Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/lib/VMCore/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/lib/VMCore/Function.cpp |
//===-- Function.cpp - Implement the Global object classes ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Function class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/StringPool.h" #include "llvm/Support/RWMutex.h" #include "llvm/Support/Threading.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file... template class llvm::SymbolTableListTraits<Argument, Function>; template class llvm::SymbolTableListTraits<BasicBlock, Function>; //===----------------------------------------------------------------------===// // Argument Implementation //===----------------------------------------------------------------------===// void Argument::anchor() { } Argument::Argument(Type *Ty, const Twine &Name, Function *Par) : Value(Ty, Value::ArgumentVal) { Parent = 0; // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (Par) Par->getArgumentList().push_back(this); setName(Name); } void Argument::setParent(Function *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } /// getArgNo - Return the index of this formal argument in its containing /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. unsigned Argument::getArgNo() const { const Function *F = getParent(); assert(F && "Argument is not in a function"); Function::const_arg_iterator AI = F->arg_begin(); unsigned ArgIdx = 0; for (; &*AI != this; ++AI) ++ArgIdx; return ArgIdx; } /// hasByValAttr - Return true if this argument has the byval attribute on it /// in its containing function. bool Argument::hasByValAttr() const { if (!getType()->isPointerTy()) return false; return getParent()->paramHasAttr(getArgNo()+1, Attribute::ByVal); } unsigned Argument::getParamAlignment() const { assert(getType()->isPointerTy() && "Only pointers have alignments"); return getParent()->getParamAlignment(getArgNo()+1); } /// hasNestAttr - Return true if this argument has the nest attribute on /// it in its containing function. bool Argument::hasNestAttr() const { if (!getType()->isPointerTy()) return false; return getParent()->paramHasAttr(getArgNo()+1, Attribute::Nest); } /// hasNoAliasAttr - Return true if this argument has the noalias attribute on /// it in its containing function. bool Argument::hasNoAliasAttr() const { if (!getType()->isPointerTy()) return false; return getParent()->paramHasAttr(getArgNo()+1, Attribute::NoAlias); } /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute /// on it in its containing function. bool Argument::hasNoCaptureAttr() const { if (!getType()->isPointerTy()) return false; return getParent()->paramHasAttr(getArgNo()+1, Attribute::NoCapture); } /// hasSRetAttr - Return true if this argument has the sret attribute on /// it in its containing function. bool Argument::hasStructRetAttr() const { if (!getType()->isPointerTy()) return false; if (this != getParent()->arg_begin()) return false; // StructRet param must be first param return getParent()->paramHasAttr(1, Attribute::StructRet); } /// addAttr - Add a Attribute to an argument void Argument::addAttr(Attributes attr) { getParent()->addAttribute(getArgNo() + 1, attr); } /// removeAttr - Remove a Attribute from an argument void Argument::removeAttr(Attributes attr) { getParent()->removeAttribute(getArgNo() + 1, attr); } //===----------------------------------------------------------------------===// // Helper Methods in Function //===----------------------------------------------------------------------===// LLVMContext &Function::getContext() const { return getType()->getContext(); } FunctionType *Function::getFunctionType() const { return cast<FunctionType>(getType()->getElementType()); } bool Function::isVarArg() const { return getFunctionType()->isVarArg(); } Type *Function::getReturnType() const { return getFunctionType()->getReturnType(); } void Function::removeFromParent() { getParent()->getFunctionList().remove(this); } void Function::eraseFromParent() { getParent()->getFunctionList().erase(this); } //===----------------------------------------------------------------------===// // Function Implementation //===----------------------------------------------------------------------===// Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, Module *ParentModule) : GlobalValue(PointerType::getUnqual(Ty), Value::FunctionVal, 0, 0, Linkage, name) { assert(FunctionType::isValidReturnType(getReturnType()) && "invalid return type"); SymTab = new ValueSymbolTable(); // If the function has arguments, mark them as lazily built. if (Ty->getNumParams()) setValueSubclassData(1); // Set the "has lazy arguments" bit. // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (ParentModule) ParentModule->getFunctionList().push_back(this); // Ensure intrinsics have the right parameter attributes. if (unsigned IID = getIntrinsicID()) setAttributes(Intrinsic::getAttributes(Intrinsic::ID(IID))); } Function::~Function() { dropAllReferences(); // After this it is safe to delete instructions. // Delete all of the method arguments and unlink from symbol table... ArgumentList.clear(); delete SymTab; // Remove the function from the on-the-side GC table. clearGC(); } void Function::BuildLazyArguments() const { // Create the arguments vector, all arguments start out unnamed. FunctionType *FT = getFunctionType(); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { assert(!FT->getParamType(i)->isVoidTy() && "Cannot have void typed arguments!"); ArgumentList.push_back(new Argument(FT->getParamType(i))); } // Clear the lazy arguments bit. unsigned SDC = getSubclassDataFromValue(); const_cast<Function*>(this)->setValueSubclassData(SDC &= ~1); } size_t Function::arg_size() const { return getFunctionType()->getNumParams(); } bool Function::arg_empty() const { return getFunctionType()->getNumParams() == 0; } void Function::setParent(Module *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is deleted