Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/Attr.h |
//===--- Attr.h - Classes for representing expressions ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Attr interface and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_ATTR_H #define LLVM_CLANG_AST_ATTR_H #include "clang/Basic/LLVM.h" #include "clang/Basic/AttrKinds.h" #include "clang/AST/Type.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/VersionTuple.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstring> #include <algorithm> namespace clang { class ASTContext; class IdentifierInfo; class ObjCInterfaceDecl; class Expr; class QualType; class FunctionDecl; class TypeSourceInfo; } // Defined in ASTContext.h void *operator new(size_t Bytes, const clang::ASTContext &C, size_t Alignment = 16); // FIXME: Being forced to not have a default argument here due to redeclaration // rules on default arguments sucks void *operator new[](size_t Bytes, const clang::ASTContext &C, size_t Alignment); // It is good practice to pair new/delete operators. Also, MSVC gives many // warnings if a matching delete overload is not declared, even though the // throw() spec guarantees it will not be implicitly called. void operator delete(void *Ptr, const clang::ASTContext &C, size_t); void operator delete[](void *Ptr, const clang::ASTContext &C, size_t); namespace clang { /// Attr - This represents one attribute. class Attr { private: SourceRange Range; unsigned AttrKind : 16; protected: bool Inherited : 1; virtual ~Attr(); void* operator new(size_t bytes) throw() { llvm_unreachable("Attrs cannot be allocated with regular 'new'."); } void operator delete(void* data) throw() { llvm_unreachable("Attrs cannot be released with regular 'delete'."); } public: // Forward so that the regular new and delete do not hide global ones. void* operator new(size_t Bytes, ASTContext &C, size_t Alignment = 16) throw() { return ::operator new(Bytes, C, Alignment); } void operator delete(void *Ptr, ASTContext &C, size_t Alignment) throw() { return ::operator delete(Ptr, C, Alignment); } protected: Attr(attr::Kind AK, SourceRange R) : Range(R), AttrKind(AK), Inherited(false) {} public: attr::Kind getKind() const { return static_cast<attr::Kind>(AttrKind); } SourceLocation getLocation() const { return Range.getBegin(); } SourceRange getRange() const { return Range; } void setRange(SourceRange R) { Range = R; } bool isInherited() const { return Inherited; } // Clone this attribute. virtual Attr* clone(ASTContext &C) const = 0; virtual bool isLateParsed() const { return false; } // Pretty print this attribute. virtual void printPretty(llvm::raw_ostream &OS, ASTContext &C) const = 0; // Implement isa/cast/dyncast/etc. static bool classof(const Attr *) { return true; } }; class InheritableAttr : public Attr { virtual void anchor(); protected: InheritableAttr(attr::Kind AK, SourceRange R) : Attr(AK, R) {} public: void setInherited(bool I) { Inherited = I; } // Implement isa/cast/dyncast/etc. static bool classof(const Attr *A) { return A->getKind() <= attr::LAST_INHERITABLE; } static bool classof(const InheritableAttr *) { return true; } }; class InheritableParamAttr : public InheritableAttr { virtual void anchor(); protected: InheritableParamAttr(attr::Kind AK, SourceRange R) : InheritableAttr(AK, R) {} public: // Implement isa/cast/dyncast/etc. static bool classof(const Attr *A) { return A->getKind() <= attr::LAST_INHERITABLE_PARAM; } static bool classof(const InheritableParamAttr *) { return true; } }; #include "clang/AST/Attrs.inc" /// AttrVec - A vector of Attr, which is how they are stored on the AST. typedef SmallVector<Attr*, 2> AttrVec; typedef SmallVector<const Attr*, 2> ConstAttrVec; /// DestroyAttrs - Destroy the contents of an AttrVec. inline void DestroyAttrs (AttrVec& V, ASTContext &C) { } /// specific_attr_iterator - Iterates over a subrange of an AttrVec, only /// providing attributes that are of a specifc type. template <typename SpecificAttr> class specific_attr_iterator { /// Current - The current, underlying iterator. /// In order to ensure we don't dereference an invalid iterator unless /// specifically requested, we don't necessarily advance this all the /// way. Instead, we advance it when an operation is requested; if the /// operation is acting on what should be a past-the-end iterator, /// then we offer no guarantees, but this way we do not dererence a /// past-the-end iterator when we move to a past-the-end position. mutable AttrVec::const_iterator Current; void AdvanceToNext() const { while (!isa<SpecificAttr>(*Current)) ++Current; } void AdvanceToNext(AttrVec::const_iterator I) const { while (Current != I && !isa<SpecificAttr>(*Current)) ++Current; } public: typedef SpecificAttr* value_type; typedef SpecificAttr* reference; typedef SpecificAttr* pointer; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; specific_attr_iterator() : Current() { } explicit specific_attr_iterator(AttrVec::const_iterator i) : Current(i) { } reference operator*() const { AdvanceToNext(); return cast<SpecificAttr>(*Current); } pointer operator->() const { AdvanceToNext(); return cast<SpecificAttr>(*Current); } specific_attr_iterator& operator++() { ++Current; return *this; } specific_attr_iterator operator++(int) { specific_attr_iterator Tmp(*this); ++(*this); return Tmp; } friend bool operator==(specific_attr_iterator Left, specific_attr_iterator Right) { if (Left.Current < Right.Current) Left.AdvanceToNext(Right.Current); else Right.AdvanceToNext(Left.Current); return Left.Current == Right.Current; } friend bool operator!=(specific_attr_iterator Left, specific_attr_iterator Right) { return !(Left == Right); } }; template <typename T> inline specific_attr_iterator<T> specific_attr_begin(const AttrVec& vec) { return specific_attr_iterator<T>(vec.begin()); } template <typename T> inline specific_attr_iterator<T> specific_attr_end(const AttrVec& vec) { return specific_attr_iterator<T>(vec.end()); } template <typename T> inline bool hasSpecificAttr(const AttrVec& vec) { return specific_attr_begin<T>(vec) != specific_attr_end<T>(vec); } template <typename T> inline T *getSpecificAttr(const AttrVec& vec) { specific_attr_iterator<T> i = specific_attr_begin<T>(vec); if (i != specific_attr_end<T>(vec)) return *i; else return 0; } /// getMaxAlignment - Returns the highest alignment value found among /// AlignedAttrs in an AttrVec, or 0 if there are none. inline unsigned getMaxAttrAlignment(const AttrVec& V, ASTContext &Ctx) { unsigned Align = 0; specific_attr_iterator<AlignedAttr> i(V.begin()), e(V.end()); for(; i != e; ++i) Align = std::max(Align, i->getAlignment(Ctx)); return Align; } } // end namespace clang #endif