Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Scalar/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp |
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumWidened , "Number of indvars widened"); STATISTIC(NumReplaced , "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); // Trip count verification can be enabled by default under NDEBUG if we // implement a strong expression equivalence checker in SCEV. Until then, we // use the verify-indvars flag, which may assert in some cases. static cl::opt<bool> VerifyIndvars( "verify-indvars", cl::Hidden, cl::desc("Verify the ScalarEvolution result after running indvars")); namespace { class IndVarSimplify : public LoopPass { LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; TargetData *TD; SmallVector<WeakVH, 16> DeadInsts; bool Changed; public: static char ID; // Pass identification, replacement for typeid IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), Changed(false) { initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); } virtual bool runOnLoop(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTree>(); AU.addRequired<LoopInfo>(); AU.addRequired<ScalarEvolution>(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreserved<ScalarEvolution>(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } private: virtual void releaseMemory() { DeadInsts.clear(); } bool isValidRewrite(Value *FromVal, Value *ToVal); void HandleFloatingPointIV(Loop *L, PHINode *PH); void RewriteNonIntegerIVs(Loop *L); void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, SCEVExpander &Rewriter); void SinkUnusedInvariants(Loop *L); }; } char IndVarSimplify::ID = 0; INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", "Induction Variable Simplification", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_END(IndVarSimplify, "indvars", "Induction Variable Simplification", false, false) Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// isValidRewrite - Return true if the SCEV expansion generated by the /// rewriter can replace the original value. SCEV guarantees that it /// produces the same value, but the way it is produced may be illegal IR. /// Ideally, this function will only be called for verification. bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { // If an SCEV expression subsumed multiple pointers, its expansion could // reassociate the GEP changing the base pointer. This is illegal because the // final address produced by a GEP chain must be inbounds relative to its // underlying object. Otherwise basic alias analysis, among other things, // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid // producing an expression involving multiple pointers. Until then, we must // bail out here. // // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject // because it understands lcssa phis while SCEV does not. Value *FromPtr = FromVal; Value *ToPtr = ToVal; if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { FromPtr = GEP->getPointerOperand(); } if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { ToPtr = GEP->getPointerOperand(); } if (FromPtr != FromVal || ToPtr != ToVal) { // Quickly check the common case if (FromPtr == ToPtr) return true; // SCEV may have rewritten an expression that produces the GEP's pointer // operand. That's ok as long as the pointer operand has the same base // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the // base of a recurrence. This handles the case in which SCEV expansion // converts a pointer type recurrence into a nonrecurrent pointer base // indexed by an integer recurrence. // If the GEP base pointer is a vector of pointers, abort. if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) return false; const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); if (FromBase == ToBase) return true; DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase << " != " << *ToBase << "\n"); return false; } return true; } /// Determine the insertion point for this user. By default, insert immediately /// before the user. SCEVExpander or LICM will hoist loop invariants out of the /// loop. For PHI nodes, there may be multiple uses, so compute the nearest /// common dominator for the incoming blocks. static Instruction *getInsertPointForUses(Instruction *User, Value *Def, DominatorTree *DT) { PHINode *PHI = dyn_cast<PHINode>(User); if (!PHI) return User; Instruction *InsertPt = 0; for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { if (PHI->getIncomingValue(i) != Def) continue; BasicBlock *InsertBB = PHI->getIncomingBlock(i); if (!InsertPt) { InsertPt = InsertBB->getTerminator(); continue; } InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); InsertPt = InsertBB->getTerminator(); } assert(InsertPt && "Missing phi operand"); assert((!isa<Instruction>(Def) || DT->dominates(cast<Instruction>(Def), InsertPt)) && "def does not dominate all uses"); return InsertPt; } //===----------------------------------------------------------------------===// // RewriteNonIntegerIVs and helpers. Prefer integer IVs. //===----------------------------------------------------------------------===// /// ConvertToSInt - Convert APF to an integer, if possible. static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { bool isExact = false; if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) return false; // See if we can convert this to an int64_t uint64_t UIntVal; if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, &isExact) != APFloat::opOK || !isExact) return false; IntVal = UIntVal; return true; } /// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); int64_t InitValue; if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) return; // Check IV increment. Reject this PN if increment operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; // If this is not an add of the PHI with a constantfp, or if the constant fp // is not an integer, bail out. ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); int64_t IncValue; if (IncValueVal == 0 || Incr->getOperand(0) != PN || !