Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/VMCore/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/VMCore/AsmWriter.cpp |
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Assembly/Writer.h // // Note that these routines must be extremely tolerant of various errors in the // LLVM code, because it can be used for debugging transformations. // //===----------------------------------------------------------------------===// #include "llvm/Assembly/Writer.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Assembly/AssemblyAnnotationWriter.h" #include "llvm/LLVMContext.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" #include "llvm/Operator.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/FormattedStream.h" #include <algorithm> #include <cctype> using namespace llvm; // Make virtual table appear in this compilation unit. AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast<Argument>(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; if (const Instruction *I = dyn_cast<Instruction>(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; } if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV->getParent(); return 0; } // PrintEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. static void PrintEscapedString(StringRef Name, raw_ostream &Out) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { unsigned char C = Name[i]; if (isprint(C) && C != '\\' && C != '"') Out << C; else Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } enum PrefixType { GlobalPrefix, LabelPrefix, LocalPrefix, NoPrefix }; /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { assert(!Name.empty() && "Cannot get empty name!"); switch (Prefix) { case NoPrefix: break; case GlobalPrefix: OS << '@'; break; case LabelPrefix: break; case LocalPrefix: OS << '%'; break; } // Scan the name to see if it needs quotes first. bool NeedsQuotes = isdigit(Name[0]); if (!NeedsQuotes) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { char C = Name[i]; if (!isalnum(C) && C != '-' && C != '.' && C != '_') { NeedsQuotes = true; break; } } } // If we didn't need any quotes, just write out the name in one blast. if (!NeedsQuotes) { OS << Name; return; } // Okay, we need quotes. Output the quotes and escape any scary characters as // needed. OS << '"'; PrintEscapedString(Name, OS); OS << '"'; } /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, const Value *V) { PrintLLVMName(OS, V->getName(), isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); } //===----------------------------------------------------------------------===// // TypePrinting Class: Type printing machinery //===----------------------------------------------------------------------===// /// TypePrinting - Type printing machinery. namespace { class TypePrinting { TypePrinting(const TypePrinting &); // DO NOT IMPLEMENT void operator=(const TypePrinting&); // DO NOT IMPLEMENT public: /// NamedTypes - The named types that are used by the current module. std::vector<StructType*> NamedTypes; /// NumberedTypes - The numbered types, along with their value. DenseMap<StructType*, unsigned> NumberedTypes; TypePrinting() {} ~TypePrinting() {} void incorporateTypes(const Module &M); void print(Type *Ty, raw_ostream &OS); void printStructBody(StructType *Ty, raw_ostream &OS); }; } // end anonymous namespace. void TypePrinting::incorporateTypes(const Module &M) { M.findUsedStructTypes(NamedTypes); // The list of struct types we got back includes all the struct types, split // the unnamed ones out to a numbering and remove the anonymous structs. unsigned NextNumber = 0; std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { StructType *STy = *I; // Ignore anonymous types. if (STy->isLiteral()) continue; if (STy->getName().empty()) NumberedTypes[STy] = NextNumber++; else *NextToUse++ = STy; } NamedTypes.erase(NextToUse, NamedTypes.end()); } /// CalcTypeName - Write the specified type to the specified raw_ostream, making /// use of type names or up references to shorten the type name where possible. void TypePrinting::print(Type *Ty, raw_ostream &OS) { switch (Ty->getTypeID()) { case Type::VoidTyID: OS << "void"; break; case Type::HalfTyID: OS << "half"; break; case Type::FloatTyID: OS << "float"; break; case Type::DoubleTyID: OS << "double"; break; case Type::X86_FP80TyID: OS << "x86_fp80"; break; case Type::FP128TyID: OS << "fp128"; break; case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; case Type::LabelTyID: OS << "label"; break; case Type::MetadataTyID: OS << "metadata"; break; case Type::X86_MMXTyID: OS << "x86_mmx"; break; case Type::IntegerTyID: OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); return; case Type::FunctionTyID: { FunctionType *FTy = cast<FunctionType>(Ty); print(FTy->getReturnType(), OS); OS << " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) OS << ", "; print(*I, OS); } if (FTy->isVarArg()) { if (FTy->getNumParams()) OS << ", "; OS << "..."; } OS << ')'; return; } case Type::StructTyID: { StructType *STy = cast<StructType>(Ty); if (STy->isLiteral()) return printStructBody(STy, OS); if (!STy->getName().empty()) return PrintLLVMName(OS, STy->getName(), LocalPrefix); DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); if (I != NumberedTypes.end()) OS << '%' << I->second; else // Not enumerated, print the hex address. OS << "%\"type " << STy << '\"'; return; } case Type::PointerTyID: { PointerType *PTy = cast<PointerType>(Ty); print(PTy->getElementType(), OS); if (unsigned AddressSpace = PTy->getAddressSpace()) OS << " addrspace(" << AddressSpace << ')'; OS << '*'; return; } case Type::ArrayTyID: { ArrayType *ATy = cast<ArrayType>(Ty); OS << '[' << ATy->getNumElements() << " x "; print(ATy->getElementType(), OS); OS << ']'; return; } case Type::VectorTyID: { VectorType *PTy = cast<VectorType>(Ty); OS << "<" << PTy->getNumElements() << " x "; print(PTy->getElementType(), OS); OS << '>'; return; } default: OS << "<unrecognized-type>"; return; } } void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { if (STy->isOpaque()) { OS << "opaque"; return; } if (STy->isPacked()) OS << '<'; if (STy->getNumElements() == 0) { OS << "{}"; } else { StructType::element_iterator I = STy->element_begin(); OS << "{ "; print(*I++, OS); for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { OS << ", "; print(*I, OS); } OS << " }"; } if (STy->isPacked()) OS << '>'; } //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values //===----------------------------------------------------------------------===// namespace { /// This class provides computation of slot numbers for LLVM Assembly writing. /// class SlotTracker { public: /// ValueMap - A mapping of Values to slot