Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/AST/ExprObjC.h |
//===--- ExprObjC.h - Classes for representing ObjC expressions -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ExprObjC interface and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_EXPROBJC_H #define LLVM_CLANG_AST_EXPROBJC_H #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/SelectorLocationsKind.h" #include "clang/Basic/IdentifierTable.h" #include "llvm/Support/Compiler.h" namespace clang { class IdentifierInfo; class ASTContext; /// ObjCStringLiteral, used for Objective-C string literals /// i.e. @"foo". class ObjCStringLiteral : public Expr { Stmt *String; SourceLocation AtLoc; public: ObjCStringLiteral(StringLiteral *SL, QualType T, SourceLocation L) : Expr(ObjCStringLiteralClass, T, VK_RValue, OK_Ordinary, false, false, false, false), String(SL), AtLoc(L) {} explicit ObjCStringLiteral(EmptyShell Empty) : Expr(ObjCStringLiteralClass, Empty) {} StringLiteral *getString() { return cast<StringLiteral>(String); } const StringLiteral *getString() const { return cast<StringLiteral>(String); } void setString(StringLiteral *S) { String = S; } SourceLocation getAtLoc() const { return AtLoc; } void setAtLoc(SourceLocation L) { AtLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AtLoc, String->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCStringLiteralClass; } static bool classof(const ObjCStringLiteral *) { return true; } // Iterators child_range children() { return child_range(&String, &String+1); } }; /// ObjCBoolLiteralExpr - Objective-C Boolean Literal. /// class ObjCBoolLiteralExpr : public Expr { bool Value; SourceLocation Loc; public: ObjCBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) : Expr(ObjCBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false, false), Value(val), Loc(l) {} explicit ObjCBoolLiteralExpr(EmptyShell Empty) : Expr(ObjCBoolLiteralExprClass, Empty) { } bool getValue() const { return Value; } void setValue(bool V) { Value = V; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCBoolLiteralExprClass; } static bool classof(const ObjCBoolLiteralExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ObjCNumericLiteral - used for objective-c numeric literals; /// as in: @42 or @true (c++/objc++) or @__yes (c/objc) class ObjCNumericLiteral : public Expr { /// Number - expression AST node for the numeric literal Stmt *Number; ObjCMethodDecl *ObjCNumericLiteralMethod; SourceLocation AtLoc; public: ObjCNumericLiteral(Stmt *NL, QualType T, ObjCMethodDecl *method, SourceLocation L) : Expr(ObjCNumericLiteralClass, T, VK_RValue, OK_Ordinary, false, false, false, false), Number(NL), ObjCNumericLiteralMethod(method), AtLoc(L) {} explicit ObjCNumericLiteral(EmptyShell Empty) : Expr(ObjCNumericLiteralClass, Empty) {} Expr *getNumber() { return cast<Expr>(Number); } const Expr *getNumber() const { return cast<Expr>(Number); } ObjCMethodDecl *getObjCNumericLiteralMethod() const { return ObjCNumericLiteralMethod; } SourceLocation getAtLoc() const { return AtLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AtLoc, Number->getSourceRange().getEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCNumericLiteralClass; } static bool classof(const ObjCNumericLiteral *) { return true; } // Iterators child_range children() { return child_range(&Number, &Number+1); } friend class ASTStmtReader; }; /// ObjCArrayLiteral - used for objective-c array containers; as in: /// @[@"Hello", NSApp, [NSNumber numberWithInt:42]]; class ObjCArrayLiteral : public Expr { unsigned NumElements; SourceRange Range; ObjCMethodDecl *ArrayWithObjectsMethod; ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements, QualType T, ObjCMethodDecl * Method, SourceRange SR); explicit ObjCArrayLiteral(EmptyShell Empty, unsigned NumElements) : Expr(ObjCArrayLiteralClass, Empty), NumElements(NumElements) {} public: static ObjCArrayLiteral *Create(ASTContext &C, llvm::ArrayRef<Expr *> Elements, QualType T, ObjCMethodDecl * Method, SourceRange SR); static ObjCArrayLiteral *CreateEmpty(ASTContext &C, unsigned NumElements); SourceRange getSourceRange() const LLVM_READONLY { return Range; } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCArrayLiteralClass; } static bool classof(const ObjCArrayLiteral *) { return true; } /// \brief Retrieve elements of array of literals. Expr **getElements() { return reinterpret_cast<Expr **>(this + 1); } /// \brief Retrieve elements of array of literals. const Expr * const *getElements() const { return reinterpret_cast<const Expr * const*>(this + 1); } /// getNumElements - Return number of elements of objective-c array literal. unsigned getNumElements() const { return NumElements; } /// getExpr - Return the Expr at the specified index. Expr *getElement(unsigned Index) { assert((Index < NumElements) && "Arg access out of range!"); return cast<Expr>(getElements()[Index]); } const Expr *getElement(unsigned Index) const { assert((Index < NumElements) && "Arg access out of range!"); return cast<Expr>(getElements()[Index]); } ObjCMethodDecl *getArrayWithObjectsMethod() const { return ArrayWithObjectsMethod; } // Iterators child_range children() { return child_range((Stmt **)getElements(), (Stmt **)getElements() + NumElements); } friend class ASTStmtReader; }; /// \brief An element in an Objective-C dictionary literal. /// struct ObjCDictionaryElement { /// \brief The key for the dictionary element. Expr *Key; /// \brief The value of the dictionary element. Expr *Value; /// \brief The location of the ellipsis, if this is a pack expansion. SourceLocation EllipsisLoc; /// \brief The number of elements this pack expansion will expand to, if /// this is a pack expansion and is known. llvm::Optional<unsigned> NumExpansions; /// \brief Determines whether this dictionary element is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } }; /// ObjCDictionaryLiteral - AST node to represent objective-c dictionary /// literals; as in: @{@"name" : NSUserName(), @"date" : [NSDate date] }; class ObjCDictionaryLiteral : public Expr { /// \brief Key/value pair used to store the key and value of a given element. /// /// Objects of this type are stored directly after the expression. struct KeyValuePair { Expr *Key; Expr *Value; }; /// \brief Data that describes an element that is a pack expansion, used if any /// of the elements in the dictionary literal are pack expansions. struct ExpansionData { /// \brief The location of the ellipsis, if this element is a pack /// expansion. SourceLocation EllipsisLoc; /// \brief If non-zero, the number of elements that this pack /// expansion will expand to (+1). unsigned NumExpansionsPlusOne; }; /// \brief The number of elements in this dictionary literal. unsigned NumElements : 31; /// \brief Determine whether this dictionary literal has any pack expansions. /// /// If the dictionary literal has pack expansions, then there will /// be an array of pack expansion data following the array of /// key/value pairs, which provide the locations of the ellipses (if /// any) and number of elements in the expansion (if known). If /// there are no pack expansions, we optimize away this storage. unsigned HasPackExpansions : 1; SourceRange Range; ObjCMethodDecl *DictWithObjectsMethod; ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK, bool HasPackExpansions, QualType T, ObjCMethodDecl *method, SourceRange SR); explicit ObjCDictionaryLiteral(EmptyShell Empty, unsigned NumElements, bool HasPackExpansions) : Expr(ObjCDictionaryLiteralClass, Empty), NumElements(NumElements), HasPackExpansions(HasPackExpansions) {} KeyValuePair *getKeyValues() { return reinterpret_cast<KeyValuePair *>(this + 1); } const KeyValuePair *getKeyValues() const { return reinterpret_cast<const KeyValuePair *>(this + 1); } ExpansionData *getExpansionData() { if (!HasPackExpansions) return 0; return reinterpret_cast<ExpansionData *>(getKeyValues() + NumElements); } const ExpansionData *getExpansionData() const { if (!HasPackExpansions) return 0; return reinterpret_cast<const ExpansionData *>(getKeyValues()+NumElements); } public: static ObjCDictionaryLiteral *Create(ASTContext &C, ArrayRef<ObjCDictionaryElement> VK, bool HasPackExpansions, QualType T, ObjCMethodDecl *method, SourceRange SR); static ObjCDictionaryLiteral *CreateEmpty(ASTContext &C, unsigned NumElements, bool HasPackExpansions); /// getNumElements - Return number of elements of objective-c dictionary /// literal. unsigned getNumElements() const { return NumElements; } ObjCDictionaryElement getKeyValueElement(unsigned Index) const { assert((Index < NumElements) && "Arg access out of range!"); const KeyValuePair &KV = getKeyValues()[Index]; ObjCDictionaryElement Result = { KV.Key, KV.Value, SourceLocation(), llvm::Optional<unsigned>() }; if (HasPackExpansions) { const ExpansionData &Expansion = getExpansionData()[Index]; Result.EllipsisLoc = Expansion.EllipsisLoc; if (Expansion.NumExpansionsPlusOne > 0) Result.NumExpansions = Expansion.NumExpansionsPlusOne - 1; } return Result; } ObjCMethodDecl *getDictWithObjectsMethod() const { return DictWithObjectsMethod; } SourceRange getSourceRange() const LLVM_READONLY { return Range; } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCDictionaryLiteralClass; } static bool classof(const ObjCDictionaryLiteral *) { return true; } // Iterators child_range children() { // Note: we're taking advantage of the layout of the KeyValuePair struct // here. If that struct changes, this code will need to change as well. return child_range(reinterpret_cast<Stmt **>(this + 1), reinterpret_cast<Stmt **>(this + 1) + NumElements * 2); } friend class ASTStmtReader; friend class ASTStmtWriter; }; /// ObjCEncodeExpr, used for @encode in Objective-C. @encode has the same type /// and behavior as StringLiteral except that the string initializer is obtained /// from ASTContext with the encoding type as an argument. class ObjCEncodeExpr : public Expr { TypeSourceInfo *EncodedType; SourceLocation AtLoc, RParenLoc; public: ObjCEncodeExpr(QualType T, TypeSourceInfo *EncodedType, SourceLocation at, SourceLocation rp) : Expr(ObjCEncodeExprClass, T, VK_LValue, OK_Ordinary, EncodedType->getType()->isDependentType(), EncodedType->getType()->isDependentType(), EncodedType->getType()->isInstantiationDependentType(), EncodedType->getType()->containsUnexpandedParameterPack()), EncodedType(EncodedType), AtLoc(at), RParenLoc(rp) {} explicit ObjCEncodeExpr(EmptyShell Empty) : Expr(ObjCEncodeExprClass, Empty){} SourceLocation getAtLoc() const { return AtLoc; } void setAtLoc(SourceLocation L) { AtLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } QualType getEncodedType() const { return EncodedType->getType(); } TypeSourceInfo *getEncodedTypeSourceInfo() const { return EncodedType; } void setEncodedTypeSourceInfo(TypeSourceInfo *EncType) { EncodedType = EncType; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AtLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCEncodeExprClass; } static bool classof(const ObjCEncodeExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ObjCSelectorExpr used for @selector in Objective-C. class ObjCSelectorExpr : public Expr { Selector SelName; SourceLocation AtLoc, RParenLoc; public: ObjCSelectorExpr(QualType T, Selector selInfo, SourceLocation at, SourceLocation rp) : Expr(ObjCSelectorExprClass, T, VK_RValue, OK_Ordinary, false, false, false, false), SelName(selInfo), AtLoc(at), RParenLoc(rp){} explicit ObjCSelectorExpr(EmptyShell Empty) : Expr(ObjCSelectorExprClass, Empty) {} Selector getSelector() const { return SelName; } void setSelector(Selector S) { SelName = S; } SourceLocation getAtLoc() const { return AtLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } void setAtLoc(SourceLocation L) { AtLoc = L; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AtLoc, RParenLoc); } /// getNumArgs - Return the number of actual arguments to this call. unsigned getNumArgs() const { return SelName.getNumArgs(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCSelectorExprClass; } static bool classof(const ObjCSelectorExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ObjCProtocolExpr used for protocol expression in Objective-C. This is used /// as: @protocol(foo), as in: /// obj conformsToProtocol:@protocol(foo)] /// The return type is "Protocol*". class ObjCProtocolExpr : public Expr { ObjCProtocolDecl *TheProtocol; SourceLocation AtLoc, RParenLoc; public: ObjCProtocolExpr(QualType T, ObjCProtocolDecl *protocol, SourceLocation at, SourceLocation rp) : Expr(ObjCProtocolExprClass, T, VK_RValue, OK_Ordinary, false, false, false, false), TheProtocol(protocol), AtLoc(at), RParenLoc(rp) {} explicit ObjCProtocolExpr(EmptyShell Empty) : Expr(ObjCProtocolExprClass, Empty) {} ObjCProtocolDecl *getProtocol() const { return TheProtocol; } void setProtocol(ObjCProtocolDecl *P) { TheProtocol = P; } SourceLocation getAtLoc() const { return AtLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } void setAtLoc(SourceLocation L) { AtLoc = L; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(AtLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCProtocolExprClass; } static bool classof(const ObjCProtocolExpr *) { return true; } // Iterators child_range children() { return child_range(); } }; /// ObjCIvarRefExpr - A reference to an ObjC instance variable. class ObjCIvarRefExpr : public Expr { ObjCIvarDecl *D; Stmt *Base; SourceLocation Loc; bool IsArrow:1; // True if this is "X->F", false if this is "X.F". bool IsFreeIvar:1; // True if ivar reference has no base (self assumed). public: ObjCIvarRefExpr(ObjCIvarDecl *d, QualType t, SourceLocation l, Expr *base, bool arrow = false, bool freeIvar = false) : Expr(ObjCIvarRefExprClass, t, VK_LValue, OK_Ordinary, /*TypeDependent=*/false, base->isValueDependent(), base->isInstantiationDependent(), base->containsUnexpandedParameterPack()), D(d), Base(base), Loc(l), IsArrow(arrow), IsFreeIvar(freeIvar) {} explicit ObjCIvarRefExpr(EmptyShell Empty) : Expr(ObjCIvarRefExprClass, Empty) {} ObjCIvarDecl *getDecl() { return D; } const ObjCIvarDecl *getDecl() const { return D; } void setDecl(ObjCIvarDecl *d) { D = d; } const Expr *getBase() const { return cast<Expr>(Base); } Expr *getBase() { return cast<Expr>(Base); } void setBase(Expr * base) { Base = base; } bool isArrow() const { return IsArrow; } bool isFreeIvar() const { return IsFreeIvar; } void setIsArrow(bool A) { IsArrow = A; } void setIsFreeIvar(bool A) { IsFreeIvar = A; } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } SourceRange getSourceRange() const LLVM_READONLY { return isFreeIvar() ? SourceRange(Loc) : SourceRange(getBase()->getLocStart(), Loc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCIvarRefExprClass; } static bool classof(const ObjCIvarRefExpr *) { return true; } // Iterators child_range children() { return child_range(&Base, &Base+1); } }; /// ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC /// property. class ObjCPropertyRefExpr : public Expr { private: /// If the bool is true, this is an implicit property reference; the /// pointer is an (optional) ObjCMethodDecl and Setter may be set. /// if the bool is false, this is an explicit property reference; /// the pointer is an ObjCPropertyDecl and Setter is always null. llvm::PointerIntPair<NamedDecl*, 1, bool> PropertyOrGetter; /// \brief Indicates whether the property reference will result in a message /// to the getter, the setter, or both. /// This applies to both implicit and explicit property references. enum MethodRefFlags { MethodRef_None = 0, MethodRef_Getter = 0x1, MethodRef_Setter = 0x2 }; /// \brief Contains the Setter method pointer and MethodRefFlags bit flags. llvm::PointerIntPair<ObjCMethodDecl *, 2, unsigned> SetterAndMethodRefFlags; // FIXME: Maybe we should store the property identifier here, // because it's not rederivable from the other data when there's an // implicit property with no getter (because the 'foo' -> 'setFoo:' // transformation is lossy on the first character). SourceLocation IdLoc; /// \brief When the receiver in property access is 'super', this is /// the location of the 'super' keyword. When it's an interface, /// this is that interface. SourceLocation ReceiverLoc; llvm::PointerUnion3<Stmt*, const Type*, ObjCInterfaceDecl*> Receiver; public: ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, Expr *base) : Expr(ObjCPropertyRefExprClass, t, VK, OK, /*TypeDependent=*/false, base->isValueDependent(), base->isInstantiationDependent(), base->containsUnexpandedParameterPack()), PropertyOrGetter(PD, false), SetterAndMethodRefFlags(), IdLoc(l), ReceiverLoc(), Receiver(base) { assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject)); } ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, SourceLocation sl, QualType st) : Expr(ObjCPropertyRefExprClass, t, VK, OK, /*TypeDependent=*/false, false, st->isInstantiationDependentType(), st->containsUnexpandedParameterPack()), PropertyOrGetter(PD, false), SetterAndMethodRefFlags(), IdLoc(l), ReceiverLoc(sl), Receiver(st.getTypePtr()) { assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject)); } ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, QualType T, ExprValueKind VK, ExprObjectKind OK, SourceLocation IdLoc, Expr *Base) : Expr(ObjCPropertyRefExprClass, T, VK, OK, false, Base->isValueDependent(), Base->isInstantiationDependent(), Base->containsUnexpandedParameterPack()), PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0), IdLoc(IdLoc), ReceiverLoc(), Receiver(Base) { assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject)); } ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, QualType