Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ASTVector.h |
//===- ASTVector.h - Vector that uses ASTContext for allocation --*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides ASTVector, a vector ADT whose contents are // allocated using the allocator associated with an ASTContext.. // //===----------------------------------------------------------------------===// // FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h. // We can refactor this core logic into something common. #ifndef LLVM_CLANG_AST_VECTOR #define LLVM_CLANG_AST_VECTOR #include "llvm/Support/type_traits.h" #include "llvm/Support/Allocator.h" #include "llvm/ADT/PointerIntPair.h" #include <algorithm> #include <memory> #include <cstring> #ifdef _MSC_VER namespace std { #if _MSC_VER <= 1310 // Work around flawed VC++ implementation of std::uninitialized_copy. Define // additional overloads so that elements with pointer types are recognized as // scalars and not objects, causing bizarre type conversion errors. template<class T1, class T2> inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { _Scalar_ptr_iterator_tag _Cat; return _Cat; } template<class T1, class T2> inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { _Scalar_ptr_iterator_tag _Cat; return _Cat; } #else // FIXME: It is not clear if the problem is fixed in VS 2005. What is clear // is that the above hack won't work if it wasn't fixed. #endif } #endif namespace clang { template<typename T> class ASTVector { T *Begin, *End, *Capacity; void setEnd(T *P) { this->End = P; } public: // Default ctor - Initialize to empty. explicit ASTVector(ASTContext &C, unsigned N = 0) : Begin(NULL), End(NULL), Capacity(NULL) { reserve(C, N); } ~ASTVector() { if (llvm::is_class<T>::value) { // Destroy the constructed elements in the vector. destroy_range(Begin, End); } } typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T* iterator; typedef const T* const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; // forward iterator creation methods. iterator begin() { return Begin; } const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } reference operator[](unsigned idx) { assert(Begin + idx < End); return Begin[idx]; } const_reference operator[](unsigned idx) const { assert(Begin + idx < End); return Begin[idx]; } reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } void pop_back() { --End; End->~T(); } T pop_back_val() { T Result = back(); pop_back(); return Result; } void clear() { if (llvm::is_class<T>::value) { destroy_range(Begin, End); } End = Begin; } /// data - Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(Begin); } /// data - Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(Begin); } void push_back(const_reference Elt, ASTContext &C) { if (End < Capacity) { Retry: new (End) T(Elt); ++End; return; } grow(C); goto Retry; } void reserve(ASTContext &C, unsigned N) { if (unsigned(Capacity-Begin) < N) grow(C, N); } /// capacity - Return the total number of elements in the currently allocated /// buffer. size_t capacity() const { return Capacity - Begin; } /// append - Add the specified range to the end of the SmallVector. /// template<typename in_iter> void append(ASTContext &C, in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); if (NumInputs == 0) return; // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(C, this->size()+NumInputs); // Copy the new elements over. // TODO: NEED To compile time dispatch on whether in_iter is a random access // iterator to use the fast uninitialized_copy. std::uninitialized_copy(in_start, in_end, this->end()); this->setEnd(this->end() + NumInputs); } /// append - Add the specified range to the end of the SmallVector. /// void append(ASTContext &C, size_type NumInputs, const T &Elt) { // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(C, this->size()+NumInputs); // Copy the new elements over. std::uninitialized_fill_n(this->end(), NumInputs, Elt); this->setEnd(this->end() + NumInputs); } /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template<typename It1, typename It2> static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); } iterator insert(ASTContext &C, iterator I, const T &Elt) { if (I == this->end()) { // Important special case for empty vector. push_back(Elt); return this->end()-1; } if (this->EndX < this->CapacityX) { Retry: new (this->end()) T(this->back()); this->setEnd(this->end()+1); // Push everything else over. std::copy_backward(I, this->end()-1, this->end()); *I = Elt; return I; } size_t EltNo = I-this->begin(); this->grow(C); I = this->begin()+EltNo; goto Retry; } iterator insert(ASTContext &C, iterator I, size_type NumToInsert, const T &Elt) { if (I == this->end()) { // Important special case for empty vector. append(C, NumToInsert, Elt); return this->end()-1; } // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); // Ensure there is enough space. reserve(C, static_cast<unsigned>(this->size() + NumToInsert)); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(C, this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::fill_n(I, NumToInsert, Elt); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } template<typename ItTy> iterator insert(ASTContext &C, iterator I, ItTy From, ItTy To) { if (I == this->end()) { // Important special case for empty vector. append(C, From, To); return this->end()-1; } size_t NumToInsert = std::distance(From, To); // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); // Ensure there is enough space. reserve(C, static_cast<unsigned>(this->size() + NumToInsert)); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(C, this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. for (; NumOverwritten > 0; --NumOverwritten) { *I = *From; ++I; ++From; } // Insert the non-overwritten middle part. this->uninitialized_copy(From, To, OldEnd); return I; } void resize(ASTContext &C, unsigned N, const T &NV) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(C, N); construct_range(this->end(), this->begin()+N, NV); this->setEnd(this->begin()+N); } } private: /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(ASTContext &C, size_type MinSize = 1); void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } protected: iterator capacity_ptr() { return (iterator)this->Capacity; } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template <typename T> void ASTVector<T>::grow(ASTContext &C, size_t MinSize) { size_t CurCapacity = Capacity-Begin; size_t CurSize = size(); size_t NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; // Allocate the memory from the ASTContext. T *NewElts = new (C) T[NewCapacity]; // Copy the elements over. if (llvm::is_class<T>::value) { std::uninitialized_copy(Begin, End, NewElts); // Destroy the original elements. destroy_range(Begin, End); } else { // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). memcpy(NewElts, Begin, CurSize * sizeof(T)); } C.Deallocate(Begin); Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; } } // end: clang namespace #endif