Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/Expr.h |
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Expr interface and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_EXPR_H #define LLVM_CLANG_AST_EXPR_H #include "clang/AST/APValue.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/AST/DeclAccessPair.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/ASTVector.h" #include "clang/AST/TemplateBase.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TypeTraits.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Compiler.h" #include <cctype> namespace clang { class ASTContext; class APValue; class Decl; class IdentifierInfo; class ParmVarDecl; class NamedDecl; class ValueDecl; class BlockDecl; class CXXBaseSpecifier; class CXXOperatorCallExpr; class CXXMemberCallExpr; class ObjCPropertyRefExpr; class OpaqueValueExpr; /// \brief A simple array of base specifiers. typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath; /// Expr - This represents one expression. Note that Expr's are subclasses of /// Stmt. This allows an expression to be transparently used any place a Stmt /// is required. /// class Expr : public Stmt { QualType TR; protected: Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack) : Stmt(SC) { ExprBits.TypeDependent = TD; ExprBits.ValueDependent = VD; ExprBits.InstantiationDependent = ID; ExprBits.ValueKind = VK; ExprBits.ObjectKind = OK; ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack; setType(T); } /// \brief Construct an empty expression. explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { } public: QualType getType() const { return TR; } void setType(QualType t) { // In C++, the type of an expression is always adjusted so that it // will not have reference type an expression will never have // reference type (C++ [expr]p6). Use // QualType::getNonReferenceType() to retrieve the non-reference // type. Additionally, inspect Expr::isLvalue to determine whether // an expression that is adjusted in this manner should be // considered an lvalue. assert((t.isNull() || !t->isReferenceType()) && "Expressions can't have reference type"); TR = t; } /// isValueDependent - Determines whether this expression is /// value-dependent (C++ [temp.dep.constexpr]). For example, the /// array bound of "Chars" in the following example is /// value-dependent. /// @code /// template<int Size, char (&Chars)[Size]> struct meta_string; /// @endcode bool isValueDependent() const { return ExprBits.ValueDependent; } /// \brief Set whether this expression is value-dependent or not. void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; if (VD) ExprBits.InstantiationDependent = true; } /// isTypeDependent - Determines whether this expression is /// type-dependent (C++ [temp.dep.expr]), which means that its type /// could change from one template instantiation to the next. For /// example, the expressions "x" and "x + y" are type-dependent in /// the following code, but "y" is not type-dependent: /// @code /// template<typename T> /// void add(T x, int y) { /// x + y; /// } /// @endcode bool isTypeDependent() const { return ExprBits.TypeDependent; } /// \brief Set whether this expression is type-dependent or not. void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; if (TD) ExprBits.InstantiationDependent = true; } /// \brief Whether this expression is instantiation-dependent, meaning that /// it depends in some way on a template parameter, even if neither its type /// nor (constant) value can change due to the template instantiation. /// /// In the following example, the expression \c sizeof(sizeof(T() + T())) is /// instantiation-dependent (since it involves a template parameter \c T), but /// is neither type- nor value-dependent, since the type of the inner /// \c sizeof is known (\c std::size_t) and therefore the size of the outer /// \c sizeof is known. /// /// \code /// template<typename T> /// void f(T x, T y) { /// sizeof(sizeof(T() + T()); /// } /// \endcode /// bool isInstantiationDependent() const { return ExprBits.InstantiationDependent; } /// \brief Set whether this expression is instantiation-dependent or not. void setInstantiationDependent(bool ID) { ExprBits.InstantiationDependent = ID; } /// \brief Whether this expression contains an unexpanded parameter /// pack (for C++0x variadic templates). /// /// Given the following function template: /// /// \code /// template<typename F, typename ...Types> /// void forward(const F &f, Types &&...args) { /// f(static_cast<Types&&>(args)...); /// } /// \endcode /// /// The expressions \c args and \c static_cast<Types&&>(args) both /// contain parameter packs. bool containsUnexpandedParameterPack() const { return ExprBits.ContainsUnexpandedParameterPack; } /// \brief Set the bit that describes whether this expression /// contains an unexpanded parameter pack. void setContainsUnexpandedParameterPack(bool PP = true) { ExprBits.ContainsUnexpandedParameterPack = PP; } /// getExprLoc - Return the preferred location for the arrow when diagnosing /// a problem with a generic expression. SourceLocation getExprLoc() const LLVM_READONLY; /// isUnusedResultAWarning - Return true if this immediate expression should /// be warned about if the result is unused. If so, fill in Loc and Ranges /// with location to warn on and the source range[s] to report with the /// warning. bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const; /// isLValue - True if this expression is an "l-value" according to /// the rules of the current language. C and C++ give somewhat /// different rules for this concept, but in general, the result of /// an l-value expression identifies a specific object whereas the /// result of an r-value expression is a value detached from any /// specific storage. /// /// C++0x divides the concept of "r-value" into pure r-values /// ("pr-values") and so-called expiring values ("x-values"), which /// identify specific objects that can be safely cannibalized for /// their resources. This is an unfortunate abuse of terminology on /// the part of the C++ committee. In Clang, when we say "r-value", /// we generally mean a pr-value. bool isLValue() const { return getValueKind() == VK_LValue; } bool isRValue() const { return getValueKind() == VK_RValue; } bool isXValue() const { return getValueKind() == VK_XValue; } bool isGLValue() const { return getValueKind() != VK_RValue; } enum LValueClassification { LV_Valid, LV_NotObjectType, LV_IncompleteVoidType, LV_DuplicateVectorComponents, LV_InvalidExpression, LV_InvalidMessageExpression, LV_MemberFunction, LV_SubObjCPropertySetting, LV_ClassTemporary }; /// Reasons why an expression might not be an l-value. LValueClassification ClassifyLValue(ASTContext &Ctx) const; /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, /// does not have an incomplete type, does not have a const-qualified type, /// and if it is a structure or union, does not have any member (including, /// recursively, any member or element of all contained aggregates or unions) /// with a const-qualified type. /// /// \param Loc [in] [out] - A source location which *may* be filled /// in with the location of the expression making this a /// non-modifiable lvalue, if specified. enum isModifiableLvalueResult { MLV_Valid, MLV_NotObjectType, MLV_IncompleteVoidType, MLV_DuplicateVectorComponents, MLV_InvalidExpression, MLV_LValueCast, // Specialized form of MLV_InvalidExpression. MLV_IncompleteType, MLV_ConstQualified, MLV_ArrayType, MLV_ReadonlyProperty, MLV_NoSetterProperty, MLV_MemberFunction, MLV_SubObjCPropertySetting, MLV_InvalidMessageExpression, MLV_ClassTemporary }; isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = 0) const; /// \brief The return type of classify(). Represents the C++0x expression /// taxonomy. class Classification { public: /// \brief The various classification results. Most of these mean prvalue. enum Kinds { CL_LValue, CL_XValue, CL_Function, // Functions cannot be lvalues in C. CL_Void, // Void cannot be an lvalue in C. CL_AddressableVoid, // Void expression whose address can be taken in C. CL_DuplicateVectorComponents, // A vector shuffle with dupes. CL_MemberFunction, // An expression referring to a member function CL_SubObjCPropertySetting, CL_ClassTemporary, // A prvalue of class type CL_ObjCMessageRValue, // ObjC message is an rvalue CL_PRValue // A prvalue for any other reason, of any other type }; /// \brief The results of modification testing. enum ModifiableType { CM_Untested, // testModifiable was false. CM_Modifiable, CM_RValue, // Not modifiable because it's an rvalue CM_Function, // Not modifiable because it's a function; C++ only CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext CM_NoSetterProperty,// Implicit assignment to ObjC property without setter CM_ConstQualified, CM_ArrayType, CM_IncompleteType }; private: friend class Expr; unsigned short Kind; unsigned short Modifiable; explicit Classification(Kinds k, ModifiableType m) : Kind(k), Modifiable(m) {} public: Classification() {} Kinds getKind() const { return static_cast<Kinds>(Kind); } ModifiableType getModifiable() const { assert(Modifiable != CM_Untested && "Did not test for modifiability."); return static_cast<ModifiableType>(Modifiable); } bool isLValue() const { return Kind == CL_LValue; } bool isXValue() const { return Kind == CL_XValue; } bool isGLValue() const { return Kind <= CL_XValue; } bool isPRValue() const { return Kind >= CL_Function; } bool isRValue() const { return Kind >= CL_XValue; } bool isModifiable() const { return getModifiable() == CM_Modifiable; } /// \brief Create a simple, modifiably lvalue static Classification makeSimpleLValue() { return Classification(CL_LValue, CM_Modifiable); } }; /// \brief Classify - Classify this expression according to the C++0x /// expression taxonomy. /// /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the /// old lvalue vs rvalue. This function determines the type of expression this /// is. There are three expression types: /// - lvalues are classical lvalues as in C++03. /// - prvalues are equivalent to rvalues in C++03. /// - xvalues are expressions yielding unnamed rvalue references, e.g. a /// function returning an rvalue reference. /// lvalues and xvalues are collectively referred to as glvalues, while /// prvalues and xvalues together form rvalues. Classification Classify(ASTContext &Ctx) const { return ClassifyImpl(Ctx, 0); } /// \brief ClassifyModifiable - Classify this expression according to the /// C++0x expression taxonomy, and see if it is valid on the left side /// of an assignment. /// /// This function extends classify in that it also tests whether the /// expression is modifiable (C99 6.3.2.1p1). /// \param Loc A source location that might be filled with a relevant location /// if the expression is not modifiable. Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{ return ClassifyImpl(Ctx, &Loc); } /// getValueKindForType - Given a formal return or parameter type, /// give its value kind. static ExprValueKind getValueKindForType(QualType T) { if (const ReferenceType *RT = T->getAs<ReferenceType>()) return (isa<LValueReferenceType>(RT) ? VK_LValue : (RT->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue)); return VK_RValue; } /// getValueKind - The value kind that this expression produces. ExprValueKind getValueKind() const { return static_cast<ExprValueKind>(ExprBits.ValueKind); } /// getObjectKind - The object kind that this expression produces. /// Object kinds are meaningful only for expressions that yield an /// l-value or x-value. ExprObjectKind getObjectKind() const { return static_cast<ExprObjectKind>(ExprBits.ObjectKind); } bool isOrdinaryOrBitFieldObject() const { ExprObjectKind OK = getObjectKind(); return (OK == OK_Ordinary || OK == OK_BitField); } /// setValueKind - Set the value kind produced by this expression. void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; } /// setObjectKind - Set the object kind produced by this expression. void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; } private: Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const; public: /// \brief If this expression refers to a bit-field, retrieve the /// declaration of that bit-field. FieldDecl *getBitField(); const FieldDecl *getBitField() const { return const_cast<Expr*>(this)->getBitField(); } /// \brief If this expression is an l-value for an Objective C /// property, find the underlying property reference expression. const ObjCPropertyRefExpr *getObjCProperty() const; /// \brief Returns whether this expression refers to a vector element. bool refersToVectorElement() const; /// \brief Returns whether this expression has a placeholder type. bool hasPlaceholderType() const { return getType()->isPlaceholderType(); } /// \brief Returns whether this expression has a specific placeholder type. bool hasPlaceholderType(BuiltinType::Kind K) const { assert(BuiltinType::isPlaceholderTypeKind(K)); if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType())) return BT->getKind() == K; return false; } /// isKnownToHaveBooleanValue - Return true if this is an integer expression /// that is known to return 0 or 1. This happens for _Bool/bool expressions /// but also int expressions which are produced by things like comparisons in /// C. bool isKnownToHaveBooleanValue() const; /// isIntegerConstantExpr - Return true if this expression is a valid integer /// constant expression, and, if so, return its value in Result. If not a /// valid i-c-e, return false and fill in Loc (if specified) with the location /// of the invalid expression. /// /// Note: This does not perform the implicit conversions required by C++11 /// [expr.const]p5. bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, SourceLocation *Loc = 0, bool isEvaluated = true) const; bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const; /// isCXX98IntegralConstantExpr - Return true if this expression is an /// integral constant expression in C++98. Can only be used in C++. bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const; /// isCXX11ConstantExpr - Return true if this expression is a constant /// expression in C++11. Can only be used in C++. /// /// Note: This does not perform the implicit conversions required by C++11 /// [expr.const]p5. bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0, SourceLocation *Loc = 0) const; /// isPotentialConstantExpr - Return true if this function's definition /// might be usable in a constant expression in C++11, if it were marked /// constexpr. Return false if the function can never produce a constant /// expression, along with diagnostics describing why not. static bool isPotentialConstantExpr(const FunctionDecl *FD, llvm::SmallVectorImpl< PartialDiagnosticAt> &Diags); /// isConstantInitializer - Returns true if this expression can be emitted to /// IR as a constant, and thus can be used as a constant initializer in C. bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const; /// EvalStatus is a struct with detailed info about an evaluation in progress. struct EvalStatus { /// HasSideEffects - Whether the evaluated expression has side effects. /// For example, (f() && 0) can be folded, but it still has side effects. bool HasSideEffects; /// Diag - If this is non-null, it will be filled in with a stack of notes /// indicating why evaluation failed (or why it failed to produce a constant /// expression). /// If the expression is unfoldable, the notes will indicate why it's not /// foldable. If the expression is foldable, but not a constant expression, /// the notes will describes why it isn't a constant expression. If the /// expression *is* a constant expression, no notes will be produced. llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag; EvalStatus() : HasSideEffects(false), Diag(0) {} // hasSideEffects - Return true if the evaluated expression has // side effects. bool hasSideEffects() const { return HasSideEffects; } }; /// EvalResult is a struct with detailed info about an evaluated expression. struct EvalResult : EvalStatus { /// Val - This is the value the expression can be folded to. APValue Val; // isGlobalLValue - Return true if the evaluated lvalue expression // is global. bool isGlobalLValue() const; }; /// EvaluateAsRValue - Return true if this is a constant which we can fold to /// an rvalue using any crazy technique (that has nothing to do with language /// standards) that we want to, even if the expression has side-effects. If /// this function returns true, it returns the folded constant in Result. If /// the expression is a glvalue, an lvalue-to-rvalue conversion will be /// applied. bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const; /// EvaluateAsBooleanCondition - Return true if this is a constant /// which we we can fold and convert to a boolean condition using /// any crazy technique that we want to, even if the expression has /// side-effects. bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const; enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects }; /// EvaluateAsInt - Return true if this is a constant which we can fold and /// convert to an integer, using any crazy technique that we want to. bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects = SE_NoSideEffects) const; /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be /// constant folded without side-effects, but discard the result. bool isEvaluatable(const ASTContext &Ctx) const; /// HasSideEffects - This routine returns true for all those expressions /// which must be evaluated each time and must not be optimized away /// or evaluated at compile time. Example is a function call, volatile /// variable read. bool HasSideEffects(const ASTContext &Ctx) const; /// \brief Determine whether this expression involves a call to any function /// that is not trivial. bool hasNonTrivialCall(ASTContext &Ctx); /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded /// integer. This must be called on an expression that constant folds to an /// integer. llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const; /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an /// lvalue with link time known address, with no side-effects. bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const; /// EvaluateAsInitializer - Evaluate an expression as if it were the /// initializer of the given declaration. Returns true if the initializer /// can be folded to a constant, and produces any relevant notes. In C++11, /// notes will be produced if the expression is not a constant expression. bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx, const VarDecl *VD, llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const; /// \brief Enumeration used to describe the kind of Null pointer constant /// returned from \c isNullPointerConstant(). enum NullPointerConstantKind { /// \brief Expression is not a Null pointer constant. NPCK_NotNull = 0, /// \brief Expression is a Null pointer constant built from a zero integer. NPCK_ZeroInteger, /// \brief Expression is a C++0X nullptr. NPCK_CXX0X_nullptr, /// \brief Expression is a GNU-style __null constant. NPCK_GNUNull }; /// \brief Enumeration used to describe how \c isNullPointerConstant() /// should cope with value-dependent expressions. enum NullPointerConstantValueDependence { /// \brief Specifies that the expression should never be value-dependent. NPC_NeverValueDependent = 0, /// \brief Specifies that a value-dependent expression of integral or /// dependent type should be considered a null pointer constant. NPC_ValueDependentIsNull, /// \brief Specifies that a value-dependent expression should be considered /// to never be a null pointer constant. NPC_ValueDependentIsNotNull }; /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to /// a Null pointer constant. The return value can further distinguish the /// kind of NULL pointer constant that was detected. NullPointerConstantKind isNullPointerConstant( ASTContext &Ctx, NullPointerConstantValueDependence NPC) const; /// isOBJCGCCandidate - Return true if this expression may be used in a read/ /// write barrier. bool isOBJCGCCandidate(ASTContext &Ctx) const; /// \brief Returns true if this expression is a bound member function. bool isBoundMemberFunction(ASTContext &Ctx) const; /// \brief Given an expression of bound-member type, find the type /// of the member. Returns null if this is an *overloaded* bound /// member expression. static QualType findBoundMemberType(const Expr *expr); /// IgnoreImpCasts - Skip past any implicit casts which might /// surround this expression. Only skips ImplicitCastExprs. Expr *IgnoreImpCasts() LLVM_READONLY; /// IgnoreImplicit - Skip past any implicit AST nodes which might /// surround this expression. Expr *IgnoreImplicit() LLVM_READONLY { return cast<Expr>(Stmt::IgnoreImplicit()); } /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return /// its subexpression. If that subexpression is also a ParenExpr, /// then this method recursively returns its subexpression, and so forth. /// Otherwise, the method returns the current Expr. Expr *IgnoreParens() LLVM_READONLY; /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr /// or CastExprs, returning their operand. Expr *IgnoreParenCasts() LLVM_READONLY; /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off /// any ParenExpr or ImplicitCastExprs, returning their operand. Expr *IgnoreParenImpCasts() LLVM_READONLY; /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a /// call to a conversion operator, return the argument. Expr *IgnoreConversionOperator() LLVM_READONLY; const Expr *IgnoreConversionOperator() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreConversionOperator(); } const Expr *IgnoreParenImpCasts() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreParenImpCasts(); } /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and /// CastExprs that represent lvalue casts, returning their operand. Expr *IgnoreParenLValueCasts() LLVM_READONLY; const Expr *IgnoreParenLValueCasts() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreParenLValueCasts(); } /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the /// value (including ptr->int casts of the same size). Strip off any /// ParenExpr or CastExprs, returning their operand. Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY; /// \brief Determine whether this expression is a default function argument. /// /// Default arguments are implicitly generated in the abstract syntax tree /// by semantic analysis for function calls, object constructions, etc. in /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes; /// this routine also looks through any implicit casts to determine whether /// the expression is a default argument. bool isDefaultArgument() const; /// \brief Determine whether the result of this expression is a /// temporary object of the given class type. bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const; /// \brief Whether this expression is an implicit reference to 'this' in C++. bool isImplicitCXXThis() const; const Expr *IgnoreImpCasts() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreImpCasts(); } const Expr *IgnoreParens() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreParens(); } const Expr *IgnoreParenCasts() const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreParenCasts(); } const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY { return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx); } static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs); static bool classof(const Stmt *T) { return T->getStmtClass() >= firstExprConstant && T->getStmtClass() <= lastExprConstant; } static bool classof(const Expr *) { return true; } }; //===----------------------------------------------------------------------===// // Primary Expressions. //===----------------------------------------------------------------------===// /// OpaqueValueExpr - An expression referring to an opaque object of a /// fixed type and value class. These don't correspond to concrete /// syntax; instead they're used to express operations (usually copy /// operations) on values whose source is generally obvious from /// context. class OpaqueValueExpr : public Expr { friend class ASTStmtReader; Expr *SourceExpr; SourceLocation Loc; public: OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK, ExprObjectKind OK = OK_Ordinary, Expr *SourceExpr = 0) : Expr(OpaqueValueExprClass, T, VK, OK, T->isDependentType(), T->isDependentType() || (SourceExpr && SourceExpr->isValueDependent()), T->isInstantiationDependentType(), false), SourceExpr(SourceExpr), Loc(Loc) { } /// Given an expression which invokes a copy constructor --- i.e. a /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups --- /// find the OpaqueValueExpr that's the source of the construction. static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr); explicit OpaqueValueExpr(EmptyShell Empty) : Expr(OpaqueValueExprClass, Empty) { } /// \brief Retrieve the location of this expression. SourceLocation getLocation() const { return Loc; } SourceRange getSourceRange() const LLVM_READONLY { if (SourceExpr) return SourceExpr->getSourceRange(); return Loc; } SourceLocation getExprLoc() const LLVM_READONLY { if (SourceExpr) return SourceExpr->getExprLoc(); return Loc; } child_range children() { return child_range(); } /// The source expression of an opaque value expression is the /// expression which originally generated the value. This is /// provided as a convenience for analyses that don't wish to /// precisely model the execution behavior of the program. /// /// The source expression is typically set when building the /// expression which binds the opaque value expression in the first /// place. Expr *getSourceExpr() const { return SourceExpr; } static bool classof(const Stmt *T) { return T->getStmtClass() == OpaqueValueExprClass; } static bool classof(const OpaqueValueExpr *) { return true; } }; /// \brief A reference to a declared variable, function, enum, etc. /// [C99 6.5.1p2] /// /// This encodes all the information about how a declaration is referenced /// within an expression. /// /// There are several optional constructs attached to DeclRefExprs only when /// they apply in order to conserve memory. These are laid out past the end of /// the object, and flags in the DeclRefExprBitfield track whether they exist: /// /// DeclRefExprBits.HasQualifier: /// Specifies when this declaration reference expression has a C++ /// nested-name-specifier. /// DeclRefExprBits.HasFoundDecl: /// Specifies when this declaration reference expression has a record of /// a NamedDecl (different from the referenced ValueDecl) which was found /// during name lookup and/or overload resolution. /// DeclRefExprBits.HasTemplateKWAndArgsInfo: /// Specifies when this declaration reference expression has an explicit /// C++ template keyword and/or template argument list. /// DeclRefExprBits.RefersToEnclosingLocal /// Specifies when this declaration reference expression (validly) /// refers to a local variable from a different function. class DeclRefExpr : public Expr { /// \brief The declaration that we are referencing. ValueDecl *D; /// \brief The location of the declaration name itself. SourceLocation Loc; /// \brief Provides source/type location info for the declaration name /// embedded in D. DeclarationNameLoc DNLoc; /// \brief Helper to retrieve the optional NestedNameSpecifierLoc. NestedNameSpecifierLoc &getInternalQualifierLoc() { assert(hasQualifier()); return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1); } /// \brief Helper to retrieve the optional NestedNameSpecifierLoc. const NestedNameSpecifierLoc &getInternalQualifierLoc() const { return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc(); } /// \brief Test whether there is a distinct FoundDecl attached to the end of /// this DRE. bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; } /// \brief Helper to retrieve the optional NamedDecl through which this /// reference occured. NamedDecl *&getInternalFoundDecl() { assert(hasFoundDecl()); if (hasQualifier()) return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1); return *reinterpret_cast<NamedDecl **>(this + 1); } /// \brief Helper to retrieve the optional NamedDecl through which this /// reference occured. NamedDecl *getInternalFoundDecl() const { return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl(); } DeclRefExpr(ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool refersToEnclosingLocal, const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK); /// \brief Construct an empty declaration reference expression. explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) { } /// \brief Computes the type- and value-dependence flags for this /// declaration reference expression. void computeDependence(ASTContext &C); public: DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T, ExprValueKind VK, SourceLocation L, const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), D(D), Loc(L), DNLoc(LocInfo) { DeclRefExprBits.HasQualifier = 0; DeclRefExprBits.HasTemplateKWAndArgsInfo = 0; DeclRefExprBits.HasFoundDecl = 0; DeclRefExprBits.HadMultipleCandidates = 0; DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal; computeDependence(D->getASTContext()); } static DeclRefExpr *Create(ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool isEnclosingLocal, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD = 0, const TemplateArgumentListInfo *TemplateArgs = 0); static DeclRefExpr *Create(ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool isEnclosingLocal, const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK, NamedDecl *FoundD = 0, const TemplateArgumentListInfo *TemplateArgs = 0); /// \brief Construct an empty declaration reference expression. static DeclRefExpr *CreateEmpty(ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs); ValueDecl *getDecl() { return D; } const ValueDecl *getDecl() const { return D; } void setDecl(ValueDecl *NewD) { D = NewD; } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } SourceRange getSourceRange() const LLVM_READONLY; SourceLocation getLocStart() const LLVM_READONLY; SourceLocation getLocEnd() const LLVM_READONLY; /// \brief Determine whether this declaration reference was preceded by a /// C++ nested-name-specifier, e.g., \c N::foo. bool hasQualifier() const { return DeclRefExprBits.HasQualifier; } /// \brief If the name was qualified, retrieves the nested-name-specifier /// that precedes the name. Otherwise, returns NULL. NestedNameSpecifier *getQualifier() const { if (!hasQualifier()) return 0; return getInternalQualifierLoc().getNestedNameSpecifier(); } /// \brief If the name was qualified, retrieves the nested-name-specifier /// that precedes the name, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { if (!hasQualifier()) return NestedNameSpecifierLoc(); return getInternalQualifierLoc(); } /// \brief Get the NamedDecl through which this reference occured. /// /// This Decl may be different from the ValueDecl actually referred to in the /// presence of using declarations, etc. It always returns non-NULL, and may /// simple return the ValueDecl when appropriate. NamedDecl *getFoundDecl() { return hasFoundDecl() ? getInternalFoundDecl() : D; } /// \brief Get the NamedDecl through which this reference occurred. /// See non-const variant. const NamedDecl *getFoundDecl() const { return hasFoundDecl() ? getInternalFoundDecl() : D; } bool hasTemplateKWAndArgsInfo() const { return DeclRefExprBits.HasTemplateKWAndArgsInfo; } /// \brief Return the optional template keyword and arguments info. ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() { if (!hasTemplateKWAndArgsInfo()) return 0; if (hasFoundDecl()) return reinterpret_cast<ASTTemplateKWAndArgsInfo *>( &getInternalFoundDecl() + 1); if (hasQualifier()) return reinterpret_cast<ASTTemplateKWAndArgsInfo *>( &getInternalQualifierLoc() + 1); return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1); } /// \brief Return the optional template keyword and arguments info. const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const { return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo(); } /// \brief Retrieve the location of the template keyword preceding /// this name, if any. SourceLocation getTemplateKeywordLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc(); } /// \brief Retrieve the location of the left angle bracket starting the /// explicit template argument list following the name, if any. SourceLocation getLAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTemplateKWAndArgsInfo()->LAngleLoc; } /// \brief Retrieve the location of the right angle bracket ending the /// explicit template argument list following the name, if any. SourceLocation getRAngleLoc() const { if (!hasTemplateKWAndArgsInfo()) return SourceLocation(); return getTemplateKWAndArgsInfo()->RAngleLoc; } /// \brief Determines whether the name in this declaration reference /// was preceded by the template keyword. bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); } /// \brief Determines whether this declaration reference was followed by an /// explicit template argument list. bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); } /// \brief Retrieve the explicit template argument list that followed the /// member template name. ASTTemplateArgumentListInfo &getExplicitTemplateArgs() { assert(hasExplicitTemplateArgs()); return *getTemplateKWAndArgsInfo(); } /// \brief Retrieve the explicit template argument list that followed the /// member template name. const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const { return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs(); } /// \brief Retrieves the optional explicit template arguments. /// This points to the same data as getExplicitTemplateArgs(), but /// returns null if there are no explicit template arguments. const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return &getExplicitTemplateArgs(); } /// \brief Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getExplicitTemplateArgs().copyInto(List); } /// \brief Retrieve the template arguments provided as part of this /// template-id. const TemplateArgumentLoc *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().getTemplateArgs(); } /// \brief Retrieve the number of template arguments provided as part of this /// template-id. unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().NumTemplateArgs; } /// \brief Returns true if this expression refers to a function that /// was resolved from an overloaded set having size greater than 1. bool hadMultipleCandidates() const { return DeclRefExprBits.HadMultipleCandidates; } /// \brief Sets the flag telling whether this expression refers to /// a function that was resolved from an overloaded set having size /// greater than 1. void setHadMultipleCandidates(bool V = true) { DeclRefExprBits.HadMultipleCandidates = V; } /// Does this DeclRefExpr refer to a local declaration from an /// enclosing function scope? bool refersToEnclosingLocal() const { return DeclRefExprBits.RefersToEnclosingLocal; } static bool classof(const Stmt *T) { return T->getStmtClass() == DeclRefExprClass; } static bool classof(const DeclRefExpr *) { return true; } // Iterators child_range children() { return child_range(); } friend class ASTStmtReader; friend class ASTStmtWriter; }; /// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__. class PredefinedExpr : public Expr { public: enum IdentType { Func, Function, PrettyFunction, /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the /// 'virtual' keyword is omitted for virtual member functions. PrettyFunctionNoVirtual }; private: SourceLocation Loc; IdentType Type; public: PredefinedExpr(SourceLocation l, QualType type, IdentType IT) : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary, type->isDependentType(), type->isDependentType(), type->isInstantiationDependentType(), /*ContainsUnexpandedParameterPack=*/false), Loc(l), Type(IT) {} /// \brief Construct an empty predefined expression. explicit PredefinedExpr(EmptyShell Empty) : Expr(PredefinedExprClass, Empty) { } IdentType getIdentType() const { return Type; } void setIdentType(IdentType IT) { Type = IT; } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } static std::string ComputeName(IdentType IT, const Decl *CurrentDecl); SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); } static bool classof(const Stmt *T) { return T->getStmtClass() == PredefinedExprClass; } static