T, ExprValueKind VK, ExprObjectKind OK, SourceLocation IdLoc, SourceLocation SuperLoc, QualType SuperTy) : Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false), PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0), IdLoc(IdLoc), ReceiverLoc(SuperLoc), Receiver(SuperTy.getTypePtr()) { assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject)); } ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, QualType T, ExprValueKind VK, ExprObjectKind OK, SourceLocation IdLoc, SourceLocation ReceiverLoc, ObjCInterfaceDecl *Receiver) : Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false), PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0), IdLoc(IdLoc), ReceiverLoc(ReceiverLoc), Receiver(Receiver) { assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject)); } explicit ObjCPropertyRefExpr(EmptyShell Empty) : Expr(ObjCPropertyRefExprClass, Empty) {} bool isImplicitProperty() const { return PropertyOrGetter.getInt(); } bool isExplicitProperty() const { return !PropertyOrGetter.getInt(); } ObjCPropertyDecl *getExplicitProperty() const { assert(!isImplicitProperty()); return cast<ObjCPropertyDecl>(PropertyOrGetter.getPointer()); } ObjCMethodDecl *getImplicitPropertyGetter() const { assert(isImplicitProperty()); return cast_or_null<ObjCMethodDecl>(PropertyOrGetter.getPointer()); } ObjCMethodDecl *getImplicitPropertySetter() const { assert(isImplicitProperty()); return SetterAndMethodRefFlags.getPointer(); } Selector getGetterSelector() const { if (isImplicitProperty()) return getImplicitPropertyGetter()->getSelector(); return getExplicitProperty()->getGetterName(); } Selector getSetterSelector() const { if (isImplicitProperty()) return getImplicitPropertySetter()->getSelector(); return getExplicitProperty()->getSetterName(); } /// \brief True if the property reference will result in a message to the /// getter. /// This applies to both implicit and explicit property references. bool isMessagingGetter() const { return SetterAndMethodRefFlags.getInt() & MethodRef_Getter; } /// \brief True if the property reference will result in a message to the /// setter. /// This applies to both implicit and explicit property references. bool isMessagingSetter() const { return SetterAndMethodRefFlags.getInt() & MethodRef_Setter; } void setIsMessagingGetter(bool val = true) { setMethodRefFlag(MethodRef_Getter, val); } void setIsMessagingSetter(bool val = true) { setMethodRefFlag(MethodRef_Setter, val); } const Expr *getBase() const { return cast<Expr>(Receiver.get<Stmt*>()); } Expr *getBase() { return cast<Expr>(Receiver.get<Stmt*>()); } SourceLocation getLocation() const { return IdLoc; } SourceLocation getReceiverLocation() const { return ReceiverLoc; } QualType getSuperReceiverType() const { return QualType(Receiver.get<const Type*>(), 0); } QualType getGetterResultType() const { QualType ResultType; if (isExplicitProperty()) { const ObjCPropertyDecl *PDecl = getExplicitProperty(); if (const ObjCMethodDecl *Getter = PDecl->getGetterMethodDecl()) ResultType = Getter->getResultType(); else ResultType = PDecl->getType(); } else { const ObjCMethodDecl *Getter = getImplicitPropertyGetter(); if (Getter) ResultType = Getter->getResultType(); // with reference! } return ResultType; } QualType getSetterArgType() const { QualType ArgType; if (isImplicitProperty()) { const ObjCMethodDecl *Setter = getImplicitPropertySetter(); ObjCMethodDecl::param_const_iterator P = Setter->param_begin(); ArgType = (*P)->getType(); } else { if (ObjCPropertyDecl *PDecl = getExplicitProperty()) if (const ObjCMethodDecl *Setter = PDecl->getSetterMethodDecl()) { ObjCMethodDecl::param_const_iterator P = Setter->param_begin(); ArgType = (*P)->getType(); } if (ArgType.isNull()) ArgType = getType(); } return ArgType; } ObjCInterfaceDecl *getClassReceiver() const { return Receiver.get<ObjCInterfaceDecl*>(); } bool isObjectReceiver() const { return Receiver.is<Stmt*>(); } bool isSuperReceiver() const { return Receiver.is<const Type*>(); } bool isClassReceiver() const { return Receiver.is<ObjCInterfaceDecl*>(); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange((isObjectReceiver() ? getBase()->getLocStart() : getReceiverLocation()), IdLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCPropertyRefExprClass; } static bool classof(const ObjCPropertyRefExpr *) { return true; } // Iterators child_range children() { if (Receiver.is<Stmt*>()) { Stmt **begin = reinterpret_cast<Stmt**>(&Receiver); // hack! return child_range(begin, begin+1); } return child_range(); } private: friend class ASTStmtReader; friend class ASTStmtWriter; void setExplicitProperty(ObjCPropertyDecl *D, unsigned methRefFlags) { PropertyOrGetter.setPointer(D); PropertyOrGetter.setInt(false); SetterAndMethodRefFlags.setPointer(0); SetterAndMethodRefFlags.setInt(methRefFlags); } void setImplicitProperty(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, unsigned methRefFlags) { PropertyOrGetter.setPointer(Getter); PropertyOrGetter.setInt(true); SetterAndMethodRefFlags.setPointer(Setter); SetterAndMethodRefFlags.setInt(methRefFlags); } void setBase(Expr *Base) { Receiver = Base; } void setSuperReceiver(QualType T) { Receiver = T.getTypePtr(); } void setClassReceiver(ObjCInterfaceDecl *D) { Receiver = D; } void setLocation(SourceLocation L) { IdLoc = L; } void setReceiverLocation(SourceLocation Loc) { ReceiverLoc = Loc; } void setMethodRefFlag(MethodRefFlags flag, bool val) { unsigned f = SetterAndMethodRefFlags.getInt(); if (val) f |= flag; else f &= ~flag; SetterAndMethodRefFlags.setInt(f); } }; /// ObjCSubscriptRefExpr - used for array and dictionary subscripting. /// array[4] = array[3]; dictionary[key] = dictionary[alt_key]; /// class ObjCSubscriptRefExpr : public Expr { // Location of ']' in an indexing expression. SourceLocation RBracket; // array/dictionary base expression. // for arrays, this is a numeric