for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void Function::dropAllReferences() { for (iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); // Delete all basic blocks. They are now unused, except possibly by // blockaddresses, but BasicBlock's destructor takes care of those. while (!BasicBlocks.empty()) BasicBlocks.begin()->eraseFromParent(); } void Function::addAttribute(unsigned i, Attributes attr) { AttrListPtr PAL = getAttributes(); PAL = PAL.addAttr(i, attr); setAttributes(PAL); } void Function::removeAttribute(unsigned i, Attributes attr) { AttrListPtr PAL = getAttributes(); PAL = PAL.removeAttr(i, attr); setAttributes(PAL); } // Maintain the GC name for each function in an on-the-side table. This saves // allocating an additional word in Function for programs which do not use GC // (i.e., most programs) at the cost of increased overhead for clients which do // use GC. static DenseMap<const Function*,PooledStringPtr> *GCNames; static StringPool *GCNamePool; static ManagedStatic<sys::SmartRWMutex<true> > GCLock; bool Function::hasGC() const { sys::SmartScopedReader<true> Reader(*GCLock); return GCNames && GCNames->count(this); } const char *Function::getGC() const { assert(hasGC() && "Function has no collector"); sys::SmartScopedReader<true> Reader(*GCLock); return *(*GCNames)[this]; } void Function::setGC(const char *Str) { sys::SmartScopedWriter<true> Writer(*GCLock); if (!GCNamePool) GCNamePool = new StringPool(); if (!GCNames) GCNames = new DenseMap<const Function*,PooledStringPtr>(); (*GCNames)[this] = GCNamePool->intern(Str); } void Function::clearGC() { sys::SmartScopedWriter<true> Writer(*GCLock); if (GCNames) { GCNames->erase(this); if (GCNames->empty()) { delete GCNames; GCNames = 0; if (GCNamePool->empty()) { delete GCNamePool; GCNamePool = 0; } } } } /// copyAttributesFrom - copy all additional attributes (those not needed to /// create a Function) from the Function Src to this one. void Function::copyAttributesFrom(const GlobalValue *Src) { assert(isa<Function>(Src) && "Expected a Function!"); GlobalValue::copyAttributesFrom(Src); const Function *SrcF = cast<Function>(Src); setCallingConv(SrcF->getCallingConv()); setAttributes(SrcF->getAttributes()); if (SrcF->hasGC()) setGC(SrcF->getGC()); else clearGC(); } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// intrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. The /// particular intrinsic functions which correspond to this value are defined in /// llvm/Intrinsics.h. /// unsigned Function::getIntrinsicID() const { const ValueName *ValName = this->getValueName(); if (!ValName) return 0; unsigned Len = ValName->getKeyLength(); const char *Name = ValName->getKeyData(); if (Len < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm') return 0; // All intrinsics start with 'llvm.' #define GET_FUNCTION_RECOGNIZER #include "llvm/Intrinsics.gen" #undef GET_FUNCTION_RECOGNIZER return 0; } std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { assert(id < num_intrinsics && "Invalid intrinsic ID!"); static const char * const Table[] = { "not_intrinsic", #define GET_INTRINSIC_NAME_TABLE #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_NAME_TABLE }; if (Tys.empty()) return Table[id]; std::string Result(Table[id]); for (unsigned i = 0; i < Tys.size(); ++i) { if (PointerType* PTyp = dyn_cast<PointerType>(Tys[i])) { Result += ".p" + llvm::utostr(PTyp->getAddressSpace()) + EVT::getEVT(PTyp->getElementType()).getEVTString(); } else if (Tys[i]) Result += "." + EVT::getEVT(Tys[i]).getEVTString(); } return Result; } FunctionType *Intrinsic::getType(LLVMContext &Context, ID id, ArrayRef<Type*> Tys) { Type *ResultTy = NULL; SmallVector<Type*, 8> ArgTys; bool IsVarArg = false; #define GET_INTRINSIC_GENERATOR #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_GENERATOR return FunctionType::get(ResultTy, ArgTys, IsVarArg); } bool Intrinsic::isOverloaded(ID id) { #define GET_INTRINSIC_OVERLOAD_TABLE #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_OVERLOAD_TABLE } /// This defines the "Intrinsic::getAttributes(ID id)" method. #define GET_INTRINSIC_ATTRIBUTES #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_ATTRIBUTES Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { // There can never be multiple globals with the same name of different types, // because intrinsics must be a specific type. return cast<Function>(M->getOrInsertFunction(getName(id, Tys), getType(M->getContext(), id, Tys))); } // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN #include "llvm/Intrinsics.gen" #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN /// hasAddressTaken - returns true if there are any uses of this function /// other than direct calls or invokes to it. bool Function::hasAddressTaken(const User* *PutOffender) const { for (Value::const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { const User *U = *I; // FIXME: Check for blockaddress, which does not take the address. if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) return PutOffender ? (*PutOffender = U, true) : true; ImmutableCallSite CS(cast<Instruction>(U)); if (!CS.isCallee(I)) return PutOffender ? (*PutOffender = U, true) : true; } return false; } bool Function::isDefTriviallyDead() const { // Check the linkage if (!hasLinkOnceLinkage() && !hasLocalLinkage() && !hasAvailableExternallyLinkage()) return false; // Check if the function is used by anything other than a blockaddress. for (Value::const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) if (!isa<BlockAddress>(*I)) return false; return true; } /// callsFunctionThatReturnsTwice - Return true if the function has a call to /// setjmp or other function that gcc recognizes as "returning twice". bool Function::callsFunctionThatReturnsTwice() const { for (const_inst_iterator I = inst_begin(this), E = inst_end(this); I != E; ++I) { const CallInst* callInst = dyn_cast<CallInst>(&*I); if (!callInst) continue; if (callInst->canReturnTwice()) return true; } return false; } // vim: sw=2 ai