bool classof(const PredefinedExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without /// leaking memory. /// /// For large floats/integers, APFloat/APInt will allocate memory from the heap /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with /// the APFloat/APInt values will never get freed. APNumericStorage uses /// ASTContext's allocator for memory allocation. class APNumericStorage { union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; unsigned BitWidth; bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; } APNumericStorage(const APNumericStorage&); // do not implement APNumericStorage& operator=(const APNumericStorage&); // do not implement protected: APNumericStorage() : VAL(0), BitWidth(0) { } llvm::APInt getIntValue() const { unsigned NumWords = llvm::APInt::getNumWords(BitWidth); if (NumWords > 1) return llvm::APInt(BitWidth, NumWords, pVal); else return llvm::APInt(BitWidth, VAL); } void setIntValue(ASTContext &C, const llvm::APInt &Val); }; class APIntStorage : private APNumericStorage { public: llvm::APInt getValue() const { return getIntValue(); } void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); } }; class APFloatStorage : private APNumericStorage { public: llvm::APFloat getValue(bool IsIEEE) const { return llvm::APFloat(getIntValue(), IsIEEE); } void setValue(ASTContext &C, const llvm::APFloat &Val) { setIntValue(C, Val.bitcastToAPInt()); } }; class IntegerLiteral : public Expr, public APIntStorage { SourceLocation Loc; /// \brief Construct an empty integer literal. explicit IntegerLiteral(EmptyShell Empty) : Expr(IntegerLiteralClass, Empty) { } public: // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy, // or UnsignedLongLongTy IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l) : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, false, false), Loc(l) { assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); assert(V.getBitWidth() == C.getIntWidth(type) && "Integer type is not the correct size for constant."); setValue(C, V); } /// \brief Returns a new integer literal with value 'V' and type 'type'. /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy, /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V /// \param V - the value that the returned integer literal contains. static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l); /// \brief Returns a new empty integer literal. static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty); SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); } /// \brief Retrieve the location of the literal. SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation Location) { Loc = Location; } static bool classof(const Stmt *T) { return T->getStmtClass() == IntegerLiteralClass; } static bool classof(const IntegerLiteral *) { return true; } // Iterators child_range children() { return child_range(); } }; class CharacterLiteral : public Expr { public: enum CharacterKind { Ascii, Wide, UTF16, UTF32 }; private: unsigned Value; SourceLocation Loc; public: // type should be IntTy CharacterLiteral(unsigned value, CharacterKind kind, QualType type, SourceLocation l) : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false, false, false), Value(value), Loc(l) { CharacterLiteralBits.Kind = kind; } /// \brief Construct an empty character literal. CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { } SourceLocation getLocation() const { return Loc; } CharacterKind getKind() const { return static_cast<CharacterKind>(CharacterLiteralBits.Kind); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); } unsigned getValue() const { return Value; } void setLocation(SourceLocation Location) { Loc = Location; } void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; } void setValue(unsigned Val) { Value = Val; } static bool classof(const Stmt *T) { return T->getStmtClass() == CharacterLiteralClass; } static bool classof(const CharacterLiteral *) { return true; } // Iterators child_range children() { return child_range(); } }; class FloatingLiteral : public Expr, private APFloatStorage { SourceLocation Loc; FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L) : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, false, false), Loc(L) { FloatingLiteralBits.IsIEEE = &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad; FloatingLiteralBits.IsExact = isexact; setValue(C, V); } /// \brief Construct an empty floating-point literal. explicit FloatingLiteral(ASTContext &C, EmptyShell Empty) : Expr(FloatingLiteralClass, Empty) { FloatingLiteralBits.IsIEEE = &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad; FloatingLiteralBits.IsExact = false; } public: static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L); static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty); llvm::APFloat getValue() const { return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE); } void setValue(ASTContext &C, const llvm::APFloat &Val) { APFloatStorage::setValue(C, Val); } bool isExact() const { return FloatingLiteralBits.IsExact; } void setExact(bool E) { FloatingLiteralBits.IsExact = E; } /// getValueAsApproximateDouble - This returns the value as an inaccurate /// double. Note that this may cause loss of precision, but is useful for /// debugging dumps, etc. double getValueAsApproximateDouble() const; SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); } static bool classof(const Stmt *T) { return T->getStmtClass() == FloatingLiteralClass; } static bool classof(const FloatingLiteral *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ImaginaryLiteral - We support imaginary integer and floating point literals, /// like "1.0i". We represent these as a wrapper around FloatingLiteral and /// IntegerLiteral classes. Instances of this class always have a Complex type /// whose element type matches the subexpression. /// class ImaginaryLiteral : public Expr { Stmt *Val; public: ImaginaryLiteral(Expr *val, QualType Ty) : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false, false, false), Val(val) {} /// \brief Build an empty imaginary literal. explicit ImaginaryLiteral(EmptyShell Empty) : Expr(ImaginaryLiteralClass, Empty) { } const Expr *getSubExpr() const { return cast<Expr>(Val); } Expr *getSubExpr() { return cast<Expr>(Val); } void setSubExpr(Expr *E) { Val = E; } SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ImaginaryLiteralClass; } static bool classof(const ImaginaryLiteral *) { return true; } // Iterators child_range children() { return child_range(&Val, &Val+1); } }; /// StringLiteral - This represents a string literal expression, e.g. "foo" /// or L"bar" (wide strings). The actual string is returned by getStrData() /// is NOT null-terminated, and the length of the string is determined by /// calling getByteLength(). The C type for a string is always a /// ConstantArrayType. In C++, the char type is const qualified, in C it is /// not. /// /// Note that strings in C can be formed by concatenation of multiple string /// literal pptokens in translation phase #6. This keeps track of the locations /// of each of these pieces. /// /// Strings in C can also be truncated and extended by assigning into arrays, /// e.g. with constructs like: /// char X[2] = "foobar"; /// In this case, getByteLength() will return 6, but the string literal will /// have type "char[2]". class StringLiteral : public Expr { public: enum StringKind { Ascii, Wide, UTF8, UTF16, UTF32 }; private: friend class ASTStmtReader; union { const char *asChar; const uint16_t *asUInt16; const uint32_t *asUInt32; } StrData; unsigned Length; unsigned CharByteWidth : 4; unsigned Kind : 3; unsigned IsPascal : 1; unsigned NumConcatenated; SourceLocation TokLocs[1]; StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false, false) {} static int mapCharByteWidth(TargetInfo const &target,StringKind k); public: /// This is the "fully general" constructor that allows representation of /// strings formed from multiple concatenated tokens. static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumStrs); /// Simple constructor for string literals made from one token. static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, SourceLocation Loc) { return Create(C, Str, Kind, Pascal, Ty, &Loc, 1); } /// \brief Construct an empty string literal. static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs); StringRef getString() const { assert(CharByteWidth==1 && "This function is used in places that assume strings use char"); return StringRef(StrData.asChar, getByteLength()); } /// Allow clients that need the byte representation, such as ASTWriterStmt /// ::VisitStringLiteral(), access. StringRef getBytes() const { // FIXME: StringRef may not be the right type to use as a result for this. if (CharByteWidth == 1) return StringRef(StrData.asChar, getByteLength()); if (CharByteWidth == 4) return StringRef(reinterpret_cast<const char*>(StrData.asUInt32), getByteLength()); assert(CharByteWidth == 2 && "unsupported CharByteWidth"); return StringRef(reinterpret_cast<const char*>(StrData.asUInt16), getByteLength()); } uint32_t getCodeUnit(size_t i) const { assert(i < Length && "out of bounds access"); if (CharByteWidth == 1) return static_cast<unsigned char>(StrData.asChar[i]); if (CharByteWidth == 4) return StrData.asUInt32[i]; assert(CharByteWidth == 2 && "unsupported CharByteWidth"); return StrData.asUInt16[i]; } unsigned getByteLength() const { return CharByteWidth*Length; } unsigned getLength() const { return Length; } unsigned getCharByteWidth() const { return CharByteWidth; } /// \brief Sets the string data to the given string data. void setString(ASTContext &C, StringRef Str, StringKind Kind, bool IsPascal); StringKind getKind() const { return static_cast<StringKind>(Kind); } bool isAscii() const { return Kind == Ascii; } bool isWide() const { return Kind == Wide; } bool isUTF8() const { return Kind == UTF8; } bool isUTF16() const { return Kind == UTF16; } bool isUTF32() const { return Kind == UTF32; } bool isPascal() const { return IsPascal; } bool containsNonAsciiOrNull() const { StringRef Str = getString(); for (unsigned i = 0, e = Str.size(); i != e; ++i) if (!isascii(Str[i]) || !Str[i]) return true; return false; } /// getNumConcatenated - Get the number of string literal tokens that were /// concatenated in translation phase #6 to form this string literal. unsigned getNumConcatenated() const { return NumConcatenated; } SourceLocation getStrTokenLoc(unsigned TokNum) const { assert(TokNum < NumConcatenated && "Invalid tok number"); return TokLocs[TokNum]; } void setStrTokenLoc(unsigned TokNum, SourceLocation L) { assert(TokNum < NumConcatenated && "Invalid tok number"); TokLocs[TokNum] = L; } /// getLocationOfByte - Return a source location that points to the specified /// byte of this string literal. /// /// Strings are amazingly complex. They can be formed from multiple tokens /// and can have escape sequences in them in addition to the usual trigraph /// and escaped newline business. This routine handles this complexity. /// SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target) const; typedef const SourceLocation *tokloc_iterator; tokloc_iterator tokloc_begin() const { return TokLocs; } tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]); } static bool classof(const Stmt *T) { return T->getStmtClass() == StringLiteralClass; } static bool classof(const StringLiteral *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This /// AST node is only formed if full location information is requested. class ParenExpr : public Expr { SourceLocation L, R; Stmt *Val; public: ParenExpr(SourceLocation l, SourceLocation r, Expr *val) : Expr(ParenExprClass, val->getType(), val->getValueKind(), val->getObjectKind(), val->isTypeDependent(), val->isValueDependent(), val->isInstantiationDependent(), val->containsUnexpandedParameterPack()), L(l), R(r), Val(val) {} /// \brief Construct an empty parenthesized expression. explicit ParenExpr(EmptyShell Empty) : Expr(ParenExprClass, Empty) { } const Expr *getSubExpr() const { return cast<Expr>(Val); } Expr *getSubExpr() { return cast<Expr>(Val); } void setSubExpr(Expr *E) { Val = E; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); } /// \brief Get the location of the left parentheses '('. SourceLocation getLParen() const { return L; } void setLParen(SourceLocation Loc) { L = Loc; } /// \brief Get the location of the right parentheses ')'. SourceLocation getRParen() const { return R; } void setRParen(SourceLocation Loc) { R = Loc; } static bool classof(const Stmt *T) { return T->getStmtClass() == ParenExprClass; } static bool classof(const ParenExpr *) { return true; } // Iterators child_range children() { return child_range(&Val, &Val+1); } }; /// UnaryOperator - This represents the unary-expression's (except sizeof and /// alignof), the postinc/postdec operators from postfix-expression, and various /// extensions. /// /// Notes on various nodes: /// /// Real/Imag - These return the real/imag part of a complex operand. If /// applied to a non-complex value, the former returns its operand and the /// later returns zero in the type of the operand. /// class UnaryOperator : public Expr { public: typedef UnaryOperatorKind Opcode; private: unsigned Opc : 5; SourceLocation Loc; Stmt *Val; public: UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l) : Expr(UnaryOperatorClass, type, VK, OK, input->isTypeDependent() || type->isDependentType(), input->isValueDependent(), (input->isInstantiationDependent() || type->isInstantiationDependentType()), input->containsUnexpandedParameterPack()), Opc(opc), Loc(l), Val(input) {} /// \brief Build an empty unary operator. explicit UnaryOperator(EmptyShell Empty) : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { } Opcode getOpcode() const { return static_cast<Opcode>(Opc); } void setOpcode(Opcode O) { Opc = O; } Expr *getSubExpr() const { return cast<Expr>(Val); } void setSubExpr(Expr *E) { Val = E; } /// getOperatorLoc - Return the location of the operator. SourceLocation getOperatorLoc() const { return Loc; } void setOperatorLoc(SourceLocation L) { Loc = L; } /// isPostfix - Return true if this is a postfix operation, like x++. static bool isPostfix(Opcode Op) { return Op == UO_PostInc || Op == UO_PostDec; } /// isPrefix - Return true if this is a prefix operation, like --x. static bool isPrefix(Opcode Op) { return Op == UO_PreInc || Op == UO_PreDec; } bool isPrefix() const { return isPrefix(getOpcode()); } bool isPostfix() const { return isPostfix(getOpcode()); } static bool isIncrementOp(Opcode Op) { return Op == UO_PreInc || Op == UO_PostInc; } bool isIncrementOp() const { return isIncrementOp(getOpcode()); } static bool isDecrementOp(Opcode Op) { return Op == UO_PreDec || Op == UO_PostDec; } bool isDecrementOp() const { return isDecrementOp(getOpcode()); } static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; } bool isIncrementDecrementOp() const { return isIncrementDecrementOp(getOpcode()); } static bool isArithmeticOp(Opcode Op) { return Op >= UO_Plus && Op <= UO_LNot; } bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "sizeof" or "[pre]++" static const char *getOpcodeStr(Opcode Op); /// \brief Retrieve the unary opcode that corresponds to the given /// overloaded operator. static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix); /// \brief Retrieve the overloaded operator kind that corresponds to /// the given unary opcode. static OverloadedOperatorKind getOverloadedOperator(Opcode Opc); SourceRange getSourceRange() const LLVM_READONLY { if (isPostfix()) return SourceRange(Val->getLocStart(), Loc); else return SourceRange(Loc, Val->getLocEnd()); } SourceLocation getExprLoc() const LLVM_READONLY { return Loc; } static bool classof(const Stmt *T) { return T->getStmtClass() == UnaryOperatorClass; } static bool classof(const UnaryOperator *) { return true; } // Iterators child_range children() { return child_range(&Val, &Val+1); } }; /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form /// offsetof(record-type, member-designator). For example, given: /// @code /// struct S { /// float f; /// double d; /// }; /// struct T { /// int i; /// struct S s[10]; /// }; /// @endcode /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d). class OffsetOfExpr : public Expr { public: // __builtin_offsetof(type, identifier(.identifier|[expr])*) class OffsetOfNode { public: /// \brief The kind of offsetof node we have. enum Kind { /// \brief An index into an array. Array = 0x00, /// \brief A field. Field = 0x01, /// \brief A field in a dependent type, known only by its name. Identifier = 0x02, /// \brief An implicit indirection through a C++ base class, when the /// field found is in a base class. Base = 0x03 }; private: enum { MaskBits = 2, Mask = 0x03 }; /// \brief The source range that covers this part of the designator. SourceRange Range; /// \brief The data describing the designator, which comes in three /// different forms, depending on the lower two bits. /// - An unsigned index into the array of Expr*'s stored after this node /// in memory, for [constant-expression] designators. /// - A FieldDecl*, for references to a known field. /// - An IdentifierInfo*, for references to a field with a given name /// when the class type is dependent. /// - A CXXBaseSpecifier*, for references that look at a field in a /// base class. uintptr_t Data; public: /// \brief Create an offsetof node that refers to an array element. OffsetOfNode(SourceLocation LBracketLoc, unsigned Index, SourceLocation RBracketLoc) : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { } /// \brief Create an offsetof node that refers to a field. OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc) : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc), Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { } /// \brief Create an offsetof node that refers to an identifier. OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name, SourceLocation NameLoc) : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc), Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { } /// \brief Create an offsetof node that refers into a C++ base class. explicit OffsetOfNode(const CXXBaseSpecifier *Base) : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {} /// \brief