expression. For dictionaries, this is // an objective-c object pointer expression. enum { BASE, KEY, END_EXPR }; Stmt* SubExprs[END_EXPR]; ObjCMethodDecl *GetAtIndexMethodDecl; // For immutable objects this is null. When ObjCSubscriptRefExpr is to read // an indexed object this is null too. ObjCMethodDecl *SetAtIndexMethodDecl; public: ObjCSubscriptRefExpr(Expr *base, Expr *key, QualType T, ExprValueKind VK, ExprObjectKind OK, ObjCMethodDecl *getMethod, ObjCMethodDecl *setMethod, SourceLocation RB) : Expr(ObjCSubscriptRefExprClass, T, VK, OK, base->isTypeDependent() || key->isTypeDependent(), base->isValueDependent() || key->isValueDependent(), base->isInstantiationDependent() || key->isInstantiationDependent(), (base->containsUnexpandedParameterPack() || key->containsUnexpandedParameterPack())), RBracket(RB), GetAtIndexMethodDecl(getMethod), SetAtIndexMethodDecl(setMethod) {SubExprs[BASE] = base; SubExprs[KEY] = key;} explicit ObjCSubscriptRefExpr(EmptyShell Empty) : Expr(ObjCSubscriptRefExprClass, Empty) {} static ObjCSubscriptRefExpr *Create(ASTContext &C, Expr *base, Expr *key, QualType T, ObjCMethodDecl *getMethod, ObjCMethodDecl *setMethod, SourceLocation RB); SourceLocation getRBracket() const { return RBracket; } void setRBracket(SourceLocation RB) { RBracket = RB; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(SubExprs[BASE]->getLocStart(), RBracket); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCSubscriptRefExprClass; } static bool classof(const ObjCSubscriptRefExpr *) { return true; } Expr *getBaseExpr() const { return cast<Expr>(SubExprs[BASE]); } void setBaseExpr(Stmt *S) { SubExprs[BASE] = S; } Expr *getKeyExpr() const { return cast<Expr>(SubExprs[KEY]); } void setKeyExpr(Stmt *S) { SubExprs[KEY] = S; } ObjCMethodDecl *getAtIndexMethodDecl() const { return GetAtIndexMethodDecl; } ObjCMethodDecl *setAtIndexMethodDecl() const { return SetAtIndexMethodDecl; } bool isArraySubscriptRefExpr() const { return getKeyExpr()->getType()->isIntegralOrEnumerationType(); } child_range children() { return child_range(SubExprs, SubExprs+END_EXPR); } private: friend class ASTStmtReader; }; /// \brief An expression that sends a message to the given Objective-C /// object or class. /// /// The following contains two message send expressions: /// /// \code /// [[NSString alloc] initWithString:@"Hello"] /// \endcode /// /// The innermost message send invokes the "alloc" class method on the /// NSString class, while the outermost message send invokes the /// "initWithString" instance method on the object returned from /// NSString's "alloc". In all, an Objective-C message send can take /// on four different (although related) forms: /// /// 1. Send to an object instance. /// 2. Send to a class. /// 3. Send to the superclass instance of the current class. /// 4. Send to the superclass of the current class. /// /// All four kinds of message sends are modeled by the ObjCMessageExpr /// class, and can be distinguished via \c getReceiverKind(). Example: /// class ObjCMessageExpr : public Expr { /// \brief Stores either the selector that this message is sending /// to (when \c HasMethod is zero) or an \c ObjCMethodDecl pointer /// referring to the method that we type-checked against. uintptr_t SelectorOrMethod; enum { NumArgsBitWidth = 16 }; /// \brief The number of arguments in the message send, not /// including the receiver. unsigned NumArgs : NumArgsBitWidth; void setNumArgs(unsigned Num) { assert((Num >> NumArgsBitWidth) == 0 && "Num of args is out of range!"); NumArgs = Num; } /// \brief The kind of message send this is, which is one of the /// ReceiverKind values. /// /// We pad this out to a byte to avoid excessive masking and shifting. unsigned Kind : 8; /// \brief Whether we have an actual method prototype in \c /// SelectorOrMethod. /// /// When non-zero, we have a method declaration; otherwise, we just /// have a selector. unsigned HasMethod : 1; /// \brief Whether this message send is a "delegate init call", /// i.e. a call of an init method on self from within an init method. unsigned IsDelegateInitCall : 1; /// \brief Whether this message send was implicitly generated by /// the implementation rather than explicitly written by the user. unsigned IsImplicit : 1; /// \brief Whether the locations of the selector identifiers are in a /// "standard" position, a enum SelectorLocationsKind. unsigned SelLocsKind : 2; /// \brief When the message expression is a send to 'super', this is /// the location of the 'super' keyword. SourceLocation SuperLoc; /// \brief The source locations of the open and close square /// brackets ('[' and ']', respectively). SourceLocation LBracLoc, RBracLoc; ObjCMessageExpr(EmptyShell Empty, unsigned NumArgs) : Expr(ObjCMessageExprClass, Empty), SelectorOrMethod(0), Kind(0), HasMethod(0), IsDelegateInitCall(0), IsImplicit(0), SelLocsKind(0) { setNumArgs(NumArgs); } ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, SourceLocation SuperLoc, bool IsInstanceSuper, QualType SuperType, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, TypeSourceInfo *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, Expr *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); void initArgsAndSelLocs(ArrayRef<Expr *> Args, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK); /// \brief Retrieve the pointer value of the message receiver. void *getReceiverPointer() const { return *const_cast<void **>( reinterpret_cast<const void * const*>(this + 1)); } /// \brief Set the pointer value of the message receiver. void setReceiverPointer(void *Value) { *reinterpret_cast<void **>(this + 1) = Value; } SelectorLocationsKind getSelLocsKind() const { return (SelectorLocationsKind)SelLocsKind; } bool hasStandardSelLocs() const { return getSelLocsKind() != SelLoc_NonStandard; } /// \brief Get a pointer to the stored selector identifiers locations