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) return; // Check Incr uses. One user is PN and the other user is an exit condition // used by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast<Instruction>(*IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast<Instruction>(*IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't // only used by a branch, we can't transform it. FCmpInst *Compare = dyn_cast<FCmpInst>(U1); if (!Compare) Compare = dyn_cast<FCmpInst>(U2); if (Compare == 0 || !Compare->hasOneUse() || !isa<BranchInst>(Compare->use_back())) return; BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); // We need to verify that the branch actually controls the iteration count // of the loop. If not, the new IV can overflow and no one will notice. // The branch block must be in the loop and one of the successors must be out // of the loop. assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); if (!L->contains(TheBr->getParent()) || (L->contains(TheBr->getSuccessor(0)) && L->contains(TheBr->getSuccessor(1)))) return; // If it isn't a comparison with an integer-as-fp (the exit value), we can't // transform it. ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); int64_t ExitValue; if (ExitValueVal == 0 || !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (Compare->getPredicate()) { default: return; // Unknown comparison. case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; } // We convert the floating point induction variable to a signed i32 value if // we can. This is only safe if the comparison will not overflow in a way // that won't be trapped by the integer equivalent operations. Check for this // now. // TODO: We could use i64 if it is native and the range requires it. // The start/stride/exit values must all fit in signed i32. if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) return; // If not actually striding (add x, 0.0), avoid touching the code. if (IncValue == 0) return; // Positive and negative strides have different safety conditions. if (IncValue > 0) { // If we have a positive stride, we require the init to be less than the // exit value. if (InitValue >= ExitValue) return; uint32_t Range = uint32_t(ExitValue-InitValue); // Check for infinite loop, either: // while (i <= Exit) or until (i > Exit) if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) return; } else { // If we have a negative stride, we require the init to be greater than the // exit value. if (InitValue <= ExitValue) return; uint32_t Range = uint32_t(InitValue-ExitValue); // Check for infinite loop, either: // while (i >= Exit) or until (i < Exit) if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(-IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) return; } IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), PN->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue), Compare->getName()); // In the following deletions, PN may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PN; // Delete the old floating point exit comparison. The branch starts using the // new comparison. NewCompare->takeName(Compare); Compare->replaceAllUsesWith(NewCompare); RecursivelyDeleteTriviallyDeadInstructions(Compare); // Delete the old floating point increment. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr); // If the FP induction variable still has uses, this is because something else // in the loop uses its value. In order to canonicalize the induction // variable, we chose to eliminate the IV and rewrite it in terms of an // int->fp cast. // // We give preference to sitofp over uitofp because it is faster on most // platforms. if (WeakPH) { Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", PN->getParent()->getFirstInsertionPt()); PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN); } Changed = true; } void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); SmallVector<WeakVH, 8> PHIs; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) PHIs.push_back(PN); for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) HandleFloatingPointIV(L, PN); // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoop(L); } //===----------------------------------------------------------------------===// // RewriteLoopExitValues - Optimize IV users outside the loop. // As a side effect, reduces the amount of IV processing within the loop. //===----------------------------------------------------------------------===// /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. /// /// This is mostly redundant with the regular IndVarSimplify activities that /// happen later, except that it's more powerful in some cases, because it's /// able to brute-force evaluate arbitrary instructions as long as they have /// constant operands at the beginning of the loop. void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { // Verify the input to the pass in already in LCSSA form. assert(L->isLCSSAForm(*DT)); SmallVector<BasicBlock*, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBB = ExitBlocks[i]; // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast<PHINode>(BBI++))) { if (PN->use_empty()) continue; // dead use, don't replace it // SCEV only supports integer expressions for now. if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) continue; // It's necessary to tell ScalarEvolution about this explicitly so that // it can walk the def-use list and forget all SCEVs, as it may not be // watching the PHI itself. Once the new exit value is in place, there // may not be a def-use connection between the loop and every instruction // which got a SCEVAddRecExpr for that loop. SE->forgetValue(PN); // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa<Instruction>(InVal)) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast<Instruction>(InVal); if (!L->contains(Inst)) continue; // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (!SE->isLoopInvariant(ExitValue, L)) continue; Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' << " LoopVal = " << *Inst << "\n"); if (!isValidRewrite(Inst, ExitVal)) { DeadInsts.push_back(ExitVal); continue; } Changed = true; ++NumReplaced; PN->setIncomingValue(i, ExitVal); // If this instruction is dead now, delete it. RecursivelyDeleteTriviallyDeadInstructions(Inst); if (NumPreds == 1) { // Completely