Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Utils/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp |
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Metadata.h" using namespace llvm; // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::Anchor() {} Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper) { ValueToValueMapTy::iterator I = VM.find(V); // If the value already exists in the map, use it. if (I != VM.end() && I->second) return I->second; // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa<GlobalValue>(V) || isa<MDString>(V)) return VM[V] = const_cast<Value*>(V); if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack()); } return VM[V] = const_cast<Value*>(V); } if (const MDNode *MD = dyn_cast<MDNode>(V)) { // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges)) return VM[V] = const_cast<Value*>(V); // Create a dummy node in case we have a metadata cycle. MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>()); VM[V] = Dummy; // Check all operands to see if any need to be remapped. for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) { Value *OP = MD->getOperand(i); if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue; // Ok, at least one operand needs remapping. SmallVector<Value*, 4> Elts; Elts.reserve(MD->getNumOperands()); for (i = 0; i != e; ++i) { Value *Op = MD->getOperand(i); Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0); } MDNode *NewMD = MDNode::get(V->getContext(), Elts); Dummy->replaceAllUsesWith(NewMD); VM[V] = NewMD; MDNode::deleteTemporary(Dummy); return NewMD; } VM[V] = const_cast<Value*>(V); MDNode::deleteTemporary(Dummy); // No operands needed remapping. Use an identity mapping. return const_cast<Value*>(V); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); if (C == 0) return 0; if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { Function *F = cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper)); BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, Flags, TypeMapper)); return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); } // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = 0; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = MapValue(Op, VM, Flags, TypeMapper); if (Mapped != C) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return VM[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector<Constant*, 8> Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast<Constant>(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast<Constant>(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, Flags, TypeMapper)); } if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) return VM[V] = CE->getWithOperands(Ops, NewTy); if (isa<ConstantArray>(C)) return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); if (isa<ConstantStruct>(C)) return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); if (isa<ConstantVector>(C)) return VM[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa<UndefValue>(C)) return VM[V] = UndefValue::get(NewTy); if (isa<ConstantAggregateZero>(C)) return VM[V] = ConstantAggregateZero::get(NewTy); assert(isa<ConstantPointerNull>(C)); return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); } /// RemapInstruction - Convert the instruction operands from referencing the /// current values into those specified by VMap. /// void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){ // Remap operands. for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { Value *V = MapValue(*op, VMap, Flags, TypeMapper); // If we aren't ignoring missing entries, assert that something happened. if (V != 0) *op = V; else assert((Flags & RF_IgnoreMissingEntries) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast<PHINode>(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); // If we aren't ignoring missing entries, assert that something happened. if (V != 0) PN->setIncomingBlock(i, cast<BasicBlock>(V)); else assert((Flags & RF_IgnoreMissingEntries) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; I->getAllMetadata(MDs); for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) { MDNode *Old = MI->second; MDNode *New = MapValue(Old, VMap, Flags, TypeMapper); if (New != Old) I->setMetadata(MI->first, New); } // If the instruction's type is being remapped, do so now. if (TypeMapper) I->mutateType(TypeMapper->remapType(I->getType())); }