array. /// No locations will be stored if HasStandardSelLocs is true. SourceLocation *getStoredSelLocs() { return reinterpret_cast<SourceLocation*>(getArgs() + getNumArgs()); } const SourceLocation *getStoredSelLocs() const { return reinterpret_cast<const SourceLocation*>(getArgs() + getNumArgs()); } /// \brief Get the number of stored selector identifiers locations. /// No locations will be stored if HasStandardSelLocs is true. unsigned getNumStoredSelLocs() const { if (hasStandardSelLocs()) return 0; return getNumSelectorLocs(); } static ObjCMessageExpr *alloc(ASTContext &C, ArrayRef<Expr *> Args, SourceLocation RBraceLoc, ArrayRef<SourceLocation> SelLocs, Selector Sel, SelectorLocationsKind &SelLocsK); static ObjCMessageExpr *alloc(ASTContext &C, unsigned NumArgs, unsigned NumStoredSelLocs); public: /// \brief The kind of receiver this message is sending to. enum ReceiverKind { /// \brief The receiver is a class. Class = 0, /// \brief The receiver is an object instance. Instance, /// \brief The receiver is a superclass. SuperClass, /// \brief The receiver is the instance of the superclass object. SuperInstance }; /// \brief Create a message send to super. /// /// \param Context The ASTContext in which this expression will be created. /// /// \param T The result type of this message. /// /// \param VK The value kind of this message. A message returning /// a l-value or r-value reference will be an l-value or x-value, /// respectively. /// /// \param LBrac The location of the open square bracket '['. /// /// \param SuperLoc The location of the "super" keyword. /// /// \param IsInstanceSuper Whether this is an instance "super" /// message (otherwise, it's a class "super" message). /// /// \param Sel The selector used to determine which method gets called. /// /// \param Method The Objective-C method against which this message /// send was type-checked. May be NULL. /// /// \param Args The message send arguments. /// /// \param NumArgs The number of arguments. /// /// \param RBracLoc The location of the closing square bracket ']'. static ObjCMessageExpr *Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, SourceLocation SuperLoc, bool IsInstanceSuper, QualType SuperType, Selector Sel, ArrayRef<SourceLocation> SelLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); /// \brief Create a class message send. /// /// \param Context The ASTContext in which this expression will be created. /// /// \param T The result type of this message. /// /// \param VK The value kind of this message. A message returning /// a l-value or r-value reference will be an l-value or x-value, /// respectively. /// /// \param LBrac The location of the open square bracket '['. /// /// \param Receiver The type of the receiver, including /// source-location information. /// /// \param Sel The selector used to determine which method gets called. /// /// \param Method The Objective-C method against which this message /// send was type-checked. May be NULL. /// /// \param Args The message send arguments. /// /// \param NumArgs The number of arguments. /// /// \param RBracLoc The location of the closing square bracket ']'. static ObjCMessageExpr *Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, TypeSourceInfo *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); /// \brief Create an instance message send. /// /// \param Context The ASTContext in which this expression will be created. /// /// \param T The result type of this message. /// /// \param VK The value kind of this message. A message returning /// a l-value or r-value reference will be an l-value or x-value, /// respectively. /// /// \param LBrac The location of the open square bracket '['. /// /// \param Receiver The expression used to produce the object that /// will receive this message. /// /// \param Sel The selector used to determine which method gets called. /// /// \param Method The Objective-C method against which this message /// send was type-checked. May be NULL. /// /// \param Args The message send arguments. /// /// \param NumArgs The number of arguments. /// /// \param RBracLoc The location of the closing square bracket ']'. static ObjCMessageExpr *Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, Expr *Receiver, Selector Sel, ArrayRef<SourceLocation> SeLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit); /// \brief Create an empty Objective-C message expression, to be /// filled in by subsequent calls. /// /// \param Context The context in which the message send will be created. /// /// \param NumArgs The number of message arguments, not including /// the receiver. static ObjCMessageExpr *CreateEmpty(ASTContext &Context, unsigned NumArgs, unsigned NumStoredSelLocs); /// \brief Indicates whether the message send was implicitly /// generated by the implementation. If false, it was written explicitly /// in the source code. bool isImplicit() const { return IsImplicit; } /// \brief Determine the kind of receiver that this message is being /// sent to. ReceiverKind getReceiverKind() const { return (ReceiverKind)Kind; } /// \brief Source range of the receiver. SourceRange getReceiverRange() const; /// \brief Determine whether this is an instance message to either a /// computed object or to super. bool isInstanceMessage() const { return getReceiverKind() == Instance || getReceiverKind() == SuperInstance; } /// \brief Determine whether this is an class message to either a /// specified class or to super. bool isClassMessage() const { return getReceiverKind() == Class || getReceiverKind() == SuperClass; } /// \brief Returns the receiver of an instance message. /// /// \brief Returns the object expression for an instance message, or /// NULL for a message that is not an instance message. Expr *getInstanceReceiver() { if (getReceiverKind() == Instance) return static_cast<Expr *>(getReceiverPointer()); return 