replace a single-pred PHI. This is safe, because the // NewVal won't be variant in the loop, so we don't need an LCSSA phi // node anymore. PN->replaceAllUsesWith(ExitVal); RecursivelyDeleteTriviallyDeadInstructions(PN); } } if (NumPreds != 1) { // Clone the PHI and delete the original one. This lets IVUsers and // any other maps purge the original user from their records. PHINode *NewPN = cast<PHINode>(PN->clone()); NewPN->takeName(PN); NewPN->insertBefore(PN); PN->replaceAllUsesWith(NewPN); PN->eraseFromParent(); } } } // The insertion point instruction may have been deleted; clear it out // so that the rewriter doesn't trip over it later. Rewriter.clearInsertPoint(); } //===----------------------------------------------------------------------===// // IV Widening - Extend the width of an IV to cover its widest uses. //===----------------------------------------------------------------------===// namespace { // Collect information about induction variables that are used by sign/zero // extend operations. This information is recorded by CollectExtend and // provides the input to WidenIV. struct WideIVInfo { PHINode *NarrowIV; Type *WidestNativeType; // Widest integer type created [sz]ext bool IsSigned; // Was an sext user seen before a zext? WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} }; class WideIVVisitor : public IVVisitor { ScalarEvolution *SE; const TargetData *TD; public: WideIVInfo WI; WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, const TargetData *TData) : SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } // Implement the interface used by simplifyUsersOfIV. virtual void visitCast(CastInst *Cast); }; } /// visitCast - Update information about the induction variable that is /// extended by this sign or zero extend operation. This is used to determine /// the final width of the IV before actually widening it. void WideIVVisitor::visitCast(CastInst *Cast) { bool IsSigned = Cast->getOpcode() == Instruction::SExt; if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) return; Type *Ty = Cast->getType(); uint64_t Width = SE->getTypeSizeInBits(Ty); if (TD && !TD->isLegalInteger(Width)) return; if (!WI.WidestNativeType) { WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); WI.IsSigned = IsSigned; return; } // We extend the IV to satisfy the sign of its first user, arbitrarily. if (WI.IsSigned != IsSigned) return; if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); } namespace { /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the /// WideIV that computes the same value as the Narrow IV def. This avoids /// caching Use* pointers. struct NarrowIVDefUse { Instruction *NarrowDef; Instruction *NarrowUse; Instruction *WideDef; NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} }; /// WidenIV - The goal of this transform is to remove sign and zero extends /// without creating any new induction variables. To do this, it creates a new /// phi of the wider type and redirects all users, either removing extends or /// inserting truncs whenever we stop propagating the type. /// class WidenIV { // Parameters PHINode *OrigPhi; Type *WideType; bool IsSigned; // Context LoopInfo *LI; Loop *L; ScalarEvolution *SE; DominatorTree *DT; // Result PHINode *WidePhi; Instruction *WideInc; const SCEV *WideIncExpr; SmallVectorImpl<WeakVH> &DeadInsts; SmallPtrSet<Instruction*,16> Widened; SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; public: WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, DominatorTree *DTree, SmallVectorImpl<WeakVH> &DI) : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), IsSigned(WI.IsSigned), LI(LInfo), L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), WidePhi(0), WideInc(0), WideIncExpr(0), DeadInsts(DI) { assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); } PHINode *CreateWideIV(SCEVExpander &Rewriter); protected: Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, Instruction *Use); Instruction *CloneIVUser(NarrowIVDefUse DU); const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); }; } // anonymous namespace /// isLoopInvariant - Perform a quick domtree based check for loop invariance /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems /// gratuitous for this purpose. static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { Instruction *Inst = dyn_cast<Instruction>(V); if (!Inst) return true; return DT->properlyDominates(Inst->getParent(), L->getHeader()); } Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, Instruction *Use) { // Set the debug location and conservative insertion point. IRBuilder<> Builder(Use); // Hoist the insertion point into loop preheaders as far as possible. for (const Loop *L = LI->getLoopFor(Use->getParent()); L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); L = L->getParentLoop()) Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : Builder.CreateZExt(NarrowOper, WideType); } /// CloneIVUser - Instantiate a wide operation to replace a narrow /// operation. This only needs to handle operations that can evaluation to /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { unsigned Opcode = DU.NarrowUse->getOpcode(); switch (Opcode) { default: return 0; case Instruction::Add: case Instruction::Mul: case Instruction::UDiv: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); // Replace NarrowDef operands with WideDef. Otherwise, we don't know // anything about the narrow operand yet so must insert a [sz]ext. It is // probably loop invariant and will be folded or hoisted. If it actually // comes from a widened IV, it should be removed during a future call to // WidenIVUse. Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, NarrowBO->getName()); IRBuilder<> Builder(DU.NarrowUse); Builder.Insert(WideBO); if (const OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); } return WideBO; } } /// No-wrap operations can transfer sign extension of their result to their /// operands. Generate the SCEV value for the widened operation without /// actually modifying the IR yet. If the expression after extending the /// operands is an AddRec for this loop, return it. const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { // Handle the common case of add<nsw/nuw> if (DU.NarrowUse->getOpcode() != Instruction::Add) return 0; // One operand (NarrowDef) has already been extended to WideDef. Now determine // if extending the other will lead to a recurrence. unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); const SCEV *ExtendOperExpr = 0; const OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(DU.NarrowUse); if (IsSigned && OBO->hasNoSignedWrap()) ExtendOperExpr = SE->getSignExtendExpr( SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); else if(!IsSigned && OBO->hasNoUnsignedWrap()) ExtendOperExpr = SE->getZeroExtendExpr( SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); else return 0; // When creating this AddExpr, don't apply the current operations NSW or NUW // flags. This instruction may be guarded by control flow that the no-wrap // behavior depends on. Non-control-equivalent instructions can be mapped to // the same SCEV expression, and it would be incorrect to transfer NSW/NUW // semantics to those operations. const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); if (!AddRec || AddRec->getLoop() != L) return 0; return AddRec; } /// GetWideRecurrence - Is this instruction potentially interesting from /// IVUsers' perspective after widening it's type? In other words, can the /// extend be safely hoisted out of the loop with SCEV reducing the value to a /// recurrence on the same loop. If so, return the sign or zero extended /// recurrence. Otherwise return NULL. const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { if (!SE->isSCEVable(NarrowUse->getType())) return 0; const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= SE->getTypeSizeInBits(WideType)) { // NarrowUse implicitly widens its operand. e.g. a gep with a narrow // index. So don't follow this use. return 0; } const SCEV *WideExpr = IsSigned ? SE->getSignExtendExpr(NarrowExpr, WideType) : SE->getZeroExtendExpr(NarrowExpr, WideType); const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); if (!AddRec || AddRec->getLoop() != L) return 0; return AddRec; } /// WidenIVUse - Determine whether an individual user of the narrow IV can be /// widened. If so, return the wide clone of the user. Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { // Stop traversing the def-use chain at inner-loop phis or post-loop phis. if (isa<PHINode>(DU.NarrowUse) && LI->getLoopFor(DU.NarrowUse->getParent()) != L) return 0; // Our raison d'etre! Eliminate sign and zero extension. if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { Value *NewDef = DU.WideDef; if (DU.NarrowUse->getType() != WideType) { unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); unsigned IVWidth = SE->getTypeSizeInBits(WideType); if (CastWidth < IVWidth) { // The cast isn't as wide as the IV, so insert a Trunc. IRBuilder<> Builder(DU.NarrowUse); NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); } else { // A wider extend was hidden behind a narrower one. This may induce // another round of IV widening in which the intermediate IV becomes // dead. It should be very rare. DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi << " not wide enough to subsume " << *DU.NarrowUse << "\n"); DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); NewDef = DU.NarrowUse; } } if (NewDef != DU.NarrowUse) { DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse << " replaced by " << *DU.WideDef << "\n"); ++NumElimExt; DU.NarrowUse->replaceAllUsesWith(NewDef); DeadInsts.push_back(DU.NarrowUse); } // Now that the extend is gone, we want to expose it's uses for potential // further simplification. We don't need to directly inform SimplifyIVUsers // of the new users, because their parent IV will be processed later as a // new loop phi. If we preserved IVUsers analysis, we would also want to // push the uses of WideDef here. // No further widening is needed. The deceased [sz]ext had done it for us. return 0; } // Does this user itself evaluate to a recurrence after widening? const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); if (!WideAddRec) { WideAddRec = GetExtendedOperandRecurrence(DU); } if (!WideAddRec) { // This user does not evaluate to a recurence after widening, so don't // follow it. Instead insert a Trunc to kill off the original use, // eventually isolating the original narrow IV so it can be removed. IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); return 0; } // Assume block terminators cannot evaluate to a recurrence. We can't to // insert a Trunc after a terminator if there happens to be a critical edge. assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && "SCEV is not expected to evaluate a block terminator"); // Reuse the IV increment that SCEVExpander created as long as it dominates // NarrowUse. Instruction *WideUse = 0; if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) WideUse = WideInc; else { WideUse = CloneIVUser(DU); if (!WideUse) return 0; } // Evaluation of WideAddRec ensured that the narrow expression could be // extended outside the loop without overflow. This suggests that the wide use // evaluates to the same expression as the extended narrow use, but doesn't // absolutely guarantee it. Hence the following failsafe check. In rare cases // where it fails, we simply throw away the newly created wide use. if (WideAddRec != SE->getSCEV(WideUse)) { DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); DeadInsts.push_back(WideUse); return 0; } // Returning WideUse pushes it on the worklist. return WideUse; } /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. /// void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { for (Value::use_iterator UI = NarrowDef->use_begin(), UE = NarrowDef->use_end(); UI != UE; ++UI) { Instruction *NarrowUse = cast<Instruction>(*UI); // Handle data flow merges and bizarre phi cycles. if (!Widened.insert(NarrowUse)) continue; NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); } } /// CreateWideIV - Process a single induction variable. First use the /// SCEVExpander to create a wide induction variable that evaluates to the same /// recurrence as the original narrow IV. Then use a