Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Parse/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Parse/Parser.h |
//===--- Parser.h - C Language Parser ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Parser interface. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_PARSE_PARSER_H #define LLVM_CLANG_PARSE_PARSER_H #include "clang/Basic/Specifiers.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/CodeCompletionHandler.h" #include "clang/Sema/Sema.h" #include "clang/Sema/DeclSpec.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PrettyStackTrace.h" #include <stack> namespace clang { class PragmaHandler; class Scope; class DeclGroupRef; class DiagnosticBuilder; class Parser; class PragmaUnusedHandler; class ColonProtectionRAIIObject; class InMessageExpressionRAIIObject; class PoisonSEHIdentifiersRAIIObject; class VersionTuple; /// PrettyStackTraceParserEntry - If a crash happens while the parser is active, /// an entry is printed for it. class PrettyStackTraceParserEntry : public llvm::PrettyStackTraceEntry { const Parser &P; public: PrettyStackTraceParserEntry(const Parser &p) : P(p) {} virtual void print(raw_ostream &OS) const; }; /// PrecedenceLevels - These are precedences for the binary/ternary /// operators in the C99 grammar. These have been named to relate /// with the C99 grammar productions. Low precedences numbers bind /// more weakly than high numbers. namespace prec { enum Level { Unknown = 0, // Not binary operator. Comma = 1, // , Assignment = 2, // =, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |= Conditional = 3, // ? LogicalOr = 4, // || LogicalAnd = 5, // && InclusiveOr = 6, // | ExclusiveOr = 7, // ^ And = 8, // & Equality = 9, // ==, != Relational = 10, // >=, <=, >, < Shift = 11, // <<, >> Additive = 12, // -, + Multiplicative = 13, // *, /, % PointerToMember = 14 // .*, ->* }; } /// Parser - This implements a parser for the C family of languages. After /// parsing units of the grammar, productions are invoked to handle whatever has /// been read. /// class Parser : public CodeCompletionHandler { friend class PragmaUnusedHandler; friend class ColonProtectionRAIIObject; friend class InMessageExpressionRAIIObject; friend class PoisonSEHIdentifiersRAIIObject; friend class ParenBraceBracketBalancer; Preprocessor &PP; /// Tok - The current token we are peeking ahead. All parsing methods assume /// that this is valid. Token Tok; // PrevTokLocation - The location of the token we previously // consumed. This token is used for diagnostics where we expected to // see a token following another token (e.g., the ';' at the end of // a statement). SourceLocation PrevTokLocation; unsigned short ParenCount, BracketCount, BraceCount; /// Actions - These are the callbacks we invoke as we parse various constructs /// in the file. Sema &Actions; DiagnosticsEngine &Diags; /// ScopeCache - Cache scopes to reduce malloc traffic. enum { ScopeCacheSize = 16 }; unsigned NumCachedScopes; Scope *ScopeCache[ScopeCacheSize]; /// Identifiers used for SEH handling in Borland. These are only /// allowed in particular circumstances // __except block IdentifierInfo *Ident__exception_code, *Ident___exception_code, *Ident_GetExceptionCode; // __except filter expression IdentifierInfo *Ident__exception_info, *Ident___exception_info, *Ident_GetExceptionInfo; // __finally IdentifierInfo *Ident__abnormal_termination, *Ident___abnormal_termination, *Ident_AbnormalTermination; /// Contextual keywords for Microsoft extensions. IdentifierInfo *Ident__except; /// Ident_super - IdentifierInfo for "super", to support fast /// comparison. IdentifierInfo *Ident_super; /// Ident_vector and Ident_pixel - cached IdentifierInfo's for /// "vector" and "pixel" fast comparison. Only present if /// AltiVec enabled. IdentifierInfo *Ident_vector; IdentifierInfo *Ident_pixel; /// Objective-C contextual keywords. mutable IdentifierInfo *Ident_instancetype; /// \brief Identifier for "introduced". IdentifierInfo *Ident_introduced; /// \brief Identifier for "deprecated". IdentifierInfo *Ident_deprecated; /// \brief Identifier for "obsoleted". IdentifierInfo *Ident_obsoleted; /// \brief Identifier for "unavailable". IdentifierInfo *Ident_unavailable; /// \brief Identifier for "message". IdentifierInfo *Ident_message; /// C++0x contextual keywords. mutable IdentifierInfo *Ident_final; mutable IdentifierInfo *Ident_override; OwningPtr<PragmaHandler> AlignHandler; OwningPtr<PragmaHandler> GCCVisibilityHandler; OwningPtr<PragmaHandler> OptionsHandler; OwningPtr<PragmaHandler> PackHandler; OwningPtr<PragmaHandler> MSStructHandler; OwningPtr<PragmaHandler> UnusedHandler; OwningPtr<PragmaHandler> WeakHandler; OwningPtr<PragmaHandler> RedefineExtnameHandler; OwningPtr<PragmaHandler> FPContractHandler; OwningPtr<PragmaHandler> OpenCLExtensionHandler; /// Whether the '>' token acts as an operator or not. This will be /// true except when we are parsing an expression within a C++ /// template argument list, where the '>' closes the template /// argument list. bool GreaterThanIsOperator; /// ColonIsSacred - When this is false, we aggressively try to recover from /// code like "foo : bar" as if it were a typo for "foo :: bar". This is not /// safe in case statements and a few other things. This is managed by the /// ColonProtectionRAIIObject RAII object. bool ColonIsSacred; /// \brief When true, we are directly inside an Objective-C messsage /// send expression. /// /// This is managed by the \c InMessageExpressionRAIIObject class, and /// should not be set directly. bool InMessageExpression; /// The "depth" of the template parameters currently being parsed. unsigned TemplateParameterDepth; /// Factory object for creating AttributeList objects. AttributeFactory AttrFactory; /// \brief Gathers and cleans up TemplateIdAnnotations when parsing of a /// top-level declaration is finished. SmallVector<TemplateIdAnnotation *, 16> TemplateIds; IdentifierInfo *getSEHExceptKeyword(); bool SkipFunctionBodies; public: Parser(Preprocessor &PP, Sema &Actions, bool SkipFunctionBodies); ~Parser(); const LangOptions &getLangOpts() const { return PP.getLangOpts(); } const TargetInfo &getTargetInfo() const { return PP.getTargetInfo(); } Preprocessor &getPreprocessor() const { return PP; } Sema &getActions() const { return Actions; } const Token &getCurToken() const { return Tok; } Scope *getCurScope() const { return Actions.getCurScope(); } Decl *getObjCDeclContext() const { return Actions.getObjCDeclContext(); } // Type forwarding. All of these are statically 'void*', but they may all be // different actual classes based on the actions in place. typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy; typedef OpaquePtr<TemplateName> TemplateTy; typedef SmallVector<TemplateParameterList *, 4> TemplateParameterLists; typedef clang::ExprResult ExprResult; typedef clang::StmtResult StmtResult; typedef clang::BaseResult BaseResult; typedef clang::MemInitResult MemInitResult; typedef clang::TypeResult TypeResult; typedef Expr *ExprArg; typedef ASTMultiPtr<Stmt*> MultiStmtArg; typedef Sema::FullExprArg FullExprArg; /// Adorns a ExprResult with Actions to make it an ExprResult ExprResult Owned(ExprResult res) { return ExprResult(res); } /// Adorns a StmtResult with Actions to make it an StmtResult StmtResult Owned(StmtResult res) { return StmtResult(res); } ExprResult ExprError() { return ExprResult(true); } StmtResult StmtError() { return StmtResult(true); } ExprResult ExprError(const DiagnosticBuilder &) { return ExprError(); } StmtResult StmtError(const DiagnosticBuilder &) { return StmtError(); } ExprResult ExprEmpty() { return ExprResult(false); } // Parsing methods. /// ParseTranslationUnit - All in one method that initializes parses, and /// shuts down the parser. void ParseTranslationUnit(); /// Initialize - Warm up the parser. /// void Initialize(); /// ParseTopLevelDecl - Parse one top-level declaration. Returns true if /// the EOF was encountered. bool ParseTopLevelDecl(DeclGroupPtrTy &Result); private: //===--------------------------------------------------------------------===// // Low-Level token peeking and consumption methods. // /// isTokenParen - Return true if the cur token is '(' or ')'. bool isTokenParen() const { return Tok.getKind() == tok::l_paren || Tok.getKind() == tok::r_paren; } /// isTokenBracket - Return true if the cur token is '[' or ']'. bool isTokenBracket() const { return Tok.getKind() == tok::l_square || Tok.getKind() == tok::r_square; } /// isTokenBrace - Return true if the cur token is '{' or '}'. bool isTokenBrace() const { return Tok.getKind() == tok::l_brace || Tok.getKind() == tok::r_brace; } /// isTokenStringLiteral - True if this token is a string-literal. /// bool isTokenStringLiteral() const { return Tok.getKind() == tok::string_literal || Tok.getKind() == tok::wide_string_literal || Tok.getKind() == tok::utf8_string_literal || Tok.getKind() == tok::utf16_string_literal || Tok.getKind() == tok::utf32_string_literal; } /// \brief Returns true if the current token is '=' or is a type of '='. /// For typos, give a fixit to '=' bool isTokenEqualOrEqualTypo(); /// ConsumeToken - Consume the current 'peek token' and lex the next one. /// This does not work with all kinds of tokens: strings and specific other /// tokens must be consumed with custom methods below. This returns the /// location of the consumed token. SourceLocation ConsumeToken() { assert(!isTokenStringLiteral() && !isTokenParen() && !isTokenBracket() && !isTokenBrace() && "Should consume special tokens with Consume*Token"); if (Tok.is(tok::code_completion)) return handleUnexpectedCodeCompletionToken(); PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } /// ConsumeAnyToken - Dispatch to the right Consume* method based on the /// current token type. This should only be used in cases where the type of /// the token really isn't known, e.g. in error recovery. SourceLocation ConsumeAnyToken() { if (isTokenParen()) return ConsumeParen(); else if (isTokenBracket()) return ConsumeBracket(); else if (isTokenBrace()) return ConsumeBrace(); else if (isTokenStringLiteral()) return ConsumeStringToken(); else return ConsumeToken(); } /// ConsumeParen - This consume method keeps the paren count up-to-date. /// SourceLocation ConsumeParen() { assert(isTokenParen() && "wrong consume method"); if (Tok.getKind() == tok::l_paren) ++ParenCount; else if (ParenCount) --ParenCount; // Don't let unbalanced )'s drive the count negative. PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } /// ConsumeBracket - This consume method keeps the bracket count up-to-date. /// SourceLocation ConsumeBracket() { assert(isTokenBracket() && "wrong consume method"); if (Tok.getKind() == tok::l_square) ++BracketCount; else if (BracketCount) --BracketCount; // Don't let unbalanced ]'s drive the count negative. PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } /// ConsumeBrace - This consume method keeps the brace count up-to-date. /// SourceLocation ConsumeBrace() { assert(isTokenBrace() && "wrong consume method"); if (Tok.getKind() == tok::l_brace) ++BraceCount; else if (BraceCount) --BraceCount; // Don't let unbalanced }'s drive the count negative. PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } /// ConsumeStringToken - Consume the current 'peek token', lexing a new one /// and returning the token kind. This method is specific to strings, as it /// handles string literal concatenation, as per C99 5.1.1.2, translation /// phase #6. SourceLocation ConsumeStringToken() { assert(isTokenStringLiteral() && "Should only consume string literals with this method"); PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } /// \brief Consume the current code-completion token. /// /// This routine should be called to consume the code-completion token once /// a code-completion action has already been invoked. SourceLocation ConsumeCodeCompletionToken() { assert(Tok.is(tok::code_completion)); PrevTokLocation = Tok.getLocation(); PP.Lex(Tok); return PrevTokLocation; } ///\ brief When we are consuming a code-completion token without having /// matched specific position in the grammar, provide code-completion results /// based on context. /// /// \returns the source location of the code-completion token. SourceLocation handleUnexpectedCodeCompletionToken(); /// \brief Abruptly cut off parsing; mainly used when we have reached the /// code-completion point. void cutOffParsing() { PP.setCodeCompletionReached(); // Cut off parsing by acting as if we reached the end-of-file. Tok.setKind(tok::eof); } /// \brief Handle the annotation token produced for #pragma unused(...) void HandlePragmaUnused(); /// \brief Handle the annotation token produced for /// #pragma GCC visibility... void HandlePragmaVisibility(); /// \brief Handle the annotation token produced for /// #pragma pack... void HandlePragmaPack(); /// GetLookAheadToken - This peeks ahead N tokens and returns that token /// without consuming any tokens. LookAhead(0) returns 'Tok', LookAhead(1) /// returns the token after Tok, etc. /// /// Note that this differs from the Preprocessor's LookAhead method, because /// the Parser always has one token lexed that the preprocessor doesn't. /// const Token &GetLookAheadToken(unsigned N) { if (N == 0 || Tok.is(tok::eof)) return Tok; return PP.LookAhead(N-1); } /// NextToken - This peeks ahead one token and returns it without /// consuming it. const Token &NextToken() { return PP.LookAhead(0); } /// \brief RAII class that helps handle the parsing of an open/close delimiter /// pair, such as braces { ... } or parentheses ( ... ). class BalancedDelimiterTracker { Parser& P; tok::TokenKind Kind, Close; SourceLocation (Parser::*Consumer)(); SourceLocation LOpen, LClose; unsigned short &getDepth() { switch (Kind) { case tok::l_brace: return P.BraceCount; case tok::l_square: return P.BracketCount; case tok::l_paren: return P.ParenCount; default: llvm_unreachable("Wrong token kind"); } } enum { MaxDepth = 512 }; bool diagnoseOverflow(); bool diagnoseMissingClose(); public: BalancedDelimiterTracker(Parser& p, tok::TokenKind k) : P(p), Kind(k) { switch (Kind) { default: llvm_unreachable("Unexpected balanced token"); case tok::l_brace: Close = tok::r_brace; Consumer = &Parser::ConsumeBrace; break; case tok::l_paren: Close = tok::r_paren; Consumer = &Parser::ConsumeParen; break; case tok::l_square: Close = tok::r_square; Consumer = &Parser::ConsumeBracket; break; } } SourceLocation getOpenLocation() const { return LOpen; } SourceLocation getCloseLocation() const { return LClose; } SourceRange getRange() const { return SourceRange(LOpen, LClose); } bool consumeOpen() { if (!P.Tok.is(Kind)) return true; if (getDepth() < MaxDepth) { LOpen = (P.*Consumer)(); return false; } return diagnoseOverflow(); } bool expectAndConsume(unsigned DiagID, const char *Msg = "", tok::TokenKind SkipToTok = tok::unknown); bool consumeClose() { if (P.Tok.is(Close)) { LClose = (P.*Consumer)(); return false; } return diagnoseMissingClose(); } void skipToEnd(); }; /// getTypeAnnotation - Read a parsed type out of an annotation token. static ParsedType getTypeAnnotation(Token &Tok) { return ParsedType::getFromOpaquePtr(Tok.getAnnotationValue()); } static void setTypeAnnotation(Token &Tok, ParsedType T) { Tok.setAnnotationValue(T.getAsOpaquePtr()); } /// \brief Read an already-translated primary expression out of an annotation /// token. static ExprResult getExprAnnotation(Token &Tok) { if (Tok.getAnnotationValue()) return ExprResult((Expr *)Tok.getAnnotationValue()); return ExprResult(true); } /// \brief Set the primary expression corresponding to the given annotation /// token. static void setExprAnnotation(Token &Tok, ExprResult ER) { if (ER.isInvalid()) Tok.setAnnotationValue(0); else Tok.setAnnotationValue(ER.get()); } // If NeedType is true, then TryAnnotateTypeOrScopeToken will try harder to // find a type name by attempting typo correction. bool TryAnnotateTypeOrScopeToken(bool EnteringContext = false, bool NeedType = false); bool TryAnnotateCXXScopeToken(bool EnteringContext = false); /// TryAltiVecToken - Check for context-sensitive AltiVec identifier tokens, /// replacing them with the non-context-sensitive keywords. This returns /// true if the token was replaced. bool TryAltiVecToken(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { if (!getLangOpts().AltiVec || (Tok.getIdentifierInfo() != Ident_vector && Tok.getIdentifierInfo() != Ident_pixel)) return false; return TryAltiVecTokenOutOfLine(DS, Loc, PrevSpec, DiagID, isInvalid); } /// TryAltiVecVectorToken - Check for context-sensitive AltiVec vector /// identifier token, replacing it with the non-context-sensitive __vector. /// This returns true if the token was replaced. bool TryAltiVecVectorToken() { if (!getLangOpts().AltiVec || Tok.getIdentifierInfo() != Ident_vector) return false; return TryAltiVecVectorTokenOutOfLine(); } bool TryAltiVecVectorTokenOutOfLine(); bool TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid); /// \brief Get the TemplateIdAnnotation from the token. TemplateIdAnnotation *takeTemplateIdAnnotation(const Token &tok); /// TentativeParsingAction - An object that is used as a kind of "tentative /// parsing transaction". It gets instantiated to mark the token position and /// after the token consumption is done, Commit() or Revert() is called to /// either "commit the consumed tokens" or revert to the previously marked /// token position. Example: /// /// TentativeParsingAction TPA(*this); /// ConsumeToken(); /// .... /// TPA.Revert(); /// class TentativeParsingAction { Parser &P; Token PrevTok; unsigned short PrevParenCount, PrevBracketCount, PrevBraceCount; bool isActive; public: explicit TentativeParsingAction(Parser& p) : P(p) { PrevTok = P.Tok; PrevParenCount = P.ParenCount; PrevBracketCount = P.BracketCount; PrevBraceCount = P.BraceCount; P.PP.EnableBacktrackAtThisPos(); isActive = true; } void Commit() { assert(isActive && "Parsing action was finished!"); P.PP.CommitBacktrackedTokens(); isActive = false; } void Revert() { assert(isActive && "Parsing action was finished!"); P.PP.Backtrack(); P.Tok = PrevTok; P.ParenCount = PrevParenCount; P.BracketCount = PrevBracketCount; P.BraceCount = PrevBraceCount; isActive = false; } ~TentativeParsingAction() { assert(!isActive && "Forgot to call Commit or Revert!"); } }; /// ObjCDeclContextSwitch - An object used to switch context from /// an objective-c decl context to its enclosing decl context and /// back. class ObjCDeclContextSwitch { Parser &P; Decl *DC; public: explicit ObjCDeclContextSwitch(Parser &p) : P(p), DC(p.getObjCDeclContext()) { if (DC) P.Actions.ActOnObjCTemporaryExitContainerContext(cast<DeclContext>(DC)); } ~ObjCDeclContextSwitch() { if (DC) P.Actions.ActOnObjCReenterContainerContext(cast<DeclContext>(DC)); } }; /// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the /// input. If so, it is consumed and false is returned. /// /// If the input is malformed, this emits the specified diagnostic. Next, if /// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is /// returned. bool ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned Diag, const char *DiagMsg = "", tok::TokenKind SkipToTok = tok::unknown); /// \brief The parser expects a semicolon and, if present, will consume it. /// /// If the next token is not a semicolon, this emits the specified diagnostic, /// or, if there's just some closing-delimiter noise (e.g., ')' or ']') prior /// to the semicolon, consumes that extra token. bool ExpectAndConsumeSemi(unsigned DiagID); //===--------------------------------------------------------------------===// // Scope manipulation /// ParseScope - Introduces a new scope for parsing. The kind of /// scope is determined by ScopeFlags. Objects of this type should /// be created on the stack to coincide with the position where the /// parser enters the new scope, and this object's constructor will /// create that new scope. Similarly, once the object is destroyed /// the parser will exit the scope. class ParseScope { Parser *Self; ParseScope(const ParseScope&); // do not implement ParseScope& operator=(const ParseScope&); // do not implement public: // ParseScope - Construct a new object to manage a scope in the // parser Self where the new Scope is created with the flags // ScopeFlags, but only when ManageScope is true (the default). If // ManageScope is false, this object does nothing. ParseScope(Parser *Self, unsigned ScopeFlags, bool ManageScope = true) : Self(Self) { if (ManageScope) Self->EnterScope(ScopeFlags); else this->Self = 0; } // Exit - Exit the scope associated with this object now, rather // than waiting until the object is destroyed. void Exit() { if (Self) { Self->ExitScope(); Self = 0; } } ~ParseScope() { Exit(); } }; /// EnterScope - Start a new scope. void EnterScope(unsigned ScopeFlags); /// ExitScope - Pop a scope off the scope stack. void ExitScope(); /// \brief RAII object used to modify the scope flags for the current scope. class ParseScopeFlags { Scope *CurScope; unsigned OldFlags; ParseScopeFlags(const ParseScopeFlags &); // do not implement void operator=(const ParseScopeFlags &); // do not implement public: ParseScopeFlags(Parser *Self, unsigned ScopeFlags, bool ManageFlags = true); ~ParseScopeFlags(); }; //===--------------------------------------------------------------------===// // Diagnostic Emission and Error recovery. public: DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID); private: void SuggestParentheses(SourceLocation Loc, unsigned DK, SourceRange ParenRange); void CheckNestedObjCContexts(SourceLocation AtLoc); /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless DontConsume is true). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool SkipUntil(tok::TokenKind T, bool StopAtSemi = true, bool DontConsume = false, bool StopAtCodeCompletion = false) { return SkipUntil(llvm::makeArrayRef(T), StopAtSemi, DontConsume, StopAtCodeCompletion); } bool SkipUntil(tok::TokenKind T1, tok::TokenKind T2, bool StopAtSemi = true, bool DontConsume = false, bool StopAtCodeCompletion = false) { tok::TokenKind TokArray[] = {T1, T2}; return SkipUntil(TokArray, StopAtSemi, DontConsume,StopAtCodeCompletion); } bool SkipUntil(tok::TokenKind T1, tok::TokenKind T2, tok::TokenKind T3, bool StopAtSemi = true, bool DontConsume = false, bool StopAtCodeCompletion = false) { tok::TokenKind TokArray[] = {T1, T2, T3}; return SkipUntil(TokArray, StopAtSemi, DontConsume,StopAtCodeCompletion); } bool SkipUntil(ArrayRef<tok::TokenKind> Toks, bool StopAtSemi = true, bool DontConsume = false, bool StopAtCodeCompletion = false); /// SkipMalformedDecl - Read tokens until we get to some likely good stopping /// point for skipping past a simple-declaration. void SkipMalformedDecl(); //===--------------------------------------------------------------------===// // Lexing