numbers. typedef DenseMap<const Value*, unsigned> ValueMap; private: /// TheModule - The module for which we are holding slot numbers. const Module* TheModule; /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction; bool FunctionProcessed; /// mMap - The slot map for the module level data. ValueMap mMap; unsigned mNext; /// fMap - The slot map for the function level data. ValueMap fMap; unsigned fNext; /// mdnMap - Map for MDNodes. DenseMap<const MDNode*, unsigned> mdnMap; unsigned mdnNext; public: /// Construct from a module explicit SlotTracker(const Module *M); /// Construct from a function, starting out in incorp state. explicit SlotTracker(const Function *F); /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. int getLocalSlot(const Value *V); int getGlobalSlot(const GlobalValue *V); int getMetadataSlot(const MDNode *N); /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotTracker. void incorporateFunction(const Function *F) { TheFunction = F; FunctionProcessed = false; } /// After calling incorporateFunction, use this method to remove the /// most recently incorporated function from the SlotTracker. This /// will reset the state of the machine back to just the module contents. void purgeFunction(); /// MDNode map iterators. typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; mdn_iterator mdn_begin() { return mdnMap.begin(); } mdn_iterator mdn_end() { return mdnMap.end(); } unsigned mdn_size() const { return mdnMap.size(); } bool mdn_empty() const { return mdnMap.empty(); } /// This function does the actual initialization. inline void initialize(); // Implementation Details private: /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void CreateModuleSlot(const GlobalValue *V); /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. void CreateMetadataSlot(const MDNode *N); /// CreateFunctionSlot - Insert the specified Value* into the slot table. void CreateFunctionSlot(const Value *V); /// Add all of the module level global variables (and their initializers) /// and function declarations, but not the contents of those functions. void processModule(); /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT void operator=(const SlotTracker &); // DO NOT IMPLEMENT }; } // end anonymous namespace static SlotTracker *createSlotTracker(const Value *V) { if (const Argument *FA = dyn_cast<Argument>(V)) return new SlotTracker(FA->getParent()); if (const Instruction *I = dyn_cast<Instruction>(V)) if (I->getParent()) return new SlotTracker(I->getParent()->getParent()); if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) return new SlotTracker(BB->getParent()); if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) return new SlotTracker(GV->getParent()); if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) return new SlotTracker(GA->getParent()); if (const Function *Func = dyn_cast<Function>(V)) return new SlotTracker(Func); if (const MDNode *MD = dyn_cast<MDNode>(V)) { if (!MD->isFunctionLocal()) return new SlotTracker(MD->getFunction()); return new SlotTracker((Function *)0); } return 0; } #if 0 #define ST_DEBUG(X) dbgs() << X #else #define ST_DEBUG(X) #endif // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. SlotTracker::SlotTracker(const Module *M) : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0) { } // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. SlotTracker::SlotTracker(const Function *F) : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0) { } inline void SlotTracker::initialize() { if (TheModule) { processModule(); TheModule = 0; ///< Prevent re-processing next time we're called. } if (TheFunction && !FunctionProcessed) processFunction(); } // Iterate through all the global variables, functions, and global // variable initializers and create slots for them. void SlotTracker::processModule() { ST_DEBUG("begin processModule!\n"); // Add all of the unnamed global variables to the value table. for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) { if (!I->hasName()) CreateModuleSlot(I); } // Add metadata used by named metadata. for (Module::const_named_metadata_iterator I = TheModule->named_metadata_begin(), E = TheModule->named_metadata_end(); I != E; ++I) { const NamedMDNode *NMD = I; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) CreateMetadataSlot(NMD->getOperand(i)); } // Add all the unnamed functions to the table. for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) if (!I->hasName()) CreateModuleSlot(I); ST_DEBUG("end processModule!\n"); } // Process the arguments, basic blocks, and instructions of a function. void SlotTracker::processFunction() { ST_DEBUG("begin processFunction!\n"); fNext = 0; // Add all the function arguments with no names. for(Function::const_arg_iterator AI = TheFunction->arg_begin(), AE = TheFunction->arg_end(); AI != AE; ++AI) if (!AI->hasName()) CreateFunctionSlot(AI); ST_DEBUG("Inserting Instructions:\n"); SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; // Add all of the basic blocks and instructions with no names. for (Function::const_iterator BB = TheFunction->begin(), E = TheFunction->end(); BB != E; ++BB) { if (!BB->hasName()) CreateFunctionSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (!I->getType()->isVoidTy() && !I->hasName()) CreateFunctionSlot(I); // Intrinsics can directly use metadata. We allow direct calls to any // llvm.foo function here, because the target may not be linked into the // optimizer. if (const CallInst *CI = dyn_cast<CallInst>(I)) { if (Function *F = CI->getCalledFunction()) if (F->getName().startswith("llvm.")) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) CreateMetadataSlot(N); } // Process metadata attached with this instruction. I->getAllMetadata(MDForInst); for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) CreateMetadataSlot(MDForInst[i].second); MDForInst.clear(); } } FunctionProcessed = true; ST_DEBUG("end processFunction!\n"); } /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. void SlotTracker::purgeFunction() { ST_DEBUG("begin purgeFunction!\n"); fMap.clear(); // Simply discard the function level map TheFunction = 0; FunctionProcessed = false; ST_DEBUG("end purgeFunction!