worklist to forward /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all /// interesting IV users, the narrow IV will be isolated for removal by /// DeleteDeadPHIs. /// /// It would be simpler to delete uses as they are processed, but we must avoid /// invalidating SCEV expressions. /// PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { // Is this phi an induction variable? const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); if (!AddRec) return NULL; // Widen the induction variable expression. const SCEV *WideIVExpr = IsSigned ? SE->getSignExtendExpr(AddRec, WideType) : SE->getZeroExtendExpr(AddRec, WideType); assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && "Expect the new IV expression to preserve its type"); // Can the IV be extended outside the loop without overflow? AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); if (!AddRec || AddRec->getLoop() != L) return NULL; // An AddRec must have loop-invariant operands. Since this AddRec is // materialized by a loop header phi, the expression cannot have any post-loop // operands, so they must dominate the loop header. assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && "Loop header phi recurrence inputs do not dominate the loop"); // The rewriter provides a value for the desired IV expression. This may // either find an existing phi or materialize a new one. Either way, we // expect a well-formed cyclic phi-with-increments. i.e. any operand not part // of the phi-SCC dominates the loop entry. Instruction *InsertPt = L->getHeader()->begin(); WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); // Remembering the WideIV increment generated by SCEVExpander allows // WidenIVUse to reuse it when widening the narrow IV's increment. We don't // employ a general reuse mechanism because the call above is the only call to // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. if (BasicBlock *LatchBlock = L->getLoopLatch()) { WideInc = cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); WideIncExpr = SE->getSCEV(WideInc); } DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); ++NumWidened; // Traverse the def-use chain using a worklist starting at the original IV. assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); Widened.insert(OrigPhi); pushNarrowIVUsers(OrigPhi, WidePhi); while (!NarrowIVUsers.empty()) { NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); // Process a def-use edge. This may replace the use, so don't hold a // use_iterator across it. Instruction *WideUse = WidenIVUse(DU, Rewriter); // Follow all def-use edges from the previous narrow use. if (WideUse) pushNarrowIVUsers(DU.NarrowUse, WideUse); // WidenIVUse may have removed the def-use edge. if (DU.NarrowDef->use_empty()) DeadInsts.push_back(DU.NarrowDef); } return WidePhi; } //===----------------------------------------------------------------------===// // Simplification of IV users based on SCEV evaluation. //===----------------------------------------------------------------------===// /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV /// users. Each successive simplification may push more users which may /// themselves be candidates for simplification. /// /// Sign/Zero extend elimination is interleaved with IV simplification. /// void IndVarSimplify::SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM) { SmallVector<WideIVInfo, 8> WideIVs; SmallVector<PHINode*, 8> LoopPhis; for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { LoopPhis.push_back(cast<PHINode>(I)); } // Each round of simplification iterates through the SimplifyIVUsers worklist // for all current phis, then determines whether any IVs can be // widened. Widening adds new phis to LoopPhis, inducing another round of // simplification on the wide IVs. while (!LoopPhis.empty()) { // Evaluate as many IV expressions as possible before widening any IVs. This // forces SCEV to set no-wrap flags before evaluating sign/zero // extension. The first time SCEV attempts to normalize sign/zero extension, // the result becomes final. So for the most predictable results, we delay // evaluation of sign/zero extend evaluation until needed, and avoid running // other SCEV based analysis prior to SimplifyAndExtend. do { PHINode *CurrIV = LoopPhis.pop_back_val(); // Information about sign/zero extensions of CurrIV. WideIVVisitor WIV(CurrIV, SE, TD); Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); if (WIV.WI.WidestNativeType) { WideIVs.push_back(WIV.WI); } } while(!LoopPhis.empty()); for (; !WideIVs.empty(); WideIVs.pop_back()) { WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { Changed = true; LoopPhis.push_back(WidePhi); } } } } //===----------------------------------------------------------------------===// // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. //===----------------------------------------------------------------------===// /// Check for expressions that ScalarEvolution generates to compute /// BackedgeTakenInfo. If these expressions have not been reduced, then /// expanding them may incur additional cost (albeit in the loop preheader). static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, SmallPtrSet<const SCEV*, 8> &Processed, ScalarEvolution *SE) { if (!Processed.insert(S)) return false; // If the backedge-taken count is a UDiv, it's very likely a UDiv that // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a // precise expression, rather than a UDiv from the user's code. If we can't // find a UDiv in the code with some simple searching, assume the former and // forego rewriting the loop. if (isa<SCEVUDivExpr>(S)) { ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); if (!OrigCond) return true; const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); if (R != S) { const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); if (L != S) return true; } } // Recurse past add expressions, which commonly occur in the // BackedgeTakenCount. They may already exist in program code, and if not, // they are not too expensive rematerialize. if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); I != E; ++I) { if (isHighCostExpansion(*I, BI, Processed, SE)) return