Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Utils/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp |
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lcssa" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/PredIteratorCache.h" using namespace llvm; STATISTIC(NumLCSSA, "Number of live out of a loop variables"); namespace { struct LCSSA : public LoopPass { static char ID; // Pass identification, replacement for typeid LCSSA() : LoopPass(ID) { initializeLCSSAPass(*PassRegistry::getPassRegistry()); } // Cached analysis information for the current function. DominatorTree *DT; std::vector<BasicBlock*> LoopBlocks; PredIteratorCache PredCache; Loop *L; virtual bool runOnLoop(Loop *L, LPPassManager &LPM); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<DominatorTree>(); AU.addRequired<LoopInfo>(); AU.addPreservedID(LoopSimplifyID); AU.addPreserved<ScalarEvolution>(); } private: bool ProcessInstruction(Instruction *Inst, const SmallVectorImpl<BasicBlock*> &ExitBlocks); /// verifyAnalysis() - Verify loop nest. virtual void verifyAnalysis() const { // Check the special guarantees that LCSSA makes. assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!"); } /// inLoop - returns true if the given block is within the current loop bool inLoop(BasicBlock *B) const { return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); } }; } char LCSSA::ID = 0; INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) Pass *llvm::createLCSSAPass() { return new LCSSA(); } char &llvm::LCSSAID = LCSSA::ID; /// BlockDominatesAnExit - Return true if the specified block dominates at least /// one of the blocks in the specified list. static bool BlockDominatesAnExit(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &ExitBlocks, DominatorTree *DT) { DomTreeNode *DomNode = DT->getNode(BB); for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i]))) return true; return false; } /// runOnFunction - Process all loops in the function, inner-most out. bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) { L = TheLoop; DT = &getAnalysis<DominatorTree>(); // Get the set of exiting blocks. SmallVector<BasicBlock*, 8> ExitBlocks; L->getExitBlocks(ExitBlocks); if (ExitBlocks.empty()) return false; // Speed up queries by creating a sorted vector of blocks. LoopBlocks.clear(); LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); array_pod_sort(LoopBlocks.begin(), LoopBlocks.end()); // Look at all the instructions in the loop, checking to see if they have uses // outside the loop. If so, rewrite those uses. bool MadeChange = false; for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end(); BBI != E; ++BBI) { BasicBlock *BB = *BBI; // For large loops, avoid use-scanning by using dominance information: In // particular, if a block does not dominate any of the loop exits, then none // of the values defined in the block could be used outside the loop. if (!BlockDominatesAnExit(BB, ExitBlocks, DT)) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Reject two common cases fast: instructions with no uses (like stores) // and instructions with one use that is in the same block as this. if (I->use_empty() || (I->hasOneUse() && I->use_back()->getParent() == BB && !isa<PHINode>(I->use_back()))) continue; MadeChange |= ProcessInstruction(I, ExitBlocks); } } assert(L->isLCSSAForm(*DT)); PredCache.clear(); return MadeChange; } /// isExitBlock - Return true if the specified block is in the list. static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &ExitBlocks) { for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (ExitBlocks[i] == BB) return true; return false; } /// ProcessInstruction - Given an instruction in the loop, check to see if it /// has any uses that are outside the current loop. If so, insert LCSSA PHI /// nodes and rewrite the uses. bool LCSSA::ProcessInstruction(Instruction *Inst, const SmallVectorImpl<BasicBlock*> &ExitBlocks) { SmallVector<Use*, 16> UsesToRewrite; BasicBlock *InstBB = Inst->getParent(); for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) { User *U = *UI; BasicBlock *UserBB = cast<Instruction>(U)->getParent(); if (PHINode *PN = dyn_cast<PHINode>(U)) UserBB = PN->getIncomingBlock(UI); if (InstBB != UserBB && !inLoop(UserBB)) UsesToRewrite.push_back(&UI.getUse()); } // If there are no uses outside the loop, exit with no change. if (UsesToRewrite.empty()) return false; ++NumLCSSA; // We are applying the transformation // Invoke instructions are special in that their result value is not available // along their unwind edge. The code below tests to see whether DomBB dominates // the value, so adjust DomBB to the normal destination block, which is // effectively where the value is first usable. BasicBlock *DomBB = Inst->getParent(); if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst)) DomBB = Inv->getNormalDest(); DomTreeNode *DomNode = DT->getNode(DomBB); SmallVector<PHINode*, 16> AddedPHIs; SSAUpdater SSAUpdate; SSAUpdate.Initialize(Inst->getType(), Inst->getName()); // Insert the LCSSA phi's into all of the exit blocks dominated by the // value, and add them to the Phi's map. for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(), BBE = ExitBlocks.end(); BBI != BBE; ++BBI) { BasicBlock *ExitBB = *BBI; if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue; // If we already inserted something for this BB, don't reprocess it. if (SSAUpdate.HasValueForBlock(ExitBB)) continue; PHINode *PN = PHINode::Create(Inst->getType(), PredCache.GetNumPreds(ExitBB), Inst->getName()+".lcssa", ExitBB->begin()); // Add inputs from inside the loop for this PHI. for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) { PN->addIncoming(Inst, *PI); // If the exit block has a predecessor not within the loop, arrange for // the incoming value use corresponding to that predecessor to be // rewritten in terms of a different LCSSA PHI. if (!inLoop(*PI)) UsesToRewrite.push_back( &PN->getOperandUse( PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1))); } AddedPHIs.push_back(PN); // Remember that this phi makes the value alive in this block. SSAUpdate.AddAvailableValue(ExitBB, PN); } // Rewrite all uses outside the loop in terms of the new PHIs we just // inserted. for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { // If this use is in an exit block, rewrite to use the newly inserted PHI. // This is required for correctness because SSAUpdate doesn't handle uses in // the same block. It assumes the PHI we inserted is at the end of the // block. Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { UsesToRewrite[i]->set(UserBB->begin()); continue; } // Otherwise, do full PHI insertion. SSAUpdate.RewriteUse(*UsesToRewrite[i]); } // Remove PHI nodes that did not have any uses rewritten. for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) { if (AddedPHIs[i]->use_empty()) AddedPHIs[i]->eraseFromParent(); } return true; }