\n"); } /// getGlobalSlot - Get the slot number of a global value. int SlotTracker::getGlobalSlot(const GlobalValue *V) { // Check for uninitialized state and do lazy initialization. initialize(); // Find the value in the module map ValueMap::iterator MI = mMap.find(V); return MI == mMap.end() ? -1 : (int)MI->second; } /// getMetadataSlot - Get the slot number of a MDNode. int SlotTracker::getMetadataSlot(const MDNode *N) { // Check for uninitialized state and do lazy initialization. initialize(); // Find the MDNode in the module map mdn_iterator MI = mdnMap.find(N); return MI == mdnMap.end() ? -1 : (int)MI->second; } /// getLocalSlot - Get the slot number for a value that is local to a function. int SlotTracker::getLocalSlot(const Value *V) { assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); // Check for uninitialized state and do lazy initialization. initialize(); ValueMap::iterator FI = fMap.find(V); return FI == fMap.end() ? -1 : (int)FI->second; } /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void SlotTracker::CreateModuleSlot(const GlobalValue *V) { assert(V && "Can't insert a null Value into SlotTracker!"); assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); assert(!V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = mNext++; mMap[V] = DestSlot; ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " ["); // G = Global, F = Function, A = Alias, o = other ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); } /// CreateSlot - Create a new slot for the specified value if it has no name. void SlotTracker::CreateFunctionSlot(const Value *V) { assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = fNext++; fMap[V] = DestSlot; // G = Global, F = Function, o = other ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " [o]\n"); } /// CreateModuleSlot - Insert the specified MDNode* into the slot table. void SlotTracker::CreateMetadataSlot(const MDNode *N) { assert(N && "Can't insert a null Value into SlotTracker!"); // Don't insert if N is a function-local metadata, these are always printed // inline. if (!N->isFunctionLocal()) { mdn_iterator I = mdnMap.find(N); if (I != mdnMap.end()) return; unsigned DestSlot = mdnNext++; mdnMap[N] = DestSlot; } // Recursively add any MDNodes referenced by operands. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) CreateMetadataSlot(Op); } //===----------------------------------------------------------------------===// // AsmWriter Implementation //===----------------------------------------------------------------------===// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context); static const char *getPredicateText(unsigned predicate) { const char * pred = "unknown"; switch (predicate) { case FCmpInst::FCMP_FALSE: pred = "false"; break; case FCmpInst::FCMP_OEQ: pred = "oeq"; break; case FCmpInst::FCMP_OGT: pred = "ogt"; break; case FCmpInst::FCMP_OGE: pred = "oge"; break; case FCmpInst::FCMP_OLT: pred = "olt"; break; case FCmpInst::FCMP_OLE: pred = "ole"; break; case FCmpInst::FCMP_ONE: pred = "one"; break; case FCmpInst::FCMP_ORD: pred = "ord"; break; case FCmpInst::FCMP_UNO: pred = "uno"; break; case FCmpInst::FCMP_UEQ: pred = "ueq"; break; case FCmpInst::FCMP_UGT: pred = "ugt"; break; case FCmpInst::FCMP_UGE: pred = "uge"; break; case FCmpInst::FCMP_ULT: pred = "ult"; break; case FCmpInst::FCMP_ULE: pred = "ule"; break; case FCmpInst::FCMP_UNE: pred = "une"; break; case FCmpInst::FCMP_TRUE: pred = "true"; break; case ICmpInst::ICMP_EQ: pred = "eq"; break; case ICmpInst::ICMP_NE: pred = "ne"; break; case ICmpInst::ICMP_SGT: pred = "sgt"; break; case ICmpInst::ICMP_SGE: pred = "sge"; break; case ICmpInst::ICMP_SLT: pred = "slt"; break; case ICmpInst::ICMP_SLE: pred = "sle"; break; case ICmpInst::ICMP_UGT: pred = "ugt"; break; case ICmpInst::ICMP_UGE: pred = "uge"; break; case ICmpInst::ICMP_ULT: pred = "ult"; break; case ICmpInst::ICMP_ULE: pred = "ule"; break; } return pred; } static void writeAtomicRMWOperation(raw_ostream &Out, AtomicRMWInst::BinOp Op) { switch (Op) { default: Out << " <unknown operation " << Op << ">"; break; case AtomicRMWInst::Xchg: Out << " xchg"; break; case AtomicRMWInst::Add: Out << " add"; break; case AtomicRMWInst::Sub: Out << " sub"; break; case AtomicRMWInst::And: Out << " and"; break; case AtomicRMWInst::Nand: Out << " nand"; break; case AtomicRMWInst::Or: Out << " or"; break; case AtomicRMWInst::Xor: Out << " xor"; break; case AtomicRMWInst::Max: Out << " max"; break; case AtomicRMWInst::Min: Out << " min"; break; case AtomicRMWInst::UMax: Out << " umax"; break; case AtomicRMWInst::UMin: Out << " umin"; break; } } static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { if (const OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(U)) { if (OBO->hasNoUnsignedWrap()) Out << " nuw"; if (OBO->hasNoSignedWrap()) Out << " nsw"; } else if (const PossiblyExactOperator *Div = dyn_cast<PossiblyExactOperator>(U)) { if (Div->isExact()) Out << " exact"; } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { if (GEP->isInBounds()) Out << " inbounds"; } } static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, TypePrinting &TypePrinter, SlotTracker *Machine, const Module *Context) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { if (CI->getType()->isIntegerTy(1)) { Out << (CI->getZExtValue() ? "true" : "false"); return; } Out << CI->getValue(); return; } if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf || &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle || &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) { // We would like to output the FP constant value in exponential notation, // but we cannot do this if doing so will lose precision. Check here to // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // bool ignored; bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf; bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; bool isInf = CFP->getValueAPF().isInfinity(); bool isNaN = CFP->getValueAPF().isNaN(); if (!isHalf && !isInf && !isNaN) { double Val = isDouble ? CFP->getValueAPF().convertToDouble() : CFP->getValueAPF().convertToFloat(); SmallString<128> StrVal; raw_svector_ostream(StrVal) << Val; // Check to make sure that the stringized number is not some string like // "Inf" or NaN, that atof will accept, but the lexer will not. Check // that the string matches the "[-+]?