and parsing of C++ inline methods. struct ParsingClass; /// [class.mem]p1: "... the class is regarded as complete within /// - function bodies /// - default arguments /// - exception-specifications (TODO: C++0x) /// - and brace-or-equal-initializers for non-static data members /// (including such things in nested classes)." /// LateParsedDeclarations build the tree of those elements so they can /// be parsed after parsing the top-level class. class LateParsedDeclaration { public: virtual ~LateParsedDeclaration(); virtual void ParseLexedMethodDeclarations(); virtual void ParseLexedMemberInitializers(); virtual void ParseLexedMethodDefs(); virtual void ParseLexedAttributes(); }; /// Inner node of the LateParsedDeclaration tree that parses /// all its members recursively. class LateParsedClass : public LateParsedDeclaration { public: LateParsedClass(Parser *P, ParsingClass *C); virtual ~LateParsedClass(); virtual void ParseLexedMethodDeclarations(); virtual void ParseLexedMemberInitializers(); virtual void ParseLexedMethodDefs(); virtual void ParseLexedAttributes(); private: Parser *Self; ParsingClass *Class; }; /// Contains the lexed tokens of an attribute with arguments that /// may reference member variables and so need to be parsed at the /// end of the class declaration after parsing all other member /// member declarations. /// FIXME: Perhaps we should change the name of LateParsedDeclaration to /// LateParsedTokens. struct LateParsedAttribute : public LateParsedDeclaration { Parser *Self; CachedTokens Toks; IdentifierInfo &AttrName; SourceLocation AttrNameLoc; SmallVector<Decl*, 2> Decls; explicit LateParsedAttribute(Parser *P, IdentifierInfo &Name, SourceLocation Loc) : Self(P), AttrName(Name), AttrNameLoc(Loc) {} virtual void ParseLexedAttributes(); void addDecl(Decl *D) { Decls.push_back(D); } }; /// A list of late parsed attributes. Used by ParseGNUAttributes. typedef llvm::SmallVector<LateParsedAttribute*, 2> LateParsedAttrList; /// Contains the lexed tokens of a member function definition /// which needs to be parsed at the end of the class declaration /// after parsing all other member declarations. struct LexedMethod : public LateParsedDeclaration { Parser *Self; Decl *D; CachedTokens Toks; /// \brief Whether this member function had an associated template /// scope. When true, D is a template declaration. /// othewise, it is a member function declaration. bool TemplateScope; explicit LexedMethod(Parser* P, Decl *MD) : Self(P), D(MD), TemplateScope(false) {} virtual void ParseLexedMethodDefs(); }; /// LateParsedDefaultArgument - Keeps track of a parameter that may /// have a default argument that cannot be parsed yet because it /// occurs within a member function declaration inside the class /// (C++ [class.mem]p2). struct LateParsedDefaultArgument { explicit LateParsedDefaultArgument(Decl *P, CachedTokens *Toks = 0) : Param(P), Toks(Toks) { } /// Param - The parameter declaration for this parameter. Decl *Param; /// Toks - The sequence of tokens that comprises the default /// argument expression, not including the '=' or the terminating /// ')' or ','. This will be NULL for parameters that have no /// default argument. CachedTokens *Toks; }; /// LateParsedMethodDeclaration - A method declaration inside a class that /// contains at least one entity whose parsing needs to be delayed /// until the class itself is completely-defined, such as a default /// argument (C++ [class.mem]p2). struct LateParsedMethodDeclaration : public LateParsedDeclaration { explicit LateParsedMethodDeclaration(Parser *P, Decl *M) : Self(P), Method(M), TemplateScope(false), ExceptionSpecTokens(0) { } virtual void ParseLexedMethodDeclarations(); Parser* Self; /// Method - The method declaration. Decl *Method; /// \brief Whether this member function had an associated template /// scope. When true, D is a template declaration. /// othewise, it is a member function declaration. bool TemplateScope; /// DefaultArgs - Contains the parameters of the function and /// their default arguments. At least one of the parameters will /// have a default argument, but all of the parameters of the /// method will be stored so that they can be reintroduced into /// scope at the appropriate times. SmallVector<LateParsedDefaultArgument, 8> DefaultArgs; /// \brief The set of tokens that make up an exception-specification that /// has not yet been parsed. CachedTokens *ExceptionSpecTokens; }; /// LateParsedMemberInitializer - An initializer for a non-static class data /// member whose parsing must to be delayed until the class is completely /// defined (C++11 [class.mem]p2). struct LateParsedMemberInitializer : public LateParsedDeclaration { LateParsedMemberInitializer(Parser *P, Decl *FD) : Self(P), Field(FD) { } virtual void ParseLexedMemberInitializers(); Parser *Self; /// Field - The field declaration. Decl *Field; /// CachedTokens - The sequence of tokens that comprises the initializer, /// including any leading '='. CachedTokens Toks; }; /// LateParsedDeclarationsContainer - During parsing of a top (non-nested) /// C++ class, its method declarations that contain parts that won't be /// parsed until after the definition is completed (C++ [class.mem]p2), /// the method declarations and possibly attached inline definitions /// will be stored here with the tokens that will be parsed to create those /// entities. typedef SmallVector<LateParsedDeclaration*,2> LateParsedDeclarationsContainer; /// \brief Representation of a class that has been parsed, including /// any member function declarations or definitions that need to be /// parsed after the corresponding top-level class is complete. struct ParsingClass { ParsingClass(Decl *TagOrTemplate, bool TopLevelClass) : TopLevelClass(TopLevelClass), TemplateScope(false), TagOrTemplate(TagOrTemplate) { } /// \brief Whether this is a "top-level" class, meaning that it is /// not nested within another class. bool TopLevelClass : 1; /// \brief Whether this class had an associated template /// scope. When true, TagOrTemplate is a template declaration; /// othewise, it is a tag declaration. bool TemplateScope : 1; /// \brief The class or class template whose definition we are parsing. Decl *TagOrTemplate; /// LateParsedDeclarations - Method declarations, inline definitions and /// nested classes that contain pieces whose parsing will be delayed until /// the top-level class is fully defined. LateParsedDeclarationsContainer LateParsedDeclarations; }; /// \brief The stack of classes that is currently being /// parsed. Nested and local classes will be pushed onto this stack /// when they are parsed, and removed afterward. std::stack<ParsingClass *> ClassStack; ParsingClass &getCurrentClass() { assert(!ClassStack.empty() && "No lexed method stacks!"); return *ClassStack.top(); } /// \brief RAII object used to inform the actions that we're /// currently parsing a declaration. This is active when parsing a /// variable's initializer, but not when parsing the body of a /// class or function definition. class ParsingDeclRAIIObject { Sema &Actions; Sema::ParsingDeclState State; bool Popped; public: ParsingDeclRAIIObject(Parser &P) : Actions(P.Actions) { push(); } ParsingDeclRAIIObject(Parser &P, ParsingDeclRAIIObject *Other) : Actions(P.Actions) { if (Other) steal(*Other); else push(); } /// Creates a RAII object which steals the state from a different /// object instead of pushing. ParsingDeclRAIIObject(ParsingDeclRAIIObject &Other) : Actions(Other.Actions) { steal(Other); } ~ParsingDeclRAIIObject() { abort(); } /// Resets the RAII object for a new declaration. void reset() { abort(); push(); } /// Signals that the context was completed without an appropriate /// declaration being parsed. void abort() { pop(0); } void complete(Decl *D) { assert(!Popped && "ParsingDeclaration has already been popped!"); pop(D); } private: void steal(ParsingDeclRAIIObject &Other) { State = Other.State; Popped = Other.Popped; Other.Popped = true; } void push() { State = Actions.PushParsingDeclaration(); Popped = false; } void pop(Decl *D) { if (!Popped) { Actions.PopParsingDeclaration(State, D); Popped = true; } } }; /// A class for parsing a DeclSpec. class ParsingDeclSpec : public DeclSpec { ParsingDeclRAIIObject ParsingRAII; public: ParsingDeclSpec(Parser &P) : DeclSpec(P.AttrFactory), ParsingRAII(P) {} ParsingDeclSpec(Parser &P, ParsingDeclRAIIObject *RAII) : DeclSpec(P.AttrFactory), ParsingRAII(P, RAII) {} void complete(Decl *D) { ParsingRAII.complete(D); } void abort() { ParsingRAII.abort(); } }; /// A class for parsing a declarator. class ParsingDeclarator : public Declarator { ParsingDeclRAIIObject ParsingRAII; public: ParsingDeclarator(Parser &P, const ParsingDeclSpec &DS, TheContext C) : Declarator(DS, C), ParsingRAII(P) { } const ParsingDeclSpec &getDeclSpec() const { return static_cast<const ParsingDeclSpec&>(Declarator::getDeclSpec()); } ParsingDeclSpec &getMutableDeclSpec() const { return const_cast<ParsingDeclSpec&>(getDeclSpec()); } void clear() { Declarator::clear(); ParsingRAII.reset(); } void complete(Decl *D) { ParsingRAII.complete(D); } }; /// \brief RAII object used to class ParsingClassDefinition { Parser &P; bool Popped; Sema::ParsingClassState State; public: ParsingClassDefinition(Parser &P, Decl *TagOrTemplate, bool TopLevelClass) : P(P), Popped(false), State(P.PushParsingClass(TagOrTemplate, TopLevelClass)) { } /// \brief Pop this class of the stack. void Pop() { assert(!Popped && "Nested class has already been popped"); Popped = true; P.PopParsingClass(State); } ~ParsingClassDefinition() { if (!Popped) P.PopParsingClass(State); } }; /// \brief Contains information about any template-specific /// information that has been parsed prior to parsing declaration /// specifiers. struct ParsedTemplateInfo { ParsedTemplateInfo() : Kind(NonTemplate), TemplateParams(0), TemplateLoc() { } ParsedTemplateInfo(TemplateParameterLists *TemplateParams, bool isSpecialization, bool lastParameterListWasEmpty = false) : Kind(isSpecialization? ExplicitSpecialization : Template), TemplateParams(TemplateParams), LastParameterListWasEmpty(lastParameterListWasEmpty) { } explicit ParsedTemplateInfo(SourceLocation ExternLoc, SourceLocation TemplateLoc) : Kind(ExplicitInstantiation), TemplateParams(0), ExternLoc(ExternLoc), TemplateLoc(TemplateLoc), LastParameterListWasEmpty(false){ } /// \brief The kind of template we are parsing. enum { /// \brief We are not parsing a template at all. NonTemplate = 0, /// \brief We are parsing a template declaration. Template, /// \brief We are parsing an explicit specialization. ExplicitSpecialization, /// \brief We are parsing an explicit instantiation. ExplicitInstantiation } Kind; /// \brief The template parameter lists, for template declarations /// and explicit specializations. TemplateParameterLists *TemplateParams; /// \brief The location of the 'extern' keyword, if any, for an explicit /// instantiation SourceLocation ExternLoc; /// \brief The location of the 'template' keyword, for an explicit /// instantiation. SourceLocation TemplateLoc; /// \brief Whether the last template parameter list was empty. bool LastParameterListWasEmpty; SourceRange getSourceRange() const LLVM_READONLY; }; /// \brief Contains a late templated function. /// Will be parsed at the end of the translation unit. struct LateParsedTemplatedFunction { explicit LateParsedTemplatedFunction(Decl *MD) : D(MD) {} CachedTokens Toks; /// \brief The template function declaration to be late parsed. Decl *D; }; void LexTemplateFunctionForLateParsing(CachedTokens &Toks); void ParseLateTemplatedFuncDef(LateParsedTemplatedFunction &LMT); typedef llvm::DenseMap<const FunctionDecl*, LateParsedTemplatedFunction*> LateParsedTemplateMapT; LateParsedTemplateMapT LateParsedTemplateMap; static void LateTemplateParserCallback(void *P, const FunctionDecl *FD); void LateTemplateParser(const FunctionDecl *FD); Sema::ParsingClassState PushParsingClass(Decl *TagOrTemplate, bool TopLevelClass); void DeallocateParsedClasses(ParsingClass *Class); void PopParsingClass(Sema::ParsingClassState); Decl *ParseCXXInlineMethodDef(AccessSpecifier AS, AttributeList *AccessAttrs, ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo, const VirtSpecifiers& VS, FunctionDefinitionKind DefinitionKind, ExprResult& Init); void ParseCXXNonStaticMemberInitializer(Decl *VarD); void ParseLexedAttributes(ParsingClass &Class); void ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, bool EnterScope, bool OnDefinition); void ParseLexedAttribute(LateParsedAttribute &LA, bool EnterScope, bool OnDefinition); void ParseLexedMethodDeclarations(ParsingClass &Class); void ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM); void ParseLexedMethodDefs(ParsingClass &Class); void ParseLexedMethodDef(LexedMethod &LM); void ParseLexedMemberInitializers(ParsingClass &Class); void ParseLexedMemberInitializer(LateParsedMemberInitializer &MI); Decl *ParseLexedObjCMethodDefs(LexedMethod &LM); bool ConsumeAndStoreFunctionPrologue(CachedTokens &Toks); bool ConsumeAndStoreUntil(tok::TokenKind T1, CachedTokens &Toks, bool StopAtSemi = true, bool ConsumeFinalToken = true) { return ConsumeAndStoreUntil(T1, T1, Toks, StopAtSemi, ConsumeFinalToken); } bool ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2, CachedTokens &Toks, bool StopAtSemi = true, bool ConsumeFinalToken = true); //===--------------------------------------------------------------------===// // C99 6.9: External Definitions. struct ParsedAttributesWithRange : ParsedAttributes { ParsedAttributesWithRange(AttributeFactory &factory) : ParsedAttributes(factory) {} SourceRange Range; }; DeclGroupPtrTy ParseExternalDeclaration(ParsedAttributesWithRange &