0; } const Expr *getInstanceReceiver() const { return const_cast<ObjCMessageExpr*>(this)->getInstanceReceiver(); } /// \brief Turn this message send into an instance message that /// computes the receiver object with the given expression. void setInstanceReceiver(Expr *rec) { Kind = Instance; setReceiverPointer(rec); } /// \brief Returns the type of a class message send, or NULL if the /// message is not a class message. QualType getClassReceiver() const { if (TypeSourceInfo *TSInfo = getClassReceiverTypeInfo()) return TSInfo->getType(); return QualType(); } /// \brief Returns a type-source information of a class message /// send, or NULL if the message is not a class message. TypeSourceInfo *getClassReceiverTypeInfo() const { if (getReceiverKind() == Class) return reinterpret_cast<TypeSourceInfo *>(getReceiverPointer()); return 0; } void setClassReceiver(TypeSourceInfo *TSInfo) { Kind = Class; setReceiverPointer(TSInfo); } /// \brief Retrieve the location of the 'super' keyword for a class /// or instance message to 'super', otherwise an invalid source location. SourceLocation getSuperLoc() const { if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass) return SuperLoc; return SourceLocation(); } /// \brief Retrieve the Objective-C interface to which this message /// is being directed, if known. /// /// This routine cross-cuts all of the different kinds of message /// sends to determine what the underlying (statically known) type /// of the receiver will be; use \c getReceiverKind() to determine /// whether the message is a class or an instance method, whether it /// is a send to super or not, etc. /// /// \returns The Objective-C interface if known, otherwise NULL. ObjCInterfaceDecl *getReceiverInterface() const; /// \brief Retrieve the type referred to by 'super'. /// /// The returned type will either be an ObjCInterfaceType (for an /// class message to super) or an ObjCObjectPointerType that refers /// to a class (for an instance message to super); QualType getSuperType() const { if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass) return QualType::getFromOpaquePtr(getReceiverPointer()); return QualType(); } void setSuper(SourceLocation Loc, QualType T, bool IsInstanceSuper) { Kind = IsInstanceSuper? SuperInstance : SuperClass; SuperLoc = Loc; setReceiverPointer(T.getAsOpaquePtr()); } Selector getSelector() const; void setSelector(Selector S) { HasMethod = false; SelectorOrMethod = reinterpret_cast<uintptr_t>(S.getAsOpaquePtr()); } const ObjCMethodDecl *getMethodDecl() const { if (HasMethod) return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod); return 0; } ObjCMethodDecl *getMethodDecl() { if (HasMethod) return reinterpret_cast<ObjCMethodDecl *>(SelectorOrMethod); return 0; } void setMethodDecl(ObjCMethodDecl *MD) { HasMethod = true; SelectorOrMethod = reinterpret_cast<uintptr_t>(MD); } ObjCMethodFamily getMethodFamily() const { if (HasMethod) return getMethodDecl()->getMethodFamily(); return getSelector().getMethodFamily(); } /// \brief Return the number of actual arguments in this message, /// not counting the receiver. unsigned getNumArgs() const { return NumArgs; } /// \brief Retrieve the arguments to this message, not including the /// receiver. Expr **getArgs() { return reinterpret_cast<Expr **>(this + 1) + 1; } const Expr * const *getArgs() const { return reinterpret_cast<const Expr * const *>(this + 1) + 1; } /// getArg - Return the specified argument. Expr *getArg(unsigned Arg) { assert(Arg < NumArgs && "Arg access out of range!"); return cast<Expr>(getArgs()[Arg]); } const Expr *getArg(unsigned Arg) const { assert(Arg < NumArgs && "Arg access out of range!"); return cast<Expr>(getArgs()[Arg]); } /// setArg - Set the specified argument. void setArg(unsigned Arg, Expr *ArgExpr) { assert(Arg < NumArgs && "Arg access out of range!"); getArgs()[Arg] = ArgExpr; } /// isDelegateInitCall - Answers whether this message send has been /// tagged as a "delegate init call", i.e. a call to a method in the /// -init family on self from within an -init method implementation. bool isDelegateInitCall() const { return IsDelegateInitCall; } void setDelegateInitCall(bool isDelegate) { IsDelegateInitCall = isDelegate; } SourceLocation getLeftLoc() const { return LBracLoc; } SourceLocation getRightLoc() const { return RBracLoc; } SourceLocation getSelectorStartLoc() const { if (isImplicit()) return getLocStart(); return getSelectorLoc(0); } SourceLocation getSelectorLoc(unsigned Index) const { assert(Index < getNumSelectorLocs() && "Index out of range!"); if (hasStandardSelLocs()) return getStandardSelectorLoc(Index, getSelector(), getSelLocsKind() == SelLoc_StandardWithSpace, llvm::makeArrayRef(const_cast<Expr**>(getArgs()), getNumArgs()), RBracLoc); return getStoredSelLocs()[Index]; } void getSelectorLocs(SmallVectorImpl<SourceLocation> &SelLocs) const; unsigned getNumSelectorLocs() const { if (isImplicit()) return 0; Selector Sel = getSelector(); if (Sel.isUnarySelector()) return 1; return Sel.getNumArgs(); } void setSourceRange(SourceRange R) { LBracLoc = R.getBegin(); RBracLoc = R.getEnd(); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LBracLoc, RBracLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCMessageExprClass; } static bool classof(const ObjCMessageExpr *) { return true; } // Iterators child_range children(); typedef ExprIterator arg_iterator; typedef ConstExprIterator const_arg_iterator; arg_iterator arg_begin() { return reinterpret_cast<Stmt **>(getArgs()); } arg_iterator arg_end() { return reinterpret_cast<Stmt **>(getArgs() + NumArgs); } const_arg_iterator arg_begin() const { return reinterpret_cast<Stmt const * const*>(getArgs()); } const_arg_iterator arg_end() const { return reinterpret_cast<Stmt const * const*>(getArgs() + NumArgs); } friend class ASTStmtReader; friend class ASTStmtWriter; }; /// ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type. /// (similar in spirit to MemberExpr). class ObjCIsaExpr : public Expr { /// Base - the expression for the base object pointer. Stmt *Base; /// IsaMemberLoc - This is the location of the 'isa'. SourceLocation IsaMemberLoc; /// IsArrow - True if this is "X->F", false if this is "X.F". bool IsArrow; public: ObjCIsaExpr(Expr *base, bool isarrow, SourceLocation l, QualType ty) : Expr(ObjCIsaExprClass, ty, VK_LValue, OK_Ordinary, /*TypeDependent=*/false, base->isValueDependent(), base->isInstantiationDependent(), /*ContainsUnexpandedParameterPack=*/false), Base(base), IsaMemberLoc(l), IsArrow(isarrow) {} /// \brief Build an empty expression. explicit ObjCIsaExpr(EmptyShell Empty) : Expr(ObjCIsaExprClass, Empty) { } void setBase(Expr *E) { Base = E; } Expr *getBase() const { return cast<Expr>(Base); } bool isArrow() const { return IsArrow; } void setArrow(bool A) { IsArrow = A; } /// getMemberLoc - Return the location of the "member", in X->F, it is the /// location of 'F'. SourceLocation getIsaMemberLoc() const { return IsaMemberLoc; } void setIsaMemberLoc(SourceLocation L) { IsaMemberLoc = L; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getBase()->getLocStart(), IsaMemberLoc); } SourceLocation getExprLoc() const LLVM_READONLY { return IsaMemberLoc; } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCIsaExprClass; } static bool classof(const ObjCIsaExpr *) { return true; } // Iterators child_range children() { return child_range(&Base, &Base+1); } }; /// ObjCIndirectCopyRestoreExpr - Represents the passing of a function /// argument by indirect copy-restore in ARC. This is used to support /// passing indirect arguments with the wrong lifetime, e.g. when /// passing the address of a __strong local variable to an 'out' /// parameter. This expression kind is only valid in an "argument" /// position to some sort of call expression. /// /// The parameter must have type 'pointer to T', and the argument must /// have type 'pointer to U', where T and U agree except possibly in /// qualification. If the argument value is null, then a null pointer /// is passed; otherwise it points to an object A, and: /// 1. A temporary object B of type T is initialized, either by /// zero-initialization (used when initializing an 'out' parameter) /// or copy-initialization (used when initializing an 'inout' /// parameter). /// 2. The address of the temporary is passed to the function. /// 3. If the call completes normally, A is move-assigned from B. /// 4. Finally, A is destroyed immediately. /// /// Currently 'T' must be a retainable object lifetime and must be /// __autoreleasing; this qualifier is ignored when initializing /// the value. class ObjCIndirectCopyRestoreExpr : public Expr { Stmt *Operand; // unsigned ObjCIndirectCopyRestoreBits.ShouldCopy : 1; friend class ASTReader; friend class ASTStmtReader; void setShouldCopy(bool shouldCopy) { ObjCIndirectCopyRestoreExprBits.ShouldCopy = shouldCopy; } explicit ObjCIndirectCopyRestoreExpr(EmptyShell Empty) : Expr(ObjCIndirectCopyRestoreExprClass, Empty) { } public: ObjCIndirectCopyRestoreExpr(Expr *operand, QualType type, bool shouldCopy) : Expr(ObjCIndirectCopyRestoreExprClass, type, VK_LValue, OK_Ordinary, operand->isTypeDependent(), operand->isValueDependent(), operand->isInstantiationDependent(), operand->containsUnexpandedParameterPack()), Operand(operand) { setShouldCopy(shouldCopy); } Expr *getSubExpr() { return cast<Expr>(Operand); } const Expr *getSubExpr() const { return cast<Expr>(Operand); } /// shouldCopy - True if we should do the 'copy' part of the /// copy-restore. If false, the temporary will be zero-initialized. bool shouldCopy() const { return ObjCIndirectCopyRestoreExprBits.ShouldCopy; } child_range children() { return child_range(&Operand, &Operand+1); } // Source locations are determined by the subexpression. SourceRange getSourceRange() const LLVM_READONLY { return Operand->getSourceRange(); } SourceLocation getExprLoc() const LLVM_READONLY { return getSubExpr()->getExprLoc(); } static bool classof(const Stmt *s) { return s->getStmtClass() == ObjCIndirectCopyRestoreExprClass; } static bool classof(const ObjCIndirectCopyRestoreExpr *) { return true; } }; /// \brief An Objective-C "bridged" cast expression, which casts between /// Objective-C pointers and C pointers, transferring ownership in the process. /// /// \code /// NSString *str = (__bridge_transfer NSString *)CFCreateString(); /// \endcode class ObjCBridgedCastExpr : public ExplicitCastExpr { SourceLocation LParenLoc; SourceLocation BridgeKeywordLoc; unsigned Kind : 2; friend class ASTStmtReader; friend class ASTStmtWriter; public: ObjCBridgedCastExpr(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, CastKind CK, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *Operand) : ExplicitCastExpr(ObjCBridgedCastExprClass, TSInfo->getType(), VK_RValue, CK, Operand, 0, TSInfo), LParenLoc(LParenLoc), BridgeKeywordLoc(BridgeKeywordLoc), Kind(Kind) { } /// \brief Construct an empty Objective-C bridged cast. explicit ObjCBridgedCastExpr(EmptyShell Shell) : ExplicitCastExpr(ObjCBridgedCastExprClass, Shell, 0) { } SourceLocation getLParenLoc() const { return LParenLoc; } /// \brief Determine which kind of bridge is being performed via this cast. ObjCBridgeCastKind getBridgeKind() const { return static_cast<ObjCBridgeCastKind>(Kind); } /// \brief Retrieve the kind of bridge being performed as a string. StringRef getBridgeKindName() const; /// \brief The location of the bridge keyword. SourceLocation getBridgeKeywordLoc() const { return BridgeKeywordLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(LParenLoc, getSubExpr()->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == ObjCBridgedCastExprClass; } static bool classof(const ObjCBridgedCastExpr *) { return true; } }; } // end namespace clang #endif