[0-9]" regex. // if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) { // Reparse stringized version! if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) { Out << StrVal.str(); return; } } } // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! Note that loading and storing // floating point types changes the bits of NaNs on some hosts, notably // x86, so we must not use these types. assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); char Buffer[40]; APFloat apf = CFP->getValueAPF(); // Halves and floats are represented in ASCII IR as double, convert. if (!isDouble) apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); Out << "0x" << utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), Buffer+40); return; } // Some form of long double. These appear as a magic letter identifying // the type, then a fixed number of hex digits. Out << "0x"; if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { Out << 'K'; // api needed to prevent premature destruction APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); uint64_t word = p[1]; int shiftcount=12; int width = api.getBitWidth(); for (int j=0; j<width; j+=4, shiftcount-=4) { unsigned int nibble = (word>>shiftcount) & 15; if (nibble < 10) Out << (unsigned char)(nibble + '0'); else Out << (unsigned char)(nibble - 10 + 'A'); if (shiftcount == 0 && j+4 < width) { word = *p; shiftcount = 64; if (width-j-4 < 64) shiftcount = width-j-4; } } return; } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) Out << 'L'; else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) Out << 'M'; else llvm_unreachable("Unsupported floating point type"); // api needed to prevent premature destruction APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); uint64_t word = *p; int shiftcount=60; int width = api.getBitWidth(); for (int j=0; j<width; j+=4, shiftcount-=4) { unsigned int nibble = (word>>shiftcount) & 15; if (nibble < 10) Out << (unsigned char)(nibble + '0'); else Out << (unsigned char)(nibble - 10 + 'A'); if (shiftcount == 0 && j+4 < width) { word = *(++p); shiftcount = 64; if (width-j-4 < 64) shiftcount = width-j-4; } } return; } if (isa<ConstantAggregateZero>(CV)) { Out << "zeroinitializer"; return; } if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { Out << "blockaddress("; WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, Context); Out << ", "; WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, Context); Out << ")"; return; } if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { Type *ETy = CA->getType()->getElementType(); Out << '['; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, Context); } Out << ']'; return; } if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { // As a special case, print the array as a string if it is an array of // i8 with ConstantInt values. if (CA->isString()) { Out << "c\""; PrintEscapedString(CA->getAsString(), Out); Out << '"'; return; } Type *ETy = CA->getType()->getElementType(); Out << '['; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getElementAsConstant(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, Machine, Context); } Out << ']'; return; } if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { if (CS->getType()->isPacked()) Out << '<'; Out << '{'; unsigned N = CS->getNumOperands(); if (N) { Out << ' '; TypePrinter.print(CS->getOperand(0)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1; i < N; i++) { Out << ", "; TypePrinter.print(CS->getOperand(i)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, Context); } Out << ' '; } Out << '}'; if (CS->getType()->isPacked()) Out << '>'; return; } if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { Type *ETy = CV->getType()->getVectorElementType(); Out << '<'; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, Machine, Context); } Out << '>'; return; } if (isa<ConstantPointerNull>(CV)) { Out << "null"; return; } if (isa<UndefValue>(CV)) { Out << "undef"; return; } if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { Out << CE->getOpcodeName(); WriteOptimizationInfo(Out, CE); if (CE->isCompare()) Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { TypePrinter.print((*OI)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); if (OI+1 != CE->op_end()) Out << ", "; } if (CE->hasIndices()) { ArrayRef<unsigned> Indices = CE->getIndices(); for (unsigned i = 0, e = Indices.size(); i != e; ++i) Out << ", " << Indices[i]; } if (CE->isCast()) { Out << " to "; TypePrinter.print(CE->getType(), Out); } Out << ')'; return; } Out << "<placeholder or erroneous Constant>"; } static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!{"; for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { const Value *V = Node->getOperand(mi); if (V == 0) Out << "null"; else { TypePrinter->print(V->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, Node->getOperand(mi), TypePrinter, Machine, Context); } if (mi + 1 != me) Out << ", "; } Out << "}"; } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { if (V->hasName()) { PrintLLVMName(Out, V); return; } const Constant *CV = dyn_cast<Constant>(V); if (CV && !isa<GlobalValue>(CV)) { assert(TypePrinter && "Constants require TypePrinting!"); WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); return; } if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { Out << "asm "; if (IA->hasSideEffects()) Out << "sideeffect "; if (IA->isAlignStack()) Out << "alignstack "; Out << '"'; PrintEscapedString(IA->getAsmString(), Out); Out << "\", \""; PrintEscapedString(IA->getConstraintString(), Out); Out << '"'; return; } if (const MDNode *N = dyn_cast<MDNode>(V)) { if (N->isFunctionLocal()) { // Print metadata inline, not via slot reference number. WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); return; } if (!Machine) { if (N->isFunctionLocal()) Machine = new SlotTracker(N->getFunction()); else Machine = new SlotTracker(Context); } int Slot = Machine->getMetadataSlot(N); if (Slot == -1) Out << "<badref>"; else Out << '!' << Slot; return; } if (const MDString *MDS = dyn_cast<MDString>(V)) { Out << "!\""; PrintEscapedString(MDS->getString(), Out); Out << '"'; return; } if (V->getValueID() == Value::PseudoSourceValueVal || V->getValueID() == Value::FixedStackPseudoSourceValueVal) { V->print(Out); return; } char Prefix = '%'; int Slot; // If we have a SlotTracker, use it. if (Machine) { if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); // If the local value didn't succeed, then we may be referring to a value // from a different function. Translate it, as this can happen when using // address of blocks. if (Slot == -1) if ((Machine = createSlotTracker(V))) { Slot = Machine->getLocalSlot(V); delete Machine; } } } else if ((Machine = createSlotTracker(V))) { // Otherwise, create one to get the # and then destroy it. if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); } delete Machine; Machine = 0; } else { Slot = -1; } if (Slot != -1) Out << Prefix << Slot; else Out << "<badref>"; } void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType, const Module *Context) { // Fast path: Don't construct and populate a TypePrinting object if we // won't be needing any types printed. if (!PrintType && ((!isa<Constant>(V) && !isa<MDNode>(V)) || V->hasName() || isa<GlobalValue>(V))) { WriteAsOperandInternal(Out, V, 0, 0, Context); return; } if (Context == 0) Context = getModuleFromVal(V); TypePrinting TypePrinter; if (Context) TypePrinter.incorporateTypes(*Context); if (PrintType) { TypePrinter.print(V->getType(), Out); Out << ' '; } WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); } namespace { class AssemblyWriter { formatted_raw_ostream &Out; SlotTracker &Machine; const Module *TheModule; TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter; public: inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW) : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { if (M) TypePrinter.incorporateTypes(*M); } void printMDNodeBody(const MDNode *MD); void printNamedMDNode(const NamedMDNode *NMD); void printModule(const Module *M); void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, Attributes Attrs); void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); void writeAllMDNodes(); void printTypeIdentities(); void printGlobal(const GlobalVariable *GV); void printAlias(const GlobalAlias *GV); void printFunction(const Function *F); void printArgument(const Argument *FA, Attributes Attrs); void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction &I); private: // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); }; } // end of anonymous namespace void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { if (Operand == 0) { Out << "<null operand!>"; return; } if (PrintType) { TypePrinter.print(Operand->getType(), Out); Out << ' '; } WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope) { if (Ordering == NotAtomic) return; switch (SynchScope) { case SingleThread: Out << " singlethread"; break; case CrossThread: break; } switch (Ordering) { default: Out << " <bad ordering " << int(Ordering) << ">"; break; case Unordered: Out << " unordered"; break; case Monotonic: Out << " monotonic"; break; case Acquire: Out << " acquire"; break; case Release: Out << " release"; break; case AcquireRelease: Out << " acq_rel"; break; case SequentiallyConsistent: Out << " seq_cst"; break; } } void AssemblyWriter::writeParamOperand(const Value *Operand, Attributes Attrs) { if (Operand == 0) { Out << "<null operand!>"; return; } // Print the type TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); Out << ' '; // Print the operand WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::printModule(const Module *M) { if (!M->getModuleIdentifier().empty() && // Don't print the ID if it will start a new line (which would // require a comment char before it). M->getModuleIdentifier().find('\n') == std::string::npos) Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; if (!M->getDataLayout().empty()) Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; if (!M->getTargetTriple().empty()) Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; if (!M->getModuleInlineAsm().empty()) { // Split the string into lines, to make it easier to read the .ll file. std::string Asm = M->getModuleInlineAsm(); size_t CurPos = 0; size_t NewLine = Asm.find_first_of('\n', CurPos); Out << '\n'; while (NewLine != std::string::npos) { // We found a newline, print the portion of the asm string from the // last newline up to this newline. Out << "module asm \""; PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), Out); Out << "\"\n"; CurPos = NewLine+1; NewLine = Asm.find_first_of('\n', CurPos); } std::string rest(Asm.begin()+CurPos, Asm.end()); if (!rest.empty()) { Out << "module asm \""; PrintEscapedString(rest, Out); Out << "\"\n"; } } // Loop over the dependent libraries and emit them. Module::lib_iterator LI = M->lib_begin(); Module::lib_iterator LE = M->lib_end(); if (LI != LE) { Out << '\n'; Out << "deplibs = [ "; while (LI != LE) { Out << '"' << *LI << '"'; ++LI; if (LI != LE) Out << ", "; } Out << " ]"; } printTypeIdentities(); // Output all globals. if (!M->global_empty()) Out << '\n'; for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) printGlobal(I); // Output all aliases. if (!M->alias_empty()) Out << "\n"; for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) printAlias(I); // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); // Output named metadata. if (!M->named_metadata_empty()) Out << '\n'; for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) printNamedMDNode(I); // Output metadata. if (!Machine.mdn_empty()) { Out << '\n'; writeAllMDNodes(); } } void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { Out << '!'; StringRef Name = NMD->getName(); if (Name.empty()) { Out << "<empty name> "; } else { if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' || Name[0] == '.' || Name[0] == '_') Out << Name[0]; else Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); for (unsigned i = 1, e = Name.size(); i != e; ++i) { unsigned char C = Name[i]; if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_') Out << C; else Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } Out << " = !{"; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { if (i) Out << ", "; int Slot = Machine.getMetadataSlot(NMD->getOperand(i)); if (Slot == -1) Out << "<badref>"; else Out << '!' << Slot; } Out << "}\n"; } static void PrintLinkage(GlobalValue::LinkageTypes LT, formatted_raw_ostream &Out) { switch (LT) { case GlobalValue::ExternalLinkage: break; case GlobalValue::PrivateLinkage: Out << "private "; break; case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; case GlobalValue::LinkerPrivateWeakLinkage: Out << "linker_private_weak "; break; case GlobalValue::LinkerPrivateWeakDefAutoLinkage: Out << "linker_private_weak_def_auto "; break; case GlobalValue::InternalLinkage: Out << "internal "; break; case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; case GlobalValue::WeakAnyLinkage: Out << "weak "; break; case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; case GlobalValue::CommonLinkage: Out << "common "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; case GlobalValue::AvailableExternallyLinkage: Out << "available_externally "; break; } } static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out) { switch (Vis) { case GlobalValue::DefaultVisibility: break; case GlobalValue::HiddenVisibility: Out << "hidden "; break; case GlobalValue::ProtectedVisibility: Out << "protected "; break; } } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { if (GV->isMaterializable()) Out << "; Materializable\n"; WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); Out << " = "; if (!GV->hasInitializer() && GV->hasExternalLinkage()) Out << "external "; PrintLinkage(GV->getLinkage(), Out); PrintVisibility(GV->getVisibility(), Out); if (GV->isThreadLocal()) Out << "thread_local "; if (unsigned AddressSpace = GV->getType()->getAddressSpace()) Out << "addrspace(" << AddressSpace << ") "; if (GV->hasUnnamedAddr()) Out << "unnamed_addr "; Out << (GV->isConstant() ? "constant " : "global "); TypePrinter.print(GV->getType()->getElementType(), Out); if (GV->hasInitializer()) { Out << ' '; writeOperand(GV->getInitializer(), false); } if (GV->hasSection()) { Out << ", section \""; PrintEscapedString(GV->getSection(), Out); Out << '"'; } if (GV->getAlignment()) Out << ", align " << GV->getAlignment(); printInfoComment(*GV); Out << '\n'; } void AssemblyWriter::printAlias(const GlobalAlias *GA) { if (GA->isMaterializable()) Out << "; Materializable\n"; // Don't crash when dumping partially built GA if (!GA->hasName()) Out << "<<nameless>> = "; else { PrintLLVMName(Out, GA); Out << " = "; } PrintVisibility(GA->getVisibility(), Out); Out << "alias "; PrintLinkage(GA->getLinkage(), Out); const Constant *Aliasee = GA->getAliasee(); if (Aliasee == 0) { TypePrinter.print(GA->getType(), Out); Out << " <<NULL ALIASEE>>"; } else { writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); } printInfoComment(*GA); Out << '\n'; } void AssemblyWriter::printTypeIdentities() { if (TypePrinter.NumberedTypes.empty() && TypePrinter.NamedTypes.empty()) return; Out << '\n'; // We know all the numbers that each type is used and we know that it is a // dense assignment. Convert the map to an index table. std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size()); for (DenseMap<StructType*, unsigned>::iterator I = TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end(); I != E; ++I) { assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?"); NumberedTypes[I->second] = I->first; } // Emit all numbered types. for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { Out << '%' << i << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %2 = type %2 TypePrinter.printStructBody(NumberedTypes[i], Out); Out << '\n'; } for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) { PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix); Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out); Out << '\n'; } } /// printFunction - Print all aspects of a function. /// void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name. Out << '\n'; if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); if (F->isMaterializable()) Out << "; Materializable\n"; if (F->isDeclaration()) Out << "declare "; else Out << "define "; PrintLinkage(F->getLinkage(), Out); PrintVisibility(F->getVisibility(), Out); // Print the calling convention. switch (F->getCallingConv()) { case CallingConv::C: break; // default case CallingConv::Fast: Out << "fastcc "; break; case CallingConv::Cold: Out << "coldcc "; break; case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break; case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; case CallingConv::PTX_Kernel: Out << "ptx_kernel "; break; case CallingConv::PTX_Device: Out << "ptx_device "; break; default: Out << "cc" << F->getCallingConv() << " "; break; } FunctionType *FT = F->getFunctionType(); const AttrListPtr &Attrs = F->getAttributes(); Attributes RetAttrs = Attrs.getRetAttributes(); if (RetAttrs != Attribute::None) Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; TypePrinter.print(F->getReturnType(), Out); Out << ' '; WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); Out << '('; Machine.incorporateFunction(F); // Loop over the arguments, printing them... unsigned Idx = 1; if (!F->isDeclaration()) { // If this isn't a declaration, print the argument names as well. for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { // Insert commas as we go... the first arg doesn't get a comma if (I != F->arg_begin()) Out << ", "; printArgument(I, Attrs.getParamAttributes(Idx)); Idx++; } } else { // Otherwise, print the types from the function type. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { // Insert commas as we go... the first arg doesn't get a comma if (i) Out << ", "; // Output type... TypePrinter.print(FT->getParamType(i), Out); Attributes ArgAttrs = Attrs.getParamAttributes(i+1); if (ArgAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(ArgAttrs); } } // Finish printing arguments... if (FT->isVarArg()) { if (FT->getNumParams()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ')'; if (F->hasUnnamedAddr()) Out << " unnamed_addr"; Attributes FnAttrs = Attrs.getFnAttributes(); if (FnAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); if (F->hasSection()) { Out << " section \""; PrintEscapedString(F->getSection(), Out); Out << '"'; } if (F->getAlignment()) Out << " align " << F->getAlignment(); if (F->hasGC()) Out << " gc \"" << F->getGC() << '"'; if (F->isDeclaration()) { Out << '\n'; } else { Out << " {"; // Output all of the function's basic blocks. for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) printBasicBlock(I); Out << "}\n"; } Machine.purgeFunction(); } /// printArgument - This member is called for every argument that is passed into /// the function. Simply print it out /// void AssemblyWriter::printArgument(const Argument *Arg, Attributes Attrs) { // Output type... TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); // Output name, if available... if (Arg->hasName()) { Out << ' '; PrintLLVMName(Out, Arg); } } /// printBasicBlock - This member is called for each basic block in a method. /// void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n"; PrintLLVMName(Out, BB->getName(), LabelPrefix); Out << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n; <label>:"; int Slot = Machine.getLocalSlot(BB); if (Slot != -1) Out << Slot; else Out << "<badref>"; } if (BB->getParent() == 0) { Out.PadToColumn(50); Out << "; Error: Block without parent!"; } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? // Output predecessors for the block. Out.PadToColumn(50); Out << ";"; const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); if (PI == PE) { Out << " No predecessors!"; } else { Out << " preds = "; writeOperand(*PI, false); for (++PI; PI != PE; ++PI) { Out << ", "; writeOperand(*PI, false); } } } Out << "\n"; if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); // Output all of the instructions in the basic block... for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { printInstruction(*I); Out << '\n'; } if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); } /// printInfoComment - Print a little comment after the instruction indicating /// which slot it occupies. /// void AssemblyWriter::printInfoComment(const Value &V) { if (AnnotationWriter) { AnnotationWriter->printInfoComment(V, Out); return; } } // This member is called for each Instruction in a function.. void AssemblyWriter::printInstruction(const Instruction &I) { if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); // Print out indentation for an instruction. Out << " "; // Print out name if it exists... if (I.hasName()) { PrintLLVMName(Out, &I); Out << " = "; } else if (!I.getType()->isVoidTy()) { // Print out the def slot taken. int SlotNum = Machine.getLocalSlot(&I); if (SlotNum == -1) Out << "<badref> = "; else Out << '%' << SlotNum << " = "; } if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) Out << "tail "; // Print out the opcode... Out << I.getOpcodeName(); // If this is an atomic load or store, print out the atomic marker. if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) Out << " atomic"; // If this is a volatile operation, print out the volatile marker. if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) Out << " volatile"; // Print out optimization information. WriteOptimizationInfo(Out, &I); // Print out the compare instruction predicates if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) Out << ' ' << getPredicateText(CI->getPredicate()); // Print out the atomicrmw operation if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) writeAtomicRMWOperation(Out, RMWI->getOperation()); // Print out the type of the operands... const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; // Special case conditional branches to swizzle the condition out to the front if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { BranchInst &BI(cast<BranchInst>(I)); Out << ' '; writeOperand(BI.getCondition(), true); Out << ", "; writeOperand(BI.getSuccessor(0), true); Out << ", "; writeOperand(BI.getSuccessor(1), true); } else if (isa<SwitchInst>(I)) { SwitchInst& SI(cast<SwitchInst>(I)); // Special case switch instruction to get formatting nice and correct. Out << ' '; writeOperand(SI.getCondition(), true); Out << ", "; writeOperand(SI.getDefaultDest(), true); Out << " ["; for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { Out << "\n "; writeOperand(i.getCaseValue(), true); Out << ", "; writeOperand(i.getCaseSuccessor(), true); } Out << "\n ]"; } else if (isa<IndirectBrInst>(I)) { // Special case indirectbr instruction to get formatting nice and correct. Out << ' '; writeOperand(Operand, true); Out << ", ["; for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { if (i != 1) Out << ", "; writeOperand(I.getOperand(i), true); } Out << ']'; } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { Out << ' '; TypePrinter.print(I.getType(), Out); Out << ' '; for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { if (op) Out << ", "; Out << "[ "; writeOperand(PN->getIncomingValue(op), false); Out << ", "; writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; } } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { Out << ' '; writeOperand(I.getOperand(0), true); for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) Out << ", " << *i; } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { Out << ' '; writeOperand(I.getOperand(0), true); Out << ", "; writeOperand(I.getOperand(1), true); for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) Out << ", " << *i; } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { Out << ' '; TypePrinter.print(I.getType(), Out); Out << " personality "; writeOperand(I.getOperand(0), true); Out << '\n'; if (LPI->isCleanup()) Out << " cleanup"; for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { if (i != 0 || LPI->isCleanup()) Out << "\n"; if (LPI->isCatch(i)) Out << " catch "; else Out << " filter "; writeOperand(LPI->getClause(i), true); } } else if (isa<ReturnInst>(I) && !Operand) { Out << " void"; } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { // Print the calling convention being used. switch (CI->getCallingConv()) { case CallingConv::C: break; // default case CallingConv::Fast: Out << " fastcc"; break; case CallingConv::Cold: Out << " coldcc"; break; case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; case CallingConv::PTX_Device: Out << " ptx_device"; break; default: Out << " cc" << CI->getCallingConv(); break; } Operand = CI->getCalledValue(); PointerType *PTy = cast<PointerType>(Operand->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); Type *RetTy = FTy->getReturnType(); const AttrListPtr &PAL = CI->getAttributes(); if (PAL.getRetAttributes() != Attribute::None) Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); // If possible, print out the short form of the call instruction. We can // only do this if the first argument is a pointer to a nonvararg function, // and if the return type is not a pointer to a function. // Out << ' '; if (!FTy->isVarArg() && (!RetTy->isPointerTy() || !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { TypePrinter.print(RetTy, Out); Out << ' '; writeOperand(Operand, false); } else { writeOperand(Operand, true); } Out << '('; for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { if (op > 0) Out << ", "; writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1)); } Out << ')'; if (PAL.getFnAttributes() != Attribute::None) Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { Operand = II->getCalledValue(); PointerType *PTy = cast<PointerType>(Operand->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); Type *RetTy = FTy->getReturnType(); const AttrListPtr &PAL = II->getAttributes(); // Print the calling convention being used. switch (II->getCallingConv()) { case CallingConv::C: break; // default case CallingConv::Fast: Out << " fastcc"; break; case CallingConv::Cold: Out << " coldcc"; break; case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; case CallingConv::PTX_Device: Out << " ptx_device"; break; default: Out << " cc" << II->getCallingConv(); break; } if (PAL.getRetAttributes() != Attribute::None) Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); // If possible, print out the short form of the invoke instruction. We can // only do this if the first argument is a pointer to a nonvararg function, // and if the return type is not a pointer to a function. // Out << ' '; if (!FTy->isVarArg() && (!RetTy->isPointerTy() || !