Determine what kind of offsetof node this is. Kind getKind() const { return static_cast<Kind>(Data & Mask); } /// \brief For an array element node, returns the index into the array /// of expressions. unsigned getArrayExprIndex() const { assert(getKind() == Array); return Data >> 2; } /// \brief For a field offsetof node, returns the field. FieldDecl *getField() const { assert(getKind() == Field); return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask); } /// \brief For a field or identifier offsetof node, returns the name of /// the field. IdentifierInfo *getFieldName() const; /// \brief For a base class node, returns the base specifier. CXXBaseSpecifier *getBase() const { assert(getKind() == Base); return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask); } /// \brief Retrieve the source range that covers this offsetof node. /// /// For an array element node, the source range contains the locations of /// the square brackets. For a field or identifier node, the source range /// contains the location of the period (if there is one) and the /// identifier. SourceRange getSourceRange() const LLVM_READONLY { return Range; } }; private: SourceLocation OperatorLoc, RParenLoc; // Base type; TypeSourceInfo *TSInfo; // Number of sub-components (i.e. instances of OffsetOfNode). unsigned NumComps; // Number of sub-expressions (i.e. array subscript expressions). unsigned NumExprs; OffsetOfExpr(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc); explicit OffsetOfExpr(unsigned numComps, unsigned numExprs) : Expr(OffsetOfExprClass, EmptyShell()), TSInfo(0), NumComps(numComps), NumExprs(numExprs) {} public: static OffsetOfExpr *Create(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc); static OffsetOfExpr *CreateEmpty(ASTContext &C, unsigned NumComps, unsigned NumExprs); /// getOperatorLoc - Return the location of the operator. SourceLocation getOperatorLoc() const { return OperatorLoc; } void setOperatorLoc(SourceLocation L) { OperatorLoc = L; } /// \brief Return the location of the right parentheses. SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation R) { RParenLoc = R; } TypeSourceInfo *getTypeSourceInfo() const { return TSInfo; } void setTypeSourceInfo(TypeSourceInfo *tsi) { TSInfo = tsi; } const OffsetOfNode &getComponent(unsigned Idx) const { assert(Idx < NumComps && "Subscript out of range"); return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx]; } void setComponent(unsigned Idx, OffsetOfNode ON) { assert(Idx < NumComps && "Subscript out of range"); reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON; } unsigned getNumComponents() const { return NumComps; } Expr* getIndexExpr(unsigned Idx) { assert(Idx < NumExprs && "Subscript out of range"); return reinterpret_cast<Expr **>( reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx]; } const Expr *getIndexExpr(unsigned Idx) const { return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx); } void setIndexExpr(unsigned Idx, Expr* E) { assert(Idx < NumComps && "Subscript out of range"); reinterpret_cast<Expr **>( reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E; } unsigned getNumExpressions() const { return NumExprs; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(OperatorLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == OffsetOfExprClass; } static bool classof(const OffsetOfExpr *) { return true; } // Iterators child_range children() { Stmt **begin = reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1) + NumComps); return child_range(begin, begin + NumExprs); } }; /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and /// vec_step (OpenCL 1.1 6.11.12). class UnaryExprOrTypeTraitExpr : public Expr { union { TypeSourceInfo *Ty; Stmt *Ex; } Argument; SourceLocation OpLoc, RParenLoc; public: UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp) : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, false, // Never type-dependent (C++ [temp.dep.expr]p3). // Value-dependent if the argument is type-dependent. TInfo->getType()->isDependentType(), TInfo->getType()->isInstantiationDependentType(), TInfo->getType()->containsUnexpandedParameterPack()), OpLoc(op), RParenLoc(rp) { UnaryExprOrTypeTraitExprBits.Kind = ExprKind; UnaryExprOrTypeTraitExprBits.IsType = true; Argument.Ty = TInfo; } UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, SourceLocation op, SourceLocation rp) : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, false, // Never type-dependent (C++ [temp.dep.expr]p3). // Value-dependent if the argument is type-dependent. E->isTypeDependent(), E->isInstantiationDependent(), E->containsUnexpandedParameterPack()), OpLoc(op), RParenLoc(rp) { UnaryExprOrTypeTraitExprBits.Kind = ExprKind; UnaryExprOrTypeTraitExprBits.IsType = false; Argument.Ex = E; } /// \brief Construct an empty sizeof/alignof expression. explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty) : Expr(UnaryExprOrTypeTraitExprClass, Empty) { } UnaryExprOrTypeTrait getKind() const { return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind); } void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;} bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; } QualType getArgumentType() const { return getArgumentTypeInfo()->getType(); } TypeSourceInfo *getArgumentTypeInfo() const { assert(isArgumentType() && "calling getArgumentType() when arg is expr"); return Argument.Ty; } Expr *getArgumentExpr() { assert(!isArgumentType() && "calling getArgumentExpr() when arg is type"); return static_cast<Expr*>(Argument.Ex); } const Expr *getArgumentExpr() const { return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr(); } void setArgument(Expr *E) { Argument.Ex = E; UnaryExprOrTypeTraitExprBits.IsType = false; } void setArgument(TypeSourceInfo *TInfo) { Argument.Ty = TInfo; UnaryExprOrTypeTraitExprBits.IsType = true; } /// Gets the argument type, or the type of the argument expression, whichever /// is appropriate. QualType getTypeOfArgument() const { return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType(); } SourceLocation getOperatorLoc() const { return OpLoc; } void setOperatorLoc(SourceLocation L) { OpLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(OpLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == UnaryExprOrTypeTraitExprClass; } static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; } // Iterators child_range children(); }; //===----------------------------------------------------------------------===// // Postfix Operators. //===----------------------------------------------------------------------===// /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting. class ArraySubscriptExpr : public Expr { enum { LHS, RHS, END_EXPR=2 }; Stmt* SubExprs[END_EXPR]; SourceLocation RBracketLoc; public: ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation rbracketloc) : Expr(ArraySubscriptExprClass, t, VK, OK, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent(), (lhs->isInstantiationDependent() || rhs->isInstantiationDependent()), (lhs->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack())), RBracketLoc(rbracketloc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } /// \brief Create an empty array subscript expression. explicit ArraySubscriptExpr(EmptyShell Shell) : Expr(ArraySubscriptExprClass, Shell) { } /// An array access can be written A[4] or 4[A] (both are equivalent). /// - getBase() and getIdx() always present the normalized view: A[4]. /// In this case getBase() returns "A" and getIdx() returns "4". /// - getLHS() and getRHS() present the syntactic view. e.g. for /// 4[A] getLHS() returns "4". /// Note: Because vector element access is also written A[4] we must /// predicate the format conversion in getBase and getIdx only on the /// the type of the RHS, as it is possible for the LHS to be a vector of /// integer type Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); } const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); } const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } Expr *getBase() { return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS()); } const Expr *getBase() const { return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS()); } Expr *getIdx() { return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS()); } const Expr *getIdx() const { return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS()); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLHS()->getLocStart(), RBracketLoc); } SourceLocation getRBracketLoc() const { return RBracketLoc; } void setRBracketLoc(SourceLocation L) { RBracketLoc = L; } SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ArraySubscriptExprClass; } static bool classof(const ArraySubscriptExpr *) { return true; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR); } }; /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]). /// CallExpr itself represents a normal function call, e.g., "f(x, 2)", /// while its subclasses may represent alternative syntax that (semantically) /// results in a function call. For example, CXXOperatorCallExpr is /// a subclass for overloaded operator calls that use operator syntax, e.g., /// "str1 + str2" to resolve to a function call. class CallExpr : public Expr { enum { FN=0, PREARGS_START=1 }; Stmt **SubExprs; unsigned NumArgs; SourceLocation RParenLoc; protected: // These versions of the constructor are for derived classes. CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, Expr **args, unsigned numargs, QualType t, ExprValueKind VK, SourceLocation rparenloc); CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty); Stmt *getPreArg(unsigned i) { assert(i < getNumPreArgs() && "Prearg access out of range!"); return SubExprs[PREARGS_START+i]; } const Stmt *getPreArg(unsigned i) const { assert(i < getNumPreArgs() && "Prearg access out of range!"); return SubExprs[PREARGS_START+i]; } void setPreArg(unsigned i, Stmt *PreArg) { assert(i < getNumPreArgs() && "Prearg access out of range!"); SubExprs[PREARGS_START+i] = PreArg; } unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; } public: CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t, ExprValueKind VK, SourceLocation rparenloc); /// \brief Build an empty call expression. CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty); const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); } Expr *getCallee() { return cast<Expr>(SubExprs[FN]); } void setCallee(Expr *F) { SubExprs[FN] = F; } Decl *getCalleeDecl(); const Decl *getCalleeDecl() const { return const_cast<CallExpr*>(this)->getCalleeDecl(); } /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0. FunctionDecl *getDirectCallee(); const FunctionDecl *getDirectCallee() const { return const_cast<CallExpr*>(this)->getDirectCallee(); } /// getNumArgs - Return the number of actual arguments to this call. /// unsigned getNumArgs() const { return NumArgs; } /// \brief Retrieve the call arguments. Expr **getArgs() { return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START); } const Expr *const *getArgs() const { return const_cast<CallExpr*>(this)->getArgs(); } /// getArg - Return the specified argument. Expr *getArg(unsigned Arg) { assert(Arg < NumArgs && "Arg access out of range!"); return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]); } const Expr *getArg(unsigned Arg) const { assert(Arg < NumArgs && "Arg access out of range!"); return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]); } /// setArg - Set the specified argument. void setArg(unsigned Arg, Expr *ArgExpr) { assert(Arg < NumArgs && "Arg access out of range!"); SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr; } /// setNumArgs - This changes the number of arguments present in this call. /// Any orphaned expressions are deleted by this, and any new operands are set /// to null. void setNumArgs(ASTContext& C, unsigned NumArgs); typedef ExprIterator arg_iterator; typedef ConstExprIterator const_arg_iterator; arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); } arg_iterator arg_end() { return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs(); } const_arg_iterator arg_begin() const { return SubExprs+PREARGS_START+getNumPreArgs(); } const_arg_iterator arg_end() const { return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs(); } /// getNumCommas - Return the number of commas that must have been present in /// this function call. unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; } /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If /// not, return 0. unsigned isBuiltinCall() const; /// getCallReturnType - Get the return type of the call expr. This is not /// always the type of the expr itself, if the return type is a reference /// type. QualType getCallReturnType() const; SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY; SourceLocation getLocStart() const LLVM_READONLY; SourceLocation getLocEnd() const LLVM_READONLY; static bool classof(const Stmt *T) { return T->getStmtClass() >= firstCallExprConstant && T->getStmtClass() <= lastCallExprConstant; } static bool classof(const CallExpr *) { return true; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START); } }; /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F. /// class MemberExpr : public Expr { /// Extra data stored in some member expressions. struct MemberNameQualifier { /// \brief The nested-name-specifier that qualifies the name, including /// source-location information. NestedNameSpecifierLoc QualifierLoc; /// \brief The DeclAccessPair through which the MemberDecl was found due to /// name qualifiers. DeclAccessPair FoundDecl; }; /// Base - the expression for the base pointer or structure references. In /// X.F, this is "X". Stmt *Base; /// MemberDecl - This is the decl being referenced by the field/member name. /// In X.F, this is the decl referenced by F. ValueDecl *MemberDecl; /// MemberDNLoc - Provides source/type location info for the /// declaration name embedded in MemberDecl. DeclarationNameLoc MemberDNLoc; /// MemberLoc - This is the location of the member name. SourceLocation MemberLoc; /// IsArrow - True if this is "X->F", false if this is "X.F". bool IsArrow : 1; /// \brief True if this member expression used a nested-name-specifier to /// refer to the member, e.g., "x->Base::f", or found its member via a using /// declaration. When true, a MemberNameQualifier /// structure is allocated immediately after the MemberExpr. bool HasQualifierOrFoundDecl : 1; /// \brief True if this member expression specified a template keyword /// and/or a template argument list explicitly, e.g., x->f<int>, /// x->template f, x->template f<int>. /// When true, an ASTTemplateKWAndArgsInfo structure and its /// TemplateArguments (if any) are allocated immediately after /// the MemberExpr or, if the member expression also has a qualifier, /// after the MemberNameQualifier structure. bool HasTemplateKWAndArgsInfo : 1; /// \brief True if this member expression refers to a method that /// was resolved from an overloaded set having size greater than 1. bool HadMultipleCandidates : 1; /// \brief Retrieve the qualifier that preceded the member name, if any. MemberNameQualifier *getMemberQualifier() { assert(HasQualifierOrFoundDecl); return reinterpret_cast<MemberNameQualifier *> (this + 1); } /// \brief Retrieve the qualifier that preceded the member name, if any. const MemberNameQualifier *getMemberQualifier() const { return const_cast<MemberExpr *>(this)->getMemberQualifier(); } public: MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo, QualType ty, ExprValueKind VK, ExprObjectKind OK) : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(), base->isValueDependent(), base->isInstantiationDependent(), base->containsUnexpandedParameterPack()), Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()), IsArrow(isarrow), HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) { assert(memberdecl->getDeclName() == NameInfo.getName()); } // NOTE: this constructor should be used only when it is known that // the member name can not provide additional syntactic info // (i.e., source locations for C++ operator names or type source info // for constructors, destructors and conversion operators). MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl, SourceLocation l, QualType ty, ExprValueKind VK, ExprObjectKind OK) : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(), base->isValueDependent(), base->isInstantiationDependent(), base->containsUnexpandedParameterPack()), Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l), IsArrow(isarrow), HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {} static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind VK, ExprObjectKind OK); void setBase(Expr *E) { Base = E; } Expr *getBase() const { return cast<Expr>(Base); } /// \brief Retrieve the member declaration to which this expression refers. /// /// The returned declaration will either be a FieldDecl or (in C++) /// a CXXMethodDecl. ValueDecl *getMemberDecl() const { return MemberDecl; } void setMemberDecl(ValueDecl *D) { MemberDecl = D; } /// \brief Retrieves the declaration found by lookup. DeclAccessPair getFoundDecl() const { if (!HasQualifierOrFoundDecl) return DeclAccessPair::make(getMemberDecl(), getMemberDecl()->getAccess()); return getMemberQualifier()->FoundDecl; } /// \brief Determines whether this member expression actually had /// a C++ nested-name-specifier prior to the name of the member, e.g., /// x->Base::foo. bool hasQualifier() const { return getQualifier() != 0; } /// \brief If the member name was qualified, retrieves the /// nested-name-specifier that precedes the member name. Otherwise, returns /// NULL. NestedNameSpecifier *getQualifier() const { if (!HasQualifierOrFoundDecl) return 0; return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier(); } /// \brief If the member name was qualified, retrieves the /// nested-name-specifier that precedes the member name, with source-location /// information. NestedNameSpecifierLoc getQualifierLoc() const { if (!hasQualifier()) return NestedNameSpecifierLoc(); return getMemberQualifier()->QualifierLoc; } /// \brief Return the optional template keyword and arguments info. ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() { if (!HasTemplateKWAndArgsInfo) return 0; if (!HasQualifierOrFoundDecl) return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1); return reinterpret_cast<ASTTemplateKWAndArgsInfo *>( getMemberQualifier() + 1); } /// \brief Return the optional template keyword and arguments info. const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const { return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo(); } /// \brief Retrieve the location of the template keyword preceding /// the member name, if any. SourceLocation getTemplateKeywordLoc() const { if (!HasTemplateKWAndArgsInfo) return SourceLocation(); return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc(); } /// \brief Retrieve the location of the left angle bracket starting the /// explicit template argument list following the member name, if any. SourceLocation getLAngleLoc() const { if (!HasTemplateKWAndArgsInfo) return SourceLocation(); return getTemplateKWAndArgsInfo()->LAngleLoc; } /// \brief Retrieve the location of the right angle bracket ending the /// explicit template argument list following the member name, if any. SourceLocation getRAngleLoc() const { if (!HasTemplateKWAndArgsInfo) return SourceLocation(); return getTemplateKWAndArgsInfo()->RAngleLoc; } /// Determines whether the member name was preceded by the template keyword. bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); } /// \brief Determines whether the member name was followed by an /// explicit template argument list. bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); } /// \brief Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getExplicitTemplateArgs().copyInto(List); } /// \brief Retrieve the explicit template argument list that /// follow the member template name. This must only be called on an /// expression with explicit template arguments. ASTTemplateArgumentListInfo &getExplicitTemplateArgs() { assert(hasExplicitTemplateArgs()); return *getTemplateKWAndArgsInfo(); } /// \brief Retrieve the explicit template argument list that /// followed the member template name. This must only be called on /// an expression with explicit template arguments. const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const { return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs(); } /// \brief Retrieves the optional explicit template arguments. /// This points to the same data as getExplicitTemplateArgs(), but /// returns null if there are no explicit template arguments. const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return &getExplicitTemplateArgs(); } /// \brief Retrieve the template arguments provided as part of this /// template-id. const TemplateArgumentLoc *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().getTemplateArgs(); } /// \brief Retrieve the number of template arguments provided as part of this /// template-id. unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().NumTemplateArgs; } /// \brief Retrieve the member declaration name info. DeclarationNameInfo getMemberNameInfo() const { return DeclarationNameInfo(MemberDecl->getDeclName(), MemberLoc, MemberDNLoc); } bool isArrow() const { return IsArrow; } void setArrow(bool A) { IsArrow = A; } /// getMemberLoc - Return the location of the "member", in X->F, it is the /// location of 'F'. SourceLocation getMemberLoc() const { return MemberLoc; } void setMemberLoc(SourceLocation L) { MemberLoc = L; } SourceRange getSourceRange() const LLVM_READONLY; SourceLocation getLocStart() const LLVM_READONLY; SourceLocation getLocEnd() const LLVM_READONLY; SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; } /// \brief Determine whether the base of this explicit is implicit. bool isImplicitAccess() const { return getBase() && getBase()->isImplicitCXXThis(); } /// \brief Returns true if this member expression refers to a method that /// was resolved from an overloaded set having size greater than 1. bool hadMultipleCandidates() const { return HadMultipleCandidates; } /// \brief Sets the flag telling whether this expression refers to /// a method that was resolved from an overloaded set having size /// greater than 1. void setHadMultipleCandidates(bool V = true) { HadMultipleCandidates = V; } static bool classof(const Stmt *T) { return T->getStmtClass() == MemberExprClass; } static bool classof(const MemberExpr *) { return true; } // Iterators child_range children() { return child_range(&Base, &Base+1); } friend class ASTReader; friend class ASTStmtWriter; }; /// CompoundLiteralExpr - [C99 6.5.2.5] /// class CompoundLiteralExpr : public Expr { /// LParenLoc - If non-null, this is the location of the left paren in a /// compound literal like "(int){4}". This can be null if this is a /// synthesized compound expression. SourceLocation LParenLoc; /// The type as written. This can be an incomplete array type, in /// which case the actual expression type will be different. /// The int part of the pair stores whether this expr is file scope. llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope; Stmt *Init; public: CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo, QualType T, ExprValueKind VK, Expr *init, bool fileScope) : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary, tinfo->getType()->isDependentType(), init->isValueDependent(), (init->isInstantiationDependent() || tinfo->getType()->isInstantiationDependentType()), init->containsUnexpandedParameterPack()), LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {} /// \brief Construct an empty compound literal. explicit CompoundLiteralExpr(EmptyShell Empty) : Expr(CompoundLiteralExprClass, Empty) { } const Expr *getInitializer() const { return cast<Expr>(Init); } Expr *getInitializer() { return cast<Expr>(Init); } void setInitializer(Expr *E) { Init = E; } bool isFileScope() const { return TInfoAndScope.getInt(); } void setFileScope(bool FS) { TInfoAndScope.setInt(FS); } SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; } TypeSourceInfo *getTypeSourceInfo() const { return TInfoAndScope.getPointer(); } void setTypeSourceInfo(TypeSourceInfo *tinfo) { TInfoAndScope.setPointer(tinfo); } SourceRange getSourceRange() const LLVM_READONLY { // FIXME: Init should never be null. if (!Init) return SourceRange(); if (LParenLoc.isInvalid()) return Init->getSourceRange(); return SourceRange(LParenLoc, Init->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == CompoundLiteralExprClass; } static bool classof(const CompoundLiteralExpr *) { return true; } // Iterators child_range children() { return child_range(&Init, &Init+1); } }; /// CastExpr - Base class for type casts, including both implicit /// casts (ImplicitCastExpr) and explicit casts that have some /// representation in the source code (ExplicitCastExpr's derived /// classes). class CastExpr : public Expr { public: typedef clang::CastKind CastKind; private: Stmt *Op; void CheckCastConsistency() const; const CXXBaseSpecifier * const *path_buffer() const { return const_cast<CastExpr*>(this)->path_buffer(); } CXXBaseSpecifier **path_buffer(); void setBasePathSize(unsigned basePathSize) { CastExprBits.BasePathSize = basePathSize; assert(CastExprBits.BasePathSize == basePathSize && "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!"); } protected: CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind, Expr *op, unsigned BasePathSize) : Expr(SC, ty, VK, OK_Ordinary, // Cast expressions are type-dependent if the type is // dependent (C++ [temp.dep.expr]p3). ty->isDependentType(), // Cast expressions are value-dependent if the type is // dependent or if the subexpression is value-dependent. ty->isDependentType() || (op && op->isValueDependent()), (ty->isInstantiationDependentType() || (op && op->isInstantiationDependent())), (ty->containsUnexpandedParameterPack() || op->containsUnexpandedParameterPack())), Op(op) { assert(kind != CK_Invalid && "creating cast with invalid cast kind"); CastExprBits.Kind = kind; setBasePathSize(BasePathSize); #ifndef NDEBUG CheckCastConsistency(); #endif } /// \brief Construct an empty cast. CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize) : Expr(SC, Empty) { setBasePathSize(BasePathSize); } public: CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; } void setCastKind(CastKind K) { CastExprBits.Kind = K; } const char *getCastKindName() const; Expr *getSubExpr() { return cast<Expr>(Op); } const Expr *getSubExpr() const { return cast<Expr>(Op); } void setSubExpr(Expr *E) { Op = E; } /// \brief Retrieve the cast subexpression as it was written in the source /// code, looking through any implicit casts or other intermediate nodes /// introduced by semantic analysis. Expr *getSubExprAsWritten(); const Expr *getSubExprAsWritten() const { return const_cast<CastExpr *>(this)->getSubExprAsWritten(); } typedef CXXBaseSpecifier **path_iterator; typedef const CXXBaseSpecifier * const *path_const_iterator; bool path_empty() const { return CastExprBits.BasePathSize == 0; } unsigned path_size() const { return CastExprBits.BasePathSize; } path_iterator path_begin() { return path_buffer(); } path_iterator path_end() { return path_buffer() + path_size(); } path_const_iterator path_begin() const { return path_buffer(); } path_const_iterator path_end() const { return path_buffer() + path_size(); } void setCastPath(const CXXCastPath &Path); static bool classof(const Stmt *T) { return T->getStmtClass() >= firstCastExprConstant && T->getStmtClass() <= lastCastExprConstant; } static bool classof(const CastExpr *) { return true; } // Iterators child_range children() { return child_range(&Op, &Op+1); } }; /// ImplicitCastExpr - Allows us to explicitly represent implicit type /// conversions, which have no direct representation in the original /// source code. For example: converting T[]->T*, void f()->void /// (*f)(), float->double, short->int, etc. /// /// In C, implicit casts always produce rvalues. However, in C++, an /// implicit cast whose result is being bound to a reference will be /// an lvalue or xvalue. For example: /// /// @code /// class Base { }; /// class Derived : public Base { }; /// Derived &&ref(); /// void f(Derived d) { /// Base& b = d; // initializer is an ImplicitCastExpr /// // to an lvalue of type Base /// Base&& r = ref(); // initializer is an ImplicitCastExpr /// // to an xvalue of type Base /// } /// @endcode class ImplicitCastExpr : public CastExpr { private: ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, unsigned BasePathLength, ExprValueKind VK) : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) { } /// \brief Construct an empty implicit cast. explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize) : CastExpr(ImplicitCastExprClass, Shell, PathSize) { } public: enum OnStack_t { OnStack }; ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op, ExprValueKind VK) : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) { } static ImplicitCastExpr *Create(ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat); static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize); SourceRange getSourceRange() const LLVM_READONLY { return getSubExpr()->getSourceRange(); } SourceLocation getLocStart() const LLVM_READONLY { return getSubExpr()->getLocStart(); } SourceLocation getLocEnd() const LLVM_READONLY { return getSubExpr()->getLocEnd(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ImplicitCastExprClass; } static bool classof(const ImplicitCastExpr *) { return true; } }; inline Expr *Expr::IgnoreImpCasts() { Expr *e = this; while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) e = ice->getSubExpr(); return e; } /// ExplicitCastExpr - An explicit cast written in the source /// code. /// /// This class is effectively an abstract class, because it provides /// the basic representation of an explicitly-written cast without /// specifying which kind of cast (C cast, functional cast, static /// cast, etc.) was written; specific derived classes represent the /// particular style of cast and its location information. /// /// Unlike implicit casts, explicit cast nodes have two different /// types: the type that was written into the source code, and the /// actual type of the expression as determined by semantic /// analysis. These types may differ slightly. For example, in C++ one /// can cast to a reference type, which indicates that the resulting /// expression will be an lvalue or xvalue. The reference type, however, /// will not be used as the type of the expression. class ExplicitCastExpr : public CastExpr { /// TInfo - Source type info for the (written) type /// this expression is casting to. TypeSourceInfo *TInfo; protected: ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK, CastKind kind, Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy) : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {} /// \brief Construct an empty explicit cast. ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize) : CastExpr(SC, Shell, PathSize) { } public: /// getTypeInfoAsWritten - Returns the type source info for the type /// that this expression is casting to. TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; } void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; } /// getTypeAsWritten - Returns the type that this expression is /// casting to, as written in the source code. QualType getTypeAsWritten() const { return TInfo->getType(); } static bool classof(const Stmt *T) { return T->getStmtClass() >= firstExplicitCastExprConstant && T->getStmtClass() <= lastExplicitCastExprConstant; } static bool classof(const ExplicitCastExpr *) { return true; } }; /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style /// cast in C++ (C++ [expr.cast]), which uses the syntax /// (Type)expr. For example: @c (int)f. class CStyleCastExpr : public ExplicitCastExpr { SourceLocation LPLoc; // the location of the left paren SourceLocation RPLoc; // the location of the right paren CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation r) : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize, writtenTy), LPLoc(l), RPLoc(r) {} /// \brief Construct an empty C-style explicit cast. explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize) : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { } public: static CStyleCastExpr *Create(ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R); static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize); SourceLocation getLParenLoc() const { return LPLoc; } void setLParenLoc(SourceLocation L) { LPLoc = L; } SourceLocation getRParenLoc() const { return RPLoc; } void setRParenLoc(SourceLocation L) { RPLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == CStyleCastExprClass; } static bool classof(const CStyleCastExpr *) { return true; } }; /// \brief A builtin binary operation expression such as "x + y" or "x <= y". /// /// This expression node kind describes a builtin binary operation, /// such as "x + y" for integer values "x" and "y". The operands will /// already have been converted to appropriate types (e.g., by /// performing promotions or conversions). /// /// In C++, where operators may be overloaded, a different kind of /// expression node (CXXOperatorCallExpr) is used to express the /// invocation of an overloaded operator with operator syntax. Within /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is /// used to store an expression "x + y" depends on the subexpressions /// for x and y. If neither x or y is type-dependent, and the "+" /// operator resolves to a built-in operation, BinaryOperator will be /// used to express the computation (x and y may still be /// value-dependent). If either x or y is type-dependent, or if the /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will /// be used to express the computation. class BinaryOperator : public Expr { public: typedef BinaryOperatorKind Opcode; private: unsigned Opc : 6; SourceLocation OpLoc; enum { LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; public: BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc) : Expr(BinaryOperatorClass, ResTy, VK, OK, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent(), (lhs->isInstantiationDependent() || rhs->isInstantiationDependent()), (lhs->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack())), Opc(opc), OpLoc(opLoc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; assert(!isCompoundAssignmentOp() && "Use ArithAssignBinaryOperator for compound assignments"); } /// \brief Construct an empty binary operator. explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { } SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; } SourceLocation getOperatorLoc() const { return OpLoc; } void setOperatorLoc(SourceLocation L) { OpLoc = L; } Opcode getOpcode() const { return static_cast<Opcode>(Opc); } void setOpcode(Opcode O) { Opc = O; } Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd()); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "<<=". static const char *getOpcodeStr(Opcode Op); const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); } /// \brief Retrieve the binary opcode that corresponds to the given /// overloaded operator. static Opcode getOverloadedOpcode(OverloadedOperatorKind OO); /// \brief Retrieve the overloaded operator kind that corresponds to /// the given binary opcode. static OverloadedOperatorKind getOverloadedOperator(Opcode Opc); /// predicates to categorize the respective opcodes. bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; } bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; } static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; } bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); } static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; } bool isShiftOp() const { return isShiftOp(getOpcode()); } static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; } bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); } static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; } bool isRelationalOp() const { return isRelationalOp(getOpcode()); } static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; } bool isEqualityOp() const { return isEqualityOp(getOpcode()); } static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; } bool isComparisonOp() const { return isComparisonOp(getOpcode()); } static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; } bool