true; } return false; } // HowManyLessThans uses a Max expression whenever the loop is not guarded by // the exit condition. if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) return true; // If we haven't recognized an expensive SCEV pattern, assume it's an // expression produced by program code. return false; } /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken /// count expression can be safely and cheaply expanded into an instruction /// sequence that can be used by LinearFunctionTestReplace. /// /// TODO: This fails for pointer-type loop counters with greater than one byte /// strides, consequently preventing LFTR from running. For the purpose of LFTR /// we could skip this check in the case that the LFTR loop counter (chosen by /// FindLoopCounter) is also pointer type. Instead, we could directly convert /// the loop test to an inequality test by checking the target data's alignment /// of element types (given that the initial pointer value originates from or is /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). /// However, we don't yet have a strong motivation for converting loop tests /// into inequality tests. static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || BackedgeTakenCount->isZero()) return false; if (!L->getExitingBlock()) return false; // Can't rewrite non-branch yet. BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); if (!BI) return false; SmallPtrSet<const SCEV*, 8> Processed; if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) return false; return true; } /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop /// invariant value to the phi. static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { Instruction *IncI = dyn_cast<Instruction>(IncV); if (!IncI) return 0; switch (IncI->getOpcode()) { case Instruction::Add: case Instruction::Sub: break; case Instruction::GetElementPtr: // An IV counter must preserve its type. if (IncI->getNumOperands() == 2) break; default: return 0; } PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); if (Phi && Phi->getParent() == L->getHeader()) { if (isLoopInvariant(IncI->getOperand(1), L, DT)) return Phi; return 0; } if (IncI->getOpcode() == Instruction::GetElementPtr) return 0; // Allow add/sub to be commuted. Phi = dyn_cast<PHINode>(IncI->getOperand(1)); if (Phi && Phi->getParent() == L->getHeader()) { if (isLoopInvariant(IncI->getOperand(0), L, DT)) return Phi; } return 0; } /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show /// that the current exit test is already sufficiently canonical. static bool needsLFTR(Loop *L, DominatorTree *DT) { assert(L->getExitingBlock() && "expected loop exit"); BasicBlock *LatchBlock = L->getLoopLatch(); // Don't bother with LFTR if the loop is not properly simplified. if (!LatchBlock) return false; BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); assert(BI && "expected exit branch"); // Do LFTR to simplify the exit condition to an ICMP. ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); if (!Cond) return true; // Do LFTR to simplify the exit ICMP to EQ/NE ICmpInst::Predicate Pred = Cond->getPredicate(); if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) return true; // Look for a loop invariant RHS Value *LHS = Cond->getOperand(0); Value *RHS = Cond->getOperand(1); if (!isLoopInvariant(RHS, L, DT)) { if (!isLoopInvariant(LHS, L, DT)) return true; std::swap(LHS, RHS); } // Look for a simple IV counter LHS PHINode *Phi = dyn_cast<PHINode>(LHS); if (!Phi) Phi = getLoopPhiForCounter(LHS, L, DT); if (!Phi) return true; // Do LFTR if the exit condition's IV is *not* a simple counter. Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); return Phi != getLoopPhiForCounter(IncV, L, DT); } /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to /// be rewritten) loop exit test. static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); Value *IncV = Phi->getIncomingValue(LatchIdx); for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); UI != UE; ++UI) { if (*UI != Cond && *UI != IncV) return false; } for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); UI != UE; ++UI) { if (*UI != Cond && *UI != Phi) return false; } return true; } /// FindLoopCounter - Find an affine IV in canonical form. /// /// BECount may be an i8* pointer type. The pointer difference is already /// valid count without scaling the address stride, so it remains a pointer /// expression as far as SCEV is concerned. /// /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount /// /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. /// This is difficult in general for SCEV because of potential overflow. But we /// could at least handle constant BECounts. static PHINode * FindLoopCounter(Loop *L, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); Value *Cond = cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); // Loop over all of the PHI nodes, looking for a simple counter. PHINode *BestPhi = 0; const SCEV *BestInit = 0; BasicBlock *LatchBlock = L->getLoopLatch(); assert(LatchBlock && "needsLFTR should guarantee a loop latch"); for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { PHINode *Phi = cast<PHINode>(I); if (!SE->isSCEVable(Phi->getType())) continue; // Avoid comparing an integer IV against a pointer Limit. if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) continue; const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); if (!AR || AR->getLoop() != L || !AR->isAffine()) continue; // AR may be a pointer type, while BECount is an integer type. // AR may be wider than BECount. With eq/ne tests overflow is immaterial. // AR may not be a narrower type, or we may never exit. uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) continue; const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); if (!Step || !Step->isOne()) continue; int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); Value *IncV = Phi->getIncomingValue(LatchIdx); if (getLoopPhiForCounter(IncV, L, DT) != Phi) continue; const SCEV *Init = AR->getStart(); if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { // Don't force a live loop counter if another IV can be used. if (AlmostDeadIV(Phi, LatchBlock, Cond)) continue; // Prefer to count-from-zero. This is a more "canonical" counter form. It // also prefers integer to pointer IVs. if (BestInit->isZero() != Init->isZero()) { if (BestInit->isZero()) continue; } // If two IVs both count from zero or both count from nonzero then the // narrower is likely a dead phi that has been widened. Use the wider phi // to allow the other to be eliminated. if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) continue; } BestPhi = Phi; BestInit = Init; } return BestPhi; } /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that /// holds the RHS of the new loop test. static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE) { const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); const SCEV *IVInit = AR->getStart(); // IVInit may be a pointer while IVCount is an integer when FindLoopCounter // finds a valid pointer IV. Sign extend BECount in order to materialize a // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing // the existing GEPs whenever possible. if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); // Expand the code for the iteration count. assert(SE->isLoopInvariant(IVOffset, L) && "Computed iteration count is not loop invariant!"); BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); // We could handle pointer IVs other than i8*, but we need to compensate for // gep index scaling. See canExpandBackedgeTakenCount comments. assert(SE->getSizeOfExpr( cast<PointerType>(GEPBase->getType())->getElementType())->isOne() && "unit stride pointer IV must be i8*"); IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); } else { // In any other case, convert both IVInit and IVCount to integers before // comparing. This may result in SCEV expension of pointers, but in practice // SCEV will fold the pointer arithmetic away as such: // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). // // Valid Cases: (1) both integers is most common; (2) both may be pointers // for simple memset-style loops; (3) IVInit is an integer and IVCount is a // pointer may occur when enable-iv-rewrite generates a canonical IV on top // of case #2. const SCEV *IVLimit = 0; // For unit stride, IVCount = Start + BECount with 2's complement overflow. // For non-zero Start, compute IVCount here. if (AR->getStart()->isZero()) IVLimit = IVCount; else { assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); const SCEV *IVInit = AR->getStart(); // For integer IVs, truncate the IV before computing IVInit + BECount. if (SE->getTypeSizeInBits(IVInit->getType()) > SE->getTypeSizeInBits(IVCount->getType())) IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); IVLimit = SE->getAddExpr(IVInit, IVCount); } // Expand the code for the iteration count. BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); IRBuilder<> Builder(BI); assert(SE->isLoopInvariant(IVLimit, L) && "Computed iteration count is not loop invariant!"); // Ensure that we generate the same type as IndVar, or a smaller integer // type. In the presence of null pointer values, we have an integer type // SCEV expression (IVInit) for a pointer type IV value (IndVar). Type *LimitTy = IVCount->getType()->isPointerTy() ? IndVar->getType() : IVCount->getType(); return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); } } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. Value *IndVarSimplify:: LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, SCEVExpander &Rewriter) { assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); // LFTR can ignore IV overflow and truncate to the width of // BECount. This avoids materializing the add(zext(add)) expression. Type *CntTy = BackedgeTakenCount->getType(); const SCEV *IVCount = BackedgeTakenCount; // If the exiting block is the same as the backedge block, we prefer to // compare against the post-incremented value, otherwise we must compare // against the preincremented value. Value *CmpIndVar; if (L->getExitingBlock() == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // If this addition may overflow, we have to be more pessimistic and // cast the induction variable before doing the add. const SCEV *N = SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); if (CntTy == IVCount->getType()) IVCount = N; else { const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); if ((isa<SCEVConstant>(N) && !N->isZero()) || SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { // No overflow. Cast the sum. IVCount = SE->getTruncateOrZeroExtend(N, CntTy); } else { // Potential overflow. Cast before doing the add. IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); } } // The BackedgeTaken expression contains the number of times that the // backedge branches to the loop header. This is one less than the // number of times the loop executes, so use the incremented indvar. CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); } else { // We must use the preincremented value... IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); CmpIndVar = IndVar; } Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() && "genLoopLimit missed a cast"); // Insert a new icmp_ne or icmp_eq instruction before the branch. BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); ICmpInst::Predicate P; if (L->contains(BI->getSuccessor(0))) P = ICmpInst::ICMP_NE; else P = ICmpInst::ICMP_EQ; DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar << '\n' << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *ExitCnt << "\n" << " IVCount:\t" << *IVCount << "\n"); IRBuilder<> Builder(BI); if (SE->getTypeSizeInBits(CmpIndVar->getType()) > SE->getTypeSizeInBits(ExitCnt->getType())) { CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), "lftr.wideiv"); } Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); Value *OrigCond = BI->getCondition(); // It's tempting to use replaceAllUsesWith here to fully replace the old // comparison, but that's not immediately safe, since users of the old // comparison may not be dominated by the new comparison. Instead, just // update the branch to use the new comparison; in the common case this // will make old comparison