias(F, G); return; } } writeThunk(F, G); } // Replace G with a simple tail call to bitcast(F). Also replace direct uses // of G with bitcast(F). Deletes G. void MergeFunctions::writeThunk(Function *F, Function *G) { if (!G->mayBeOverridden()) { // Redirect direct callers of G to F. replaceDirectCallers(G, F); } // If G was internal then we may have replaced all uses of G with F. If so, // stop here and delete G. There's no need for a thunk. if (G->hasLocalLinkage() && G->use_empty()) { G->eraseFromParent(); return; } Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", G->getParent()); BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); IRBuilder<false> Builder(BB); SmallVector<Value *, 16> Args; unsigned i = 0; FunctionType *FFTy = F->getFunctionType(); for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); AI != AE; ++AI) { Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i))); ++i; } CallInst *CI = Builder.CreateCall(F, Args); CI->setTailCall(); CI->setCallingConv(F->getCallingConv()); if (NewG->getReturnType()->isVoidTy()) { Builder.CreateRetVoid(); } else { Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType())); } NewG->copyAttributesFrom(G); NewG->takeName(G); removeUsers(G); G->replaceAllUsesWith(NewG); G->eraseFromParent(); DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); ++NumThunksWritten; } // Replace G with an alias to F and delete G. void MergeFunctions::writeAlias(Function *F, Function *G) { Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "", BitcastF, G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); removeUsers(G); G->replaceAllUsesWith(GA); G->eraseFromParent(); DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); ++NumAliasesWritten; } // Merge two equivalent functions. Upon completion, Function G is deleted. void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { if (F->mayBeOverridden()) { assert(G->mayBeOverridden()); if (HasGlobalAliases) { // Make them both thunks to the same internal function. Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", F->getParent()); H->copyAttributesFrom(F); H->takeName(F); removeUsers(F); F->replaceAllUsesWith(H); unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); writeAlias(F, G); writeAlias(F, H); F->setAlignment(MaxAlignment); F->setLinkage(GlobalValue::PrivateLinkage); } else { // We can't merge them. Instead, pick one and update all direct callers // to call it and hope that we improve the instruction cache hit rate. replaceDirectCallers(G, F); } ++NumDoubleWeak; } else { writeThunkOrAlias(F, G); } ++NumFunctionsMerged; } // Insert a ComparableFunction into the FnSet, or merge it away if equal to one // that was already inserted. bool MergeFunctions::insert(ComparableFunction &NewF) { std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); if (Result.second) { DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n'); return false; } const ComparableFunction &OldF = *Result.first; // Never thunk a strong function to a weak function. assert(!OldF.getFunc()->mayBeOverridden() || NewF.getFunc()->mayBeOverridden()); DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == " << NewF.getFunc()->getName() << '\n'); Function *DeleteF = NewF.getFunc(); NewF.release(); mergeTwoFunctions(OldF.getFunc(), DeleteF); return true; } // Remove a function from FnSet. If it was already in FnSet, add it to Deferred // so that we'll look at it in the next round. void MergeFunctions::remove(Function *F) { // We need to make sure we remove F, not a function "equal" to F per the // function equality comparator. // // The special "lookup only" ComparableFunction bypasses the expensive // function comparison in favour of a pointer comparison on the underlying // Function*'s. ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly); if (FnSet.erase(CF)) { DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n"); Deferred.push_back(F); } } // For each instruction used by the value, remove() the function that contains // the instruction. This should happen right before a call to RAUW. void MergeFunctions::removeUsers(Value *V) { std::vector<Value *> Worklist; Worklist.push_back(V); while (!Worklist.empty()) { Value *V = Worklist.back(); Worklist.pop_back(); for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { Use &U = UI.getUse(); if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { remove(I->getParent()->getParent()); } else if (isa<GlobalValue>(U.getUser())) { // do nothing } else if (Constant *C = dyn_cast<Constant>(U.getUser())) { for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end(); CUI != CUE; ++CUI) Worklist.push_back(*CUI); } } } }