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { TypePrinter.print(RetTy, Out); Out << ' '; writeOperand(Operand, false); } else { writeOperand(Operand, true); } Out << '('; for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { if (op) Out << ", "; writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1)); } Out << ')'; if (PAL.getFnAttributes() != Attribute::None) Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); Out << "\n to "; writeOperand(II->getNormalDest(), true); Out << " unwind "; writeOperand(II->getUnwindDest(), true); } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { Out << ' '; TypePrinter.print(AI->getType()->getElementType(), Out); if (!AI->getArraySize() || AI->isArrayAllocation()) { Out << ", "; writeOperand(AI->getArraySize(), true); } if (AI->getAlignment()) { Out << ", align " << AI->getAlignment(); } } else if (isa<CastInst>(I)) { if (Operand) { Out << ' '; writeOperand(Operand, true); // Work with broken code } Out << " to "; TypePrinter.print(I.getType(), Out); } else if (isa<VAArgInst>(I)) { if (Operand) { Out << ' '; writeOperand(Operand, true); // Work with broken code } Out << ", "; TypePrinter.print(I.getType(), Out); } else if (Operand) { // Print the normal way. // PrintAllTypes - Instructions who have operands of all the same type // omit the type from all but the first operand. If the instruction has // different type operands (for example br), then they are all printed. bool PrintAllTypes = false; Type *TheType = Operand->getType(); // Select, Store and ShuffleVector always print all types. if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) || isa<ReturnInst>(I)) { PrintAllTypes = true; } else { for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { Operand = I.getOperand(i); // note that Operand shouldn't be null, but the test helps make dump() // more tolerant of malformed IR if (Operand && Operand->getType() != TheType) { PrintAllTypes = true; // We have differing types! Print them all! break; } } } if (!PrintAllTypes) { Out << ' '; TypePrinter.print(TheType, Out); } Out << ' '; for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { if (i) Out << ", "; writeOperand(I.getOperand(i), PrintAllTypes); } } // Print atomic ordering/alignment for memory operations if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { if (LI->isAtomic()) writeAtomic(LI->getOrdering(), LI->getSynchScope()); if (LI->getAlignment()) Out << ", align " << LI->getAlignment(); } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { if (SI->isAtomic()) writeAtomic(SI->getOrdering(), SI->getSynchScope()); if (SI->getAlignment()) Out << ", align " << SI->getAlignment(); } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { writeAtomic(CXI->getOrdering(), CXI->getSynchScope()); } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope()); } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { writeAtomic(FI->getOrdering(), FI->getSynchScope()); } // Print Metadata info. SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; I.getAllMetadata(InstMD); if (!InstMD.empty()) { SmallVector<StringRef, 8> MDNames; I.getType()->getContext().getMDKindNames(MDNames); for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { unsigned Kind = InstMD[i].first; if (Kind < MDNames.size()) { Out << ", !" << MDNames[Kind]; } else { Out << ", !<unknown kind #" << Kind << ">"; } Out << ' '; WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, TheModule); } } printInfoComment(I); } static void WriteMDNodeComment(const MDNode *Node, formatted_raw_ostream &Out) { if (Node->getNumOperands() < 1) return; ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0)); if (!CI) return; APInt Val = CI->getValue(); APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask); if (Val.ult(LLVMDebugVersion11)) return; Out.PadToColumn(50); if (Tag == dwarf::DW_TAG_user_base) Out << "; [ DW_TAG_user_base ]"; else if (Tag.isIntN(32)) { if (const char *TagName = dwarf::TagString(Tag.getZExtValue())) Out << "; [ " << TagName << " ]"; } } void AssemblyWriter::writeAllMDNodes() { SmallVector<const MDNode *, 16> Nodes; Nodes.resize(Machine.mdn_size()); for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); I != E; ++I) Nodes[I->second] = cast<MDNode>(I->first); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { Out << '!' << i << " = metadata "; printMDNodeBody(Nodes[i]); } } void AssemblyWriter::printMDNodeBody(const MDNode *Node) { WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); WriteMDNodeComment(Node, Out); Out << "\n"; } //===----------------------------------------------------------------------===// // External Interface declarations //===----------------------------------------------------------------------===// void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { SlotTracker SlotTable(this); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, this, AAW); W.printModule(this); } void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { SlotTracker SlotTable(getParent()); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, getParent(), AAW); W.printNamedMDNode(this); } void Type::print(raw_ostream &OS) const { if (this == 0) { OS << "<null Type>"; return; } TypePrinting TP; TP.print(const_cast<Type*>(this), OS); // If the type is a named struct type, print the body as well. if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) if (!STy->isLiteral()) { OS << " = type "; TP.printStructBody(STy, OS); } } void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { if (this == 0) { ROS << "printing a <null> value\n"; return; } formatted_raw_ostream OS(ROS); if (const Instruction *I = dyn_cast<Instruction>(this)) { const Function *F = I->getParent() ? I->getParent()->getParent() : 0; SlotTracker SlotTable(F); AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); W.printInstruction(*I); } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { SlotTracker SlotTable(BB->getParent()); AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); W.printBasicBlock(BB); } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { SlotTracker SlotTable(GV->getParent()); AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) W.printGlobal(V); else if (const Function *F = dyn_cast<Function>(GV)) W.printFunction(F); else W.printAlias(cast<GlobalAlias>(GV)); } else if (const MDNode *N = dyn_cast<MDNode>(this)) { const Function *F = N->getFunction(); SlotTracker SlotTable(F); AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); W.printMDNodeBody(N); } else if (const Constant *C = dyn_cast<Constant>(this)) { TypePrinting TypePrinter; TypePrinter.print(C->getType(), OS); OS << ' '; WriteConstantInternal(OS, C, TypePrinter, 0, 0); } else if (isa<InlineAsm>(this) || isa<MDString>(this) || isa<Argument>(this)) { WriteAsOperand(OS, this, true, 0); } else { // Otherwise we don't know what it is. Call the virtual function to // allow a subclass to print itself. printCustom(OS); } } // Value::printCustom - subclasses should override this to implement printing. void Value::printCustom(raw_ostream &OS) const { llvm_unreachable("Unknown value to print out!"); } // Value::dump - allow easy printing of Values from the debugger. void Value::dump() const { print(dbgs()); dbgs() << '\n'; } // Type::dump - allow easy printing of Types from the debugger. void Type::dump() const { print(dbgs()); } // Module::dump() - Allow printing of Modules from the debugger. void Module::dump() const { print(dbgs(), 0); } // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. void NamedMDNode::dump() const { print(dbgs(), 0); }