isLogicalOp() const { return isLogicalOp(getOpcode()); } static bool isAssignmentOp(Opcode Opc) { return Opc >= BO_Assign && Opc <= BO_OrAssign; } bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); } static bool isCompoundAssignmentOp(Opcode Opc) { return Opc > BO_Assign && Opc <= BO_OrAssign; } bool isCompoundAssignmentOp() const { return isCompoundAssignmentOp(getOpcode()); } static Opcode getOpForCompoundAssignment(Opcode Opc) { assert(isCompoundAssignmentOp(Opc)); if (Opc >= BO_AndAssign) return Opcode(unsigned(Opc) - BO_AndAssign + BO_And); else return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul); } static bool isShiftAssignOp(Opcode Opc) { return Opc == BO_ShlAssign || Opc == BO_ShrAssign; } bool isShiftAssignOp() const { return isShiftAssignOp(getOpcode()); } static bool classof(const Stmt *S) { return S->getStmtClass() >= firstBinaryOperatorConstant && S->getStmtClass() <= lastBinaryOperatorConstant; } static bool classof(const BinaryOperator *) { return true; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR); } protected: BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, bool dead) : Expr(CompoundAssignOperatorClass, ResTy, VK, OK, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent(), (lhs->isInstantiationDependent() || rhs->isInstantiationDependent()), (lhs->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack())), Opc(opc), OpLoc(opLoc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty), Opc(BO_MulAssign) { } }; /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep /// track of the type the operation is performed in. Due to the semantics of /// these operators, the operands are promoted, the arithmetic performed, an /// implicit conversion back to the result type done, then the assignment takes /// place. This captures the intermediate type which the computation is done /// in. class CompoundAssignOperator : public BinaryOperator { QualType ComputationLHSType; QualType ComputationResultType; public: CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType, ExprValueKind VK, ExprObjectKind OK, QualType CompLHSType, QualType CompResultType, SourceLocation OpLoc) : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true), ComputationLHSType(CompLHSType), ComputationResultType(CompResultType) { assert(isCompoundAssignmentOp() && "Only should be used for compound assignments"); } /// \brief Build an empty compound assignment operator expression. explicit CompoundAssignOperator(EmptyShell Empty) : BinaryOperator(CompoundAssignOperatorClass, Empty) { } // The two computation types are the type the LHS is converted // to for the computation and the type of the result; the two are // distinct in a few cases (specifically, int+=ptr and ptr-=ptr). QualType getComputationLHSType() const { return ComputationLHSType; } void setComputationLHSType(QualType T) { ComputationLHSType = T; } QualType getComputationResultType() const { return ComputationResultType; } void setComputationResultType(QualType T) { ComputationResultType = T; } static bool classof(const CompoundAssignOperator *) { return true; } static bool classof(const Stmt *S) { return S->getStmtClass() == CompoundAssignOperatorClass; } }; /// AbstractConditionalOperator - An abstract base class for /// ConditionalOperator and BinaryConditionalOperator. class AbstractConditionalOperator : public Expr { SourceLocation QuestionLoc, ColonLoc; friend class ASTStmtReader; protected: AbstractConditionalOperator(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack, SourceLocation qloc, SourceLocation cloc) : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack), QuestionLoc(qloc), ColonLoc(cloc) {} AbstractConditionalOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) { } public: // getCond - Return the expression representing the condition for // the ?: operator. Expr *getCond() const; // getTrueExpr - Return the subexpression representing the value of // the expression if the condition evaluates to true. Expr *getTrueExpr() const; // getFalseExpr - Return the subexpression representing the value of // the expression if the condition evaluates to false. This is // the same as getRHS. Expr *getFalseExpr() const; SourceLocation getQuestionLoc() const { return QuestionLoc; } SourceLocation getColonLoc() const { return ColonLoc; } static bool classof(const Stmt *T) { return T->getStmtClass() == ConditionalOperatorClass || T->getStmtClass() == BinaryConditionalOperatorClass; } static bool classof(const AbstractConditionalOperator *) { return true; } }; /// ConditionalOperator - The ?: ternary operator. The GNU "missing /// middle" extension is a BinaryConditionalOperator. class ConditionalOperator : public AbstractConditionalOperator { enum { COND, LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides. friend class ASTStmtReader; public: ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs, SourceLocation CLoc, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK) : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK, // FIXME: the type of the conditional operator doesn't // depend on the type of the conditional, but the standard // seems to imply that it could. File a bug! (lhs->isTypeDependent() || rhs->isTypeDependent()), (cond->isValueDependent() || lhs->isValueDependent() || rhs->isValueDependent()), (cond->isInstantiationDependent() || lhs->isInstantiationDependent() || rhs->isInstantiationDependent()), (cond->containsUnexpandedParameterPack() || lhs->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack()), QLoc, CLoc) { SubExprs[COND] = cond; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } /// \brief Build an empty conditional operator. explicit ConditionalOperator(EmptyShell Empty) : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { } // getCond - Return the expression representing the condition for // the ?: operator. Expr *getCond() const { return cast<Expr>(SubExprs[COND]); } // getTrueExpr - Return the subexpression representing the value of // the expression if the condition evaluates to true. Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); } // getFalseExpr - Return the subexpression representing the value of // the expression if the condition evaluates to false. This is // the same as getRHS. Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); } Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); } Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == ConditionalOperatorClass; } static bool classof(const ConditionalOperator *) { return true; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR); } }; /// BinaryConditionalOperator - The GNU extension to the conditional /// operator which allows the middle operand to be omitted. /// /// This is a different expression kind on the assumption that almost /// every client ends up needing to know that these are different. class BinaryConditionalOperator : public AbstractConditionalOperator { enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS }; /// - the common condition/left-hand-side expression, which will be /// evaluated as the opaque value /// - the condition, expressed in terms of the opaque value /// - the left-hand-side, expressed in terms of the opaque value /// - the right-hand-side Stmt *SubExprs[NUM_SUBEXPRS]; OpaqueValueExpr *OpaqueValue; friend class ASTStmtReader; public: BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue, Expr *cond, Expr *lhs, Expr *rhs, SourceLocation qloc, SourceLocation cloc, QualType t, ExprValueKind VK, ExprObjectKind OK) : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK, (common->isTypeDependent() || rhs->isTypeDependent()), (common->isValueDependent() || rhs->isValueDependent()), (common->isInstantiationDependent() || rhs->isInstantiationDependent()), (common->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack()), qloc, cloc), OpaqueValue(opaqueValue) { SubExprs[COMMON] = common; SubExprs[COND] = cond; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value"); } /// \brief Build an empty conditional operator. explicit BinaryConditionalOperator(EmptyShell Empty) : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { } /// \brief getCommon - Return the common expression, written to the /// left of the condition. The opaque value will be bound to the /// result of this expression. Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); } /// \brief getOpaqueValue - Return the opaque value placeholder. OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; } /// \brief getCond - Return the condition expression; this is defined /// in terms of the opaque value. Expr *getCond() const { return cast<Expr>(SubExprs[COND]); } /// \brief getTrueExpr - Return the subexpression which will be /// evaluated if the condition evaluates to true; this is defined /// in terms of the opaque value. Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); } /// \brief getFalseExpr - Return the subexpression which will be /// evaluated if the condnition evaluates to false; this is /// defined in terms of the opaque value. Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == BinaryConditionalOperatorClass; } static bool classof(const BinaryConditionalOperator *) { return true; } // Iterators child_range children() { return child_range(SubExprs, SubExprs + NUM_SUBEXPRS); } }; inline Expr *AbstractConditionalOperator::getCond() const { if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this)) return co->getCond(); return cast<BinaryConditionalOperator>(this)->getCond(); } inline Expr *AbstractConditionalOperator::getTrueExpr() const { if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this)) return co->getTrueExpr(); return cast<BinaryConditionalOperator>(this)->getTrueExpr(); } inline Expr *AbstractConditionalOperator::getFalseExpr() const { if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this)) return co->getFalseExpr(); return cast<BinaryConditionalOperator>(this)->getFalseExpr(); } /// AddrLabelExpr - The GNU address of label extension, representing &&label. class AddrLabelExpr : public Expr { SourceLocation AmpAmpLoc, LabelLoc; LabelDecl *Label; public: AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L, QualType t) : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false, false), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {} /// \brief Build an empty address of a label expression. explicit AddrLabelExpr(EmptyShell Empty) : Expr(AddrLabelExprClass, Empty) { } SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; } void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; } SourceLocation getLabelLoc() const { return LabelLoc; } void setLabelLoc(SourceLocation L) { LabelLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AmpAmpLoc, LabelLoc); } LabelDecl *getLabel() const { return Label; } void setLabel(LabelDecl *L) { Label = L; } static bool classof(const Stmt *T) { return T->getStmtClass() == AddrLabelExprClass; } static bool classof(const AddrLabelExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}). /// The StmtExpr contains a single CompoundStmt node, which it evaluates and /// takes the value of the last subexpression. /// /// A StmtExpr is always an r-value; values "returned" out of a /// StmtExpr will be copied. class StmtExpr : public Expr { Stmt *SubStmt; SourceLocation LParenLoc, RParenLoc; public: // FIXME: Does type-dependence need to be computed differently? // FIXME: Do we need to compute instantiation instantiation-dependence for // statements? (ugh!) StmtExpr(CompoundStmt *substmt, QualType T, SourceLocation lp, SourceLocation rp) : Expr(StmtExprClass, T, VK_RValue, OK_Ordinary, T->isDependentType(), false, false, false), SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { } /// \brief Build an empty statement expression. explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { } CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); } const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); } void setSubStmt(CompoundStmt *S) { SubStmt = S; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LParenLoc, RParenLoc); } SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } static bool classof(const Stmt *T) { return T->getStmtClass() == StmtExprClass; } static bool classof(const StmtExpr *) { return true; } // Iterators child_range children() { return child_range(&SubStmt, &SubStmt+1); } }; /// ShuffleVectorExpr - clang-specific builtin-in function /// __builtin_shufflevector. /// This AST node represents a operator that does a constant /// shuffle, similar to LLVM's shufflevector instruction. It takes /// two vectors and a variable number of constant indices, /// and returns the appropriately shuffled vector. class ShuffleVectorExpr : public Expr { SourceLocation BuiltinLoc, RParenLoc; // SubExprs - the list of values passed to the __builtin_shufflevector // function. The first two are vectors, and the rest are constant // indices. The number of values in this list is always // 2+the number of indices in the vector type. Stmt **SubExprs; unsigned NumExprs; public: ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, QualType Type, SourceLocation BLoc, SourceLocation RP); /// \brief Build an empty vector-shuffle expression. explicit ShuffleVectorExpr(EmptyShell Empty) : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ShuffleVectorExprClass; } static bool classof(const ShuffleVectorExpr *) { return true; } /// getNumSubExprs - Return the size of the SubExprs array. This includes the /// constant expression, the actual arguments passed in, and the function /// pointers. unsigned getNumSubExprs() const { return NumExprs; } /// \brief Retrieve the array of expressions. Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); } /// getExpr - Return the Expr at the specified index. Expr *getExpr(unsigned Index) { assert((Index < NumExprs) && "Arg access out of range!"); return cast<Expr>(SubExprs[Index]); } const Expr *getExpr(unsigned Index) const { assert((Index < NumExprs) && "Arg access out of range!"); return cast<Expr>(SubExprs[Index]); } void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs); unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) { assert((N < NumExprs - 2) && "Shuffle idx out of range!"); return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue(); } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+NumExprs); } }; /// ChooseExpr - GNU builtin-in function __builtin_choose_expr. /// This AST node is similar to the conditional operator (?:) in C, with /// the following exceptions: /// - the test expression must be a integer constant expression. /// - the expression returned acts like the chosen subexpression in every /// visible way: the type is the same as that of the chosen subexpression, /// and all predicates (whether it's an l-value, whether it's an integer /// constant expression, etc.) return the same result as for the chosen /// sub-expression. class ChooseExpr : public Expr { enum { COND, LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides. SourceLocation BuiltinLoc, RParenLoc; public: ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation RP, bool TypeDependent, bool ValueDependent) : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent, (cond->isInstantiationDependent() || lhs->isInstantiationDependent() || rhs->isInstantiationDependent()), (cond->containsUnexpandedParameterPack() || lhs->containsUnexpandedParameterPack() || rhs->containsUnexpandedParameterPack())), BuiltinLoc(BLoc), RParenLoc(RP) { SubExprs[COND] = cond; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } /// \brief Build an empty __builtin_choose_expr. explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { } /// isConditionTrue - Return whether the condition is true (i.e. not /// equal to zero). bool isConditionTrue(const ASTContext &C) const; /// getChosenSubExpr - Return the subexpression chosen according to the /// condition. Expr *getChosenSubExpr(const ASTContext &C) const { return isConditionTrue(C) ? getLHS() : getRHS(); } Expr *getCond() const { return cast<Expr>(SubExprs[COND]); } void setCond(Expr *E) { SubExprs[COND] = E; } Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ChooseExprClass; } static bool classof(const ChooseExpr *) { return true; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR); } }; /// GNUNullExpr - Implements the GNU __null extension, which is a name /// for a null pointer constant that has integral type (e.g., int or /// long) and is the same size and alignment as a pointer. The __null /// extension is typically only used by system headers, which define /// NULL as __null in C++ rather than using 0 (which is an integer /// that may not match the size of a pointer). class GNUNullExpr : public Expr { /// TokenLoc - The location of the __null keyword. SourceLocation TokenLoc; public: GNUNullExpr(QualType Ty, SourceLocation Loc) : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false, false), TokenLoc(Loc) { } /// \brief Build an empty GNU __null expression. explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { } /// getTokenLocation - The location of the __null token. SourceLocation getTokenLocation() const { return TokenLoc; } void setTokenLocation(SourceLocation L) { TokenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(TokenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == GNUNullExprClass; } static bool classof(const GNUNullExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// VAArgExpr, used for the builtin function __builtin_va_arg. class VAArgExpr : public Expr { Stmt *Val; TypeSourceInfo *TInfo; SourceLocation BuiltinLoc, RParenLoc; public: VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo, SourceLocation RPLoc, QualType t) : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(), false, (TInfo->getType()->isInstantiationDependentType() || e->isInstantiationDependent()), (TInfo->getType()->containsUnexpandedParameterPack() || e->containsUnexpandedParameterPack())), Val(e), TInfo(TInfo), BuiltinLoc(BLoc), RParenLoc(RPLoc) { } /// \brief Create an empty __builtin_va_arg expression. explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { } const Expr *getSubExpr() const { return cast<Expr>(Val); } Expr *getSubExpr() { return cast<Expr>(Val); } void setSubExpr(Expr *E) { Val = E; } TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; } void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == VAArgExprClass; } static bool classof(const VAArgExpr *) { return true; } // Iterators child_range children() { return child_range(&Val, &Val+1); } }; /// @brief Describes an C or C++ initializer list. /// /// InitListExpr describes an initializer list, which can be used to /// initialize objects of different types, including /// struct/class/union types, arrays, and vectors. For example: /// /// @code /// struct foo x = { 1, { 2, 3 } }; /// @endcode /// /// Prior to semantic analysis, an initializer list will represent the /// initializer list as written by the user, but will have the /// placeholder type "void". This initializer list is called the /// syntactic form of the initializer, and may contain C99 designated /// initializers (represented as DesignatedInitExprs), initializations /// of subobject members without explicit braces, and so on. Clients /// interested in the original syntax of the initializer list should /// use the syntactic form of the initializer list. /// /// After semantic analysis, the initializer list will represent the /// semantic form of the initializer, where the initializations of all /// subobjects are made explicit with nested InitListExpr nodes and /// C99 designators have been eliminated by placing the designated /// initializations into the subobject they initialize. Additionally, /// any "holes" in the initialization, where no initializer has been /// specified for a particular subobject, will be replaced with /// implicitly-generated ImplicitValueInitExpr expressions that /// value-initialize the subobjects. Note, however, that the /// initializer lists may still have fewer initializers than there are /// elements to initialize within the object. /// /// Given the semantic form of the initializer list, one can retrieve /// the original syntactic form of that initializer list (if it /// exists) using getSyntacticForm(). Since many initializer lists /// have the same syntactic and semantic forms, getSyntacticForm() may /// return NULL, indicating that the current initializer list also /// serves as its syntactic form. class InitListExpr : public Expr { // FIXME: Eliminate this vector in favor of ASTContext allocation typedef ASTVector<Stmt *> InitExprsTy; InitExprsTy InitExprs; SourceLocation LBraceLoc, RBraceLoc; /// Contains the initializer list that describes the syntactic form /// written in the source code. InitListExpr *SyntacticForm; /// \brief Either: /// If this initializer list initializes an array with more elements than /// there are initializers in the list, specifies an expression to be used /// for value initialization of the rest of the elements. /// Or /// If this initializer list initializes a union, specifies which /// field within the union will be initialized. llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit; public: InitListExpr(ASTContext &C, SourceLocation lbraceloc, Expr **initexprs, unsigned numinits, SourceLocation rbraceloc); /// \brief Build an empty initializer list. explicit InitListExpr(ASTContext &C, EmptyShell Empty) : Expr(InitListExprClass, Empty), InitExprs(C) { } unsigned getNumInits() const { return InitExprs.size(); } /// \brief Retrieve the set of initializers. Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); } const Expr *getInit(unsigned Init) const { assert(Init < getNumInits() && "Initializer access out of range!"); return cast_or_null<Expr>(InitExprs[Init]); } Expr *getInit(unsigned Init) { assert(Init < getNumInits() && "Initializer access out of range!"); return cast_or_null<Expr>(InitExprs[Init]); } void setInit(unsigned Init, Expr *expr) { assert(Init < getNumInits() && "Initializer access out of range!"); InitExprs[Init] = expr; } /// \brief Reserve space for some number of initializers. void reserveInits(ASTContext &C, unsigned NumInits); /// @brief Specify the number of initializers /// /// If there are more than @p NumInits initializers, the remaining /// initializers will be destroyed. If there are fewer than @p /// NumInits initializers, NULL expressions will be added for the /// unknown initializers. void resizeInits(ASTContext &Context, unsigned NumInits); /// @brief Updates the initializer at index @p Init with the new /// expression @p expr, and returns the old expression at that /// location. /// /// When @p Init is out of range for this initializer list, the /// initializer list will be extended with NULL expressions to /// accommodate the new entry. Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr); /// \brief If this initializer list initializes an array with more elements /// than there are initializers in the list, specifies an expression to be /// used for value initialization of the rest of the elements. Expr *getArrayFiller() { return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>(); } const Expr *getArrayFiller() const { return const_cast<InitListExpr *>(this)->getArrayFiller(); } void setArrayFiller(Expr *filler); /// \brief Return true if this is an array initializer and its array "filler" /// has been set. bool hasArrayFiller() const { return getArrayFiller(); } /// \brief If this initializes a union, specifies which field in the /// union to initialize. /// /// Typically, this field is the first named field within the /// union. However, a designated initializer can specify the /// initialization of a different field within the union. FieldDecl *getInitializedFieldInUnion() { return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>(); } const FieldDecl *getInitializedFieldInUnion() const { return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion(); } void setInitializedFieldInUnion(FieldDecl *FD) { ArrayFillerOrUnionFieldInit = FD; } // Explicit InitListExpr's originate from source code (and have valid source // locations). Implicit InitListExpr's are created by the semantic analyzer. bool isExplicit() { return LBraceLoc.isValid() && RBraceLoc.isValid(); } // Is this an initializer for an array of characters, initialized by a string // literal or an @encode? bool isStringLiteralInit() const; SourceLocation getLBraceLoc() const { return LBraceLoc; } void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; } /// @brief Retrieve the initializer list that describes the /// syntactic form of the initializer. /// /// InitListExpr *getSyntacticForm() const { return SyntacticForm; } void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; } bool hadArrayRangeDesignator() const { return InitListExprBits.HadArrayRangeDesignator != 0; } void sawArrayRangeDesignator(bool ARD = true) { InitListExprBits.HadArrayRangeDesignator = ARD; } bool initializesStdInitializerList() const { return InitListExprBits.InitializesStdInitializerList != 0; } void setInitializesStdInitializerList(bool ISIL = true) { InitListExprBits.InitializesStdInitializerList = ISIL; } SourceRange getSourceRange() const LLVM_READONLY; static bool classof(const Stmt *T) { return T->getStmtClass() == InitListExprClass; } static bool classof(const InitListExpr *) { return true; } // Iterators child_range children() { if (InitExprs.empty()) return child_range(); return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size()); } typedef InitExprsTy::iterator iterator; typedef InitExprsTy::const_iterator const_iterator; typedef InitExprsTy::reverse_iterator reverse_iterator; typedef InitExprsTy::const_reverse_iterator const_reverse_iterator; iterator begin() { return InitExprs.begin(); } const_iterator begin() const { return InitExprs.begin(); } iterator end() { return InitExprs.end(); } const_iterator end() const { return InitExprs.end(); } reverse_iterator rbegin() { return InitExprs.rbegin(); } const_reverse_iterator rbegin() const { return InitExprs.rbegin(); } reverse_iterator rend() { return InitExprs.rend(); } const_reverse_iterator rend() const { return InitExprs.rend(); } friend class ASTStmtReader; friend class ASTStmtWriter; }; /// @brief Represents a C99 designated initializer expression. /// /// A designated initializer expression (C99 6.7.8) contains one or /// more designators (which can be field designators, array /// designators, or GNU array-range designators) followed by an /// expression that initializes the field or element(s) that the /// designators refer to. For example, given: /// /// @code /// struct point { /// double x; /// double y; /// }; /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 }; /// @endcode /// /// The InitListExpr contains three DesignatedInitExprs, the first of /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two /// designators, one array designator for @c [2] followed by one field /// designator for @c .y. The initalization expression will be 1.0. class DesignatedInitExpr : public Expr { public: /// \brief Forward declaration of the Designator class. class Designator; private: /// The location of the '=' or ':' prior to the actual initializer /// expression. SourceLocation EqualOrColonLoc; /// Whether this designated initializer used the GNU deprecated /// syntax rather than the C99 '=' syntax. bool GNUSyntax : 1; /// The number of designators in this initializer expression. unsigned NumDesignators : 15; /// The number of subexpressions of this initializer expression, /// which contains both the initializer and any additional /// expressions used by array and array-range designators. unsigned NumSubExprs : 16; /// \brief The designators in this designated initialization /// expression. Designator *Designators; DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators, const Designator *Designators, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr **IndexExprs, unsigned NumIndexExprs, Expr *Init); explicit DesignatedInitExpr(unsigned NumSubExprs) : Expr(DesignatedInitExprClass, EmptyShell()), NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { } public: /// A field designator, e.g., ".x". struct FieldDesignator { /// Refers to the field that is being initialized. The low bit /// of this field determines whether this is actually a pointer /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When /// initially constructed, a field designator will store an /// IdentifierInfo*. After semantic analysis has resolved that /// name, the field designator will instead store a FieldDecl*. uintptr_t NameOrField; /// The location of the '.' in the designated initializer. unsigned DotLoc; /// The location of the field name in the designated initializer. unsigned FieldLoc; }; /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]". struct ArrayOrRangeDesignator { /// Location of the first index expression within the designated /// initializer expression's list of subexpressions. unsigned Index; /// The location of the '[' starting the array range designator. unsigned LBracketLoc; /// The location of the ellipsis separating the start and end /// indices. Only valid for GNU array-range designators. unsigned EllipsisLoc; /// The location of the ']' terminating the array range designator. unsigned RBracketLoc; }; /// @brief Represents a single C99 designator. /// /// @todo This class is infuriatingly similar to clang::Designator, /// but minor differences (storing indices vs. storing pointers) /// keep us from reusing it. Try harder, later, to rectify these /// differences. class Designator { /// @brief The kind of designator this describes. enum { FieldDesignator, ArrayDesignator, ArrayRangeDesignator } Kind; union { /// A field designator, e.g., ".x". struct FieldDesignator Field; /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]". struct ArrayOrRangeDesignator ArrayOrRange; }; friend class DesignatedInitExpr; public: Designator() {} /// @brief Initializes a field designator. Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc, SourceLocation FieldLoc) : Kind(FieldDesignator) { Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01; Field.DotLoc = DotLoc.getRawEncoding(); Field.FieldLoc = FieldLoc.getRawEncoding(); } /// @brief Initializes an array designator. Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation RBracketLoc) : Kind(ArrayDesignator) { ArrayOrRange.Index = Index; ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding(); ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding(); ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding(); } /// @brief Initializes a GNU array-range designator. Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation EllipsisLoc, SourceLocation RBracketLoc) : Kind(ArrayRangeDesignator) { ArrayOrRange.Index = Index; ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding(); ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding(); ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding(); } bool isFieldDesignator() const { return Kind == FieldDesignator; } bool isArrayDesignator() const { return Kind == ArrayDesignator; } bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; } IdentifierInfo *getFieldName() const; FieldDecl *getField() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); if (Field.NameOrField & 0x01) return 0; else return reinterpret_cast<FieldDecl *>(Field.NameOrField); } void setField(FieldDecl *FD) { assert(Kind == FieldDesignator && "Only valid on a field designator"); Field.NameOrField = reinterpret_cast<uintptr_t>(FD); } SourceLocation getDotLoc() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); return SourceLocation::getFromRawEncoding(Field.DotLoc); } SourceLocation getFieldLoc() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); return SourceLocation::getFromRawEncoding(Field.FieldLoc); } SourceLocation getLBracketLoc() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc); } SourceLocation getRBracketLoc() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc); } SourceLocation getEllipsisLoc() const { assert(Kind == ArrayRangeDesignator && "Only valid on an array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc); } unsigned getFirstExprIndex() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return ArrayOrRange.Index; } SourceLocation getStartLocation() const { if (Kind == FieldDesignator) return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc(); else return getLBracketLoc(); } SourceLocation getEndLocation() const { return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc(); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getStartLocation(), getEndLocation()); } }; static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators, unsigned NumDesignators, Expr **IndexExprs, unsigned NumIndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init); static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs); /// @brief Returns the number of designators in this initializer. unsigned size() const { return NumDesignators; } // Iterator access to the designators. typedef Designator *designators_iterator; designators_iterator designators_begin() { return Designators; } designators_iterator designators_end() { return Designators + NumDesignators; } typedef const Designator *const_designators_iterator; const_designators_iterator designators_begin() const { return Designators; } const_designators_iterator designators_end() const { return Designators + NumDesignators; } typedef std::reverse_iterator<designators_iterator> reverse_designators_iterator; reverse_designators_iterator designators_rbegin() { return reverse_designators_iterator(designators_end()); } reverse_designators_iterator designators_rend() { return reverse_designators_iterator(designators_begin()); } typedef std::reverse_iterator<const_designators_iterator> const_reverse_designators_iterator; const_reverse_designators_iterator designators_rbegin() const { return const_reverse_designators_iterator(designators_end()); } const_reverse_designators_iterator designators_rend() const { return const_reverse_designators_iterator(designators_begin()); } Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; } void setDesignators(ASTContext &C, const Designator *Desigs, unsigned NumDesigs); Expr *getArrayIndex(const Designator& D); Expr *getArrayRangeStart(const Designator& D); Expr *getArrayRangeEnd(const Designator& D); /// @brief Retrieve the location of the '=' that precedes the /// initializer value itself, if present. SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; } void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; } /// @brief Determines whether this designated initializer used the /// deprecated GNU syntax for designated initializers. bool usesGNUSyntax() const { return GNUSyntax; } void setGNUSyntax(bool GNU) { GNUSyntax = GNU; } /// @brief Retrieve the initializer value. Expr *getInit() const { return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin()); } void setInit(Expr *init) { *child_begin() = init; } /// \brief Retrieve the total number of subexpressions in this /// designated initializer expression, including the actual /// initialized value and any expressions that occur within array /// and array-range designators. unsigned getNumSubExprs() const { return NumSubExprs; } Expr *getSubExpr(unsigned Idx) { assert(Idx < NumSubExprs && "Subscript out of range"); char* Ptr = static_cast<char*>(static_cast<void *>(this)); Ptr += sizeof(DesignatedInitExpr); return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx]; } void setSubExpr(unsigned Idx, Expr *E) { assert(Idx < NumSubExprs && "Subscript out of range"); char* Ptr = static_cast<char*>(static_cast<void *>(this)); Ptr += sizeof(DesignatedInitExpr); reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E; } /// \brief Replaces the designator at index @p Idx with the series /// of designators in [First, Last). void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last); SourceRange getDesignatorsSourceRange() const; SourceRange getSourceRange() const LLVM_READONLY; static bool classof(const Stmt *T) { return T->getStmtClass() == DesignatedInitExprClass; } static bool classof(const DesignatedInitExpr *) { return true; } // Iterators child_range children() { Stmt **begin = reinterpret_cast<Stmt**>(this + 1); return child_range(begin, begin + NumSubExprs); } }; /// \brief Represents an implicitly-generated value initialization of /// an object of a given type. /// /// Implicit value initializations occur within semantic initializer /// list expressions (InitListExpr) as placeholders for subobject /// initializations not explicitly specified by the user. /// /// \see InitListExpr class ImplicitValueInitExpr : public Expr { public: explicit ImplicitValueInitExpr(QualType ty) : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary, false, false, ty->isInstantiationDependentType(), false) { } /// \brief Construct an empty implicit value initialization. explicit ImplicitValueInitExpr(EmptyShell Empty) : Expr(ImplicitValueInitExprClass, Empty) { } static bool classof(const Stmt *T) { return T->getStmtClass() == ImplicitValueInitExprClass; } static bool classof(const ImplicitValueInitExpr *) { return true; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(); } // Iterators child_range children() { return child_range(); } }; class ParenListExpr : public Expr { Stmt **Exprs; unsigned NumExprs; SourceLocation LParenLoc, RParenLoc; public: ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs, unsigned numexprs, SourceLocation rparenloc); /// \brief Build an empty paren list. explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { } unsigned getNumExprs() const { return NumExprs; } const Expr* getExpr(unsigned Init) const { assert(Init < getNumExprs() && "Initializer access out of range!"); return cast_or_null<Expr>(Exprs[Init]); } Expr* getExpr(unsigned Init) { assert(Init < getNumExprs() && "Initializer access out of range!"); return cast_or_null<Expr>(Exprs[Init]); } Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); } SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LParenLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ParenListExprClass; } static bool classof(const ParenListExpr *) { return true; } // Iterators child_range children() { return child_range(&Exprs[0], &Exprs[0]+NumExprs); } friend class ASTStmtReader; friend class ASTStmtWriter; }; /// \brief Represents a C11 generic selection. /// /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling /// expression, followed by one or more generic associations. Each generic /// association specifies a type name and an expression, or "default" and an /// expression (in which case it is known as a default generic association). /// The type and value of the generic selection are identical to those of its /// result expression, which is defined as the expression in the generic /// association with a type name that is compatible with the type of the /// controlling expression, or the expression in the default generic association /// if no types are compatible. For example: /// /// @code /// _Generic(X, double: 1, float: 2, default: 3) /// @endcode /// /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f /// or 3 if "hello". /// /// As an extension, generic selections are allowed in C++, where the following /// additional semantics apply: /// /// Any generic selection whose controlling expression is type-dependent or /// which names a dependent type in its association list is result-dependent, /// which means that the choice of result expression is dependent. /// Result-dependent generic associations are both type- and value-dependent. class GenericSelectionExpr : public Expr { enum { CONTROLLING, END_EXPR }; TypeSourceInfo **AssocTypes; Stmt **SubExprs; unsigned NumAssocs, ResultIndex; SourceLocation GenericLoc, DefaultLoc, RParenLoc; public: GenericSelectionExpr(ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, TypeSourceInfo **AssocTypes, Expr **AssocExprs, unsigned NumAssocs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex); /// This constructor is used in the result-dependent case. GenericSelectionExpr(ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, TypeSourceInfo **AssocTypes, Expr **AssocExprs, unsigned NumAssocs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack); explicit GenericSelectionExpr(EmptyShell Empty) : Expr(GenericSelectionExprClass, Empty) { } unsigned getNumAssocs() const { return NumAssocs; } SourceLocation getGenericLoc() const { return GenericLoc; } SourceLocation getDefaultLoc() const { return DefaultLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } const Expr *getAssocExpr(unsigned i) const { return cast<Expr>(SubExprs[END_EXPR+i]); } Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); } const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const { return AssocTypes[i]; } TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; } QualType getAssocType(unsigned i) const { if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i)) return TS->getType(); else return QualType(); } const Expr *getControllingExpr() const { return cast<Expr>(SubExprs[CONTROLLING]); } Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); } /// Whether this generic selection is result-dependent. bool isResultDependent() const { return ResultIndex == -1U; } /// The zero-based index of the result expression's generic association in /// the generic selection's association list. Defined only if the /// generic selection is not result-dependent. unsigned getResultIndex() const { assert(!isResultDependent() && "Generic selection is result-dependent"); return ResultIndex; } /// The generic selection's result expression. Defined only if the /// generic selection is not result-dependent. const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); } Expr *getResultExpr() { return getAssocExpr(getResultIndex()); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(GenericLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == GenericSelectionExprClass; } static bool classof(const GenericSelectionExpr *) { return true; } child_range children() { return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs); } friend class ASTStmtReader; }; //===----------------------------------------------------------------------===// // Clang Extensions //===----------------------------------------------------------------------===// /// ExtVectorElementExpr - This represents access to specific elements of a /// vector, and may occur on the left hand side or right hand side. For example /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector. /// /// Note that the base may have either vector or pointer to vector type, just /// like a struct field reference. /// class ExtVectorElementExpr : public Expr { Stmt *Base; IdentifierInfo *Accessor; SourceLocation AccessorLoc; public: ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base, IdentifierInfo &accessor, SourceLocation loc) : Expr(ExtVectorElementExprClass, ty, VK, (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent), base->isTypeDependent(), base->isValueDependent(), base->isInstantiationDependent(), base->containsUnexpandedParameterPack()), Base(base), Accessor(&accessor), AccessorLoc(loc) {} /// \brief Build an empty vector element expression. explicit ExtVectorElementExpr(EmptyShell Empty) : Expr(ExtVectorElementExprClass, Empty) { } const Expr *getBase() const { return cast<Expr>(Base); } Expr *getBase() { return cast<Expr>(Base); } void setBase(Expr *E) { Base = E; } IdentifierInfo &getAccessor() const { return *Accessor; } void setAccessor(IdentifierInfo *II) { Accessor = II; } SourceLocation getAccessorLoc() const { return AccessorLoc; } void setAccessorLoc(SourceLocation L) { AccessorLoc = L; } /// getNumElements - Get the number of components being selected. unsigned getNumElements() const; /// containsDuplicateElements - Return true if any element access is /// repeated. bool containsDuplicateElements() const; /// getEncodedElementAccess - Encode the elements accessed into an llvm /// aggregate Constant of ConstantInt(s). void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const; SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getBase()->getLocStart(), AccessorLoc); } /// isArrow - Return true if the base expression is a pointer to vector, /// return false if the base expression is a vector. bool isArrow() const; static bool classof(const Stmt *T) { return T->getStmtClass() == ExtVectorElementExprClass; } static bool classof(const ExtVectorElementExpr *) { return true; } // Iterators child_range children() { return child_range(&Base, &Base+1); } }; /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions. /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body } class BlockExpr : public Expr { protected: BlockDecl *TheBlock; public: BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary, ty->isDependentType(), ty->isDependentType(), ty->isInstantiationDependentType() || BD->isDependentContext(), false), TheBlock(BD) {} /// \brief Build an empty block expression. explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { } const BlockDecl *getBlockDecl() const { return TheBlock; } BlockDecl *getBlockDecl() { return TheBlock; } void setBlockDecl(BlockDecl *BD) { TheBlock = BD; } // Convenience functions for probing the underlying BlockDecl. SourceLocation getCaretLocation() const; const Stmt *getBody() const; Stmt *getBody(); SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getCaretLocation(), getBody()->getLocEnd()); } /// getFunctionType - Return the underlying function type for this block. const FunctionProtoType *getFunctionType() const; static bool classof(const Stmt *T) { return T->getStmtClass() == BlockExprClass; } static bool classof(const BlockExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] /// This AST node provides support for reinterpreting a type to another /// type of the same size. class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr? private: Stmt *SrcExpr; SourceLocation BuiltinLoc, RParenLoc; friend class ASTReader; friend class ASTStmtReader; explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {} public: AsTypeExpr(Expr* SrcExpr, QualType DstType, ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, SourceLocation RParenLoc) : Expr(AsTypeExprClass, DstType, VK, OK, DstType->isDependentType(), DstType->isDependentType() || SrcExpr->isValueDependent(), (DstType->isInstantiationDependentType() || SrcExpr->isInstantiationDependent()), (DstType->containsUnexpandedParameterPack() || SrcExpr->containsUnexpandedParameterPack())), SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {} /// getSrcExpr - Return the Expr to be converted. Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); } /// getBuiltinLoc - Return the location of the __builtin_astype token. SourceLocation getBuiltinLoc() const { return BuiltinLoc; } /// getRParenLoc - Return the location of final right parenthesis. SourceLocation getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == AsTypeExprClass; } static bool classof(const AsTypeExpr *) { return true; } // Iterators child_range children() { return child_range(&SrcExpr, &SrcExpr+1); } }; /// PseudoObjectExpr - An expression which accesses a pseudo-object /// l-value. A pseudo-object is an abstract object, accesses to which /// are translated to calls. The pseudo-object expression has a /// syntactic form, which shows how the expression was actually /// written in the source code, and a semantic form, which is a series /// of expressions to be executed in order which detail how the /// operation is actually evaluated. Optionally, one of the semantic /// forms may also provide a result value for the expression. /// /// If any of the semantic-form expressions is an OpaqueValueExpr, /// that OVE is required to have a source expression, and it is bound /// to the result of that source expression. Such OVEs may appear /// only in subsequent semantic-form expressions and as /// sub-expressions of the syntactic form. /// /// PseudoObjectExpr should be used only when an operation can be /// usefully described in terms of fairly simple rewrite rules on /// objects and functions that are meant to be used by end-developers. /// For example, under the Itanium ABI, dynamic casts are implemented /// as a call to a runtime function called __dynamic_cast; using this /// class to describe that would be inappropriate because that call is /// not really part of the user-visible semantics, and instead the /// cast is properly reflected in the AST and IR-generation has been /// taught to generate the call as necessary. In contrast, an /// Objective-C property access is semantically defined to be /// equivalent to a particular message send, and this is very much /// part of the user model. The name of this class encourages this /// modelling design. class PseudoObjectExpr : public Expr { // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions. // Always at least two, because the first sub-expression is the // syntactic form. // PseudoObjectExprBits.ResultIndex - The index of the // sub-expression holding the result. 0 means the result is void, // which is unambiguous because it's the index of the syntactic // form. Note that this is therefore 1 higher than the value passed // in to Create, which is an index within the semantic forms. // Note also that ASTStmtWriter assumes this encoding. Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); } const Expr * const *getSubExprsBuffer() const { return reinterpret_cast<const Expr * const *>(this + 1); } friend class ASTStmtReader; PseudoObjectExpr(QualType type, ExprValueKind VK, Expr *syntactic, ArrayRef<Expr*> semantic, unsigned resultIndex); PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs); unsigned getNumSubExprs() const { return PseudoObjectExprBits.NumSubExprs; } public: /// NoResult - A value for the result index indicating that there is /// no semantic result. enum { NoResult = ~0U }; static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic, ArrayRef<Expr*> semantic, unsigned resultIndex); static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell, unsigned numSemanticExprs); /// Return the syntactic form of this expression, i.e. the /// expression it actually looks like. Likely to be expressed in /// terms of OpaqueValueExprs bound in the semantic form. Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; } const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; } /// Return the index of the result-bearing expression into the semantics /// expressions, or PseudoObjectExpr::NoResult if there is none. unsigned getResultExprIndex() const { if (PseudoObjectExprBits.ResultIndex == 0) return NoResult; return PseudoObjectExprBits.ResultIndex - 1; } /// Return the result-bearing expression, or null if there is none. Expr *getResultExpr() { if (PseudoObjectExprBits.ResultIndex == 0) return 0; return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex]; } const Expr *getResultExpr() const { return const_cast<PseudoObjectExpr*>(this)->getResultExpr(); } unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; } typedef Expr * const *semantics_iterator; typedef const Expr * const *const_semantics_iterator; semantics_iterator semantics_begin() { return getSubExprsBuffer() + 1; } const_semantics_iterator semantics_begin() const { return getSubExprsBuffer() + 1; } semantics_iterator semantics_end() { return getSubExprsBuffer() + getNumSubExprs(); } const_semantics_iterator semantics_end() const { return getSubExprsBuffer() + getNumSubExprs(); } Expr *getSemanticExpr(unsigned index) { assert(index + 1 < getNumSubExprs()); return getSubExprsBuffer()[index + 1]; } const Expr *getSemanticExpr(unsigned index) const { return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index); } SourceLocation getExprLoc() const LLVM_READONLY { return getSyntacticForm()->getExprLoc(); } SourceRange getSourceRange() const LLVM_READONLY { return getSyntacticForm()->getSourceRange(); } child_range children() { Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer()); return child_range(cs, cs + getNumSubExprs()); } static bool classof(const Stmt *T) { return T->getStmtClass() == PseudoObjectExprClass; } static bool classof(const PseudoObjectExpr *) { return true; } }; /// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, /// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the /// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>. /// All of these instructions take one primary pointer and at least one memory /// order. class AtomicExpr : public Expr { public: enum AtomicOp { #define BUILTIN(ID, TYPE, ATTRS) #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID, #include "clang/Basic/Builtins.def" // Avoid trailing comma BI_First = 0 }; private: enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR }; Stmt* SubExprs[END_EXPR]; unsigned NumSubExprs; SourceLocation BuiltinLoc, RParenLoc; AtomicOp Op; friend class ASTStmtReader; public: AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t, AtomicOp op, SourceLocation RP); /// \brief Determine the number of arguments the specified atomic builtin /// should have. static unsigned getNumSubExprs(AtomicOp Op); /// \brief Build an empty AtomicExpr. explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { } Expr *getPtr() const { return cast<Expr>(SubExprs[PTR]); } Expr *getOrder() const { return cast<Expr>(SubExprs[ORDER]); } Expr *getVal1() const { if (Op == AO__c11_atomic_init) return cast<Expr>(SubExprs[ORDER]); assert(NumSubExprs > VAL1); return cast<Expr>(SubExprs[VAL1]); } Expr *getOrderFail() const { assert(NumSubExprs > ORDER_FAIL); return cast<Expr>(SubExprs[ORDER_FAIL]); } Expr *getVal2() const { if (Op == AO__atomic_exchange) return cast<Expr>(SubExprs[ORDER_FAIL]); assert(NumSubExprs > VAL2); return cast<Expr>(SubExprs[VAL2]); } Expr *getWeak() const { assert(NumSubExprs > WEAK); return cast<Expr>(SubExprs[WEAK]); } AtomicOp getOp() const { return Op; } unsigned getNumSubExprs() { return NumSubExprs; } Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); } bool isVolatile() const { return getPtr()->getType()->getPointeeType().isVolatileQualified(); } bool isCmpXChg() const { return getOp() == AO__c11_atomic_compare_exchange_strong || getOp() == AO__c11_atomic_compare_exchange_weak || getOp() == AO__atomic_compare_exchange || getOp() == AO__atomic_compare_exchange_n; } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == AtomicExprClass; } static bool classof(const AtomicExpr *) { return true; } // Iterators child_range children() { return child_range(SubExprs, SubExprs+NumSubExprs); } }; } // end namespace clang #endif