dead. BI->setCondition(Cond); DeadInsts.push_back(OrigCond); ++NumLFTR; Changed = true; return Cond; } //===----------------------------------------------------------------------===// // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. //===----------------------------------------------------------------------===// /// If there's a single exit block, sink any loop-invariant values that /// were defined in the preheader but not used inside the loop into the /// exit block to reduce register pressure in the loop. void IndVarSimplify::SinkUnusedInvariants(Loop *L) { BasicBlock *ExitBlock = L->getExitBlock(); if (!ExitBlock) return; BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return; Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); BasicBlock::iterator I = Preheader->getTerminator(); while (I != Preheader->begin()) { --I; // New instructions were inserted at the end of the preheader. if (isa<PHINode>(I)) break; // Don't move instructions which might have side effects, since the side // effects need to complete before instructions inside the loop. Also don't // move instructions which might read memory, since the loop may modify // memory. Note that it's okay if the instruction might have undefined // behavior: LoopSimplify guarantees that the preheader dominates the exit // block. if (I->mayHaveSideEffects() || I->mayReadFromMemory()) continue; // Skip debug info intrinsics. if (isa<DbgInfoIntrinsic>(I)) continue; // Skip landingpad instructions. if (isa<LandingPadInst>(I)) continue; // Don't sink alloca: we never want to sink static alloca's out of the // entry block, and correctly sinking dynamic alloca's requires // checks for stacksave/stackrestore intrinsics. // FIXME: Refactor this check somehow? if (isa<AllocaInst>(I)) continue; // Determine if there is a use in or before the loop (direct or // otherwise). bool UsedInLoop = false; for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { User *U = *UI; BasicBlock *UseBB = cast<Instruction>(U)->getParent(); if (PHINode *P = dyn_cast<PHINode>(U)) { unsigned i = PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); UseBB = P->getIncomingBlock(i); } if (UseBB == Preheader || L->contains(UseBB)) { UsedInLoop = true; break; } } // If there is, the def must remain in the preheader. if (UsedInLoop) continue; // Otherwise, sink it to the exit block. Instruction *ToMove = I; bool Done = false; if (I != Preheader->begin()) { // Skip debug info intrinsics. do { --I; } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) Done = true; } else { Done = true; } ToMove->moveBefore(InsertPt); if (Done) break; InsertPt = ToMove; } } //===----------------------------------------------------------------------===// // IndVarSimplify driver. Manage several subpasses of IV simplification. //===----------------------------------------------------------------------===// bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // If LoopSimplify form is not available, stay out of trouble. Some notes: // - LSR currently only supports LoopSimplify-form loops. Indvars' // canonicalization can be a pessimization without LSR to "clean up" // afterwards. // - We depend on having a preheader; in particular, // Loop::getCanonicalInductionVariable only supports loops with preheaders, // and we're in trouble if we can't find the induction variable even when // we've manually inserted one. if (!L->isLoopSimplifyForm()) return false; LI = &getAnalysis<LoopInfo>(); SE = &getAnalysis<ScalarEvolution>(); DT = &getAnalysis<DominatorTree>(); TD = getAnalysisIfAvailable<TargetData>(); DeadInsts.clear(); Changed = false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. RewriteNonIntegerIVs(L); const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE, "indvars"); #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif // Eliminate redundant IV users. // // Simplification works best when run before other consumers of SCEV. We // attempt to avoid evaluating SCEVs for sign/zero extend operations until // other expressions involving loop IVs have been evaluated. This helps SCEV // set no-wrap flags before normalizing sign/zero extension. Rewriter.disableCanonicalMode(); SimplifyAndExtend(L, Rewriter, LPM); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) RewriteLoopExitValues(L, Rewriter); // Eliminate redundant IV cycles. NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); if (IndVar) { // Check preconditions for proper SCEVExpander operation. SCEV does not // express SCEVExpander's dependencies, such as LoopSimplify. Instead any // pass that uses the SCEVExpander must do it. This does not work well for // loop passes because SCEVExpander makes assumptions about all loops, while // LoopPassManager only forces the current loop to be simplified. // // FIXME: SCEV expansion has no way to bail out, so the caller must // explicitly check any assumptions made by SCEV. Brittle. const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); if (!AR || AR->getLoop()->getLoopPreheader()) (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); } } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. Rewriter.clear(); // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst); // The Rewriter may not be used from this point on. // Loop-invariant instructions in the preheader that aren't used in the // loop may be sunk below the loop to reduce register pressure. SinkUnusedInvariants(L); // Clean up dead instructions. Changed |= DeleteDeadPHIs(L->getHeader()); // Check a post-condition. assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!"); // Verify that LFTR, and any other change have not interfered with SCEV's // ability to compute trip count. #ifndef NDEBUG if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { SE->forgetLoop(L); const SCEV *NewBECount = SE->getBackedgeTakenCount(L); if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < SE->getTypeSizeInBits(NewBECount->getType())) NewBECount = SE->getTruncateOrNoop(NewBECount, BackedgeTakenCount->getType()); else BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, NewBECount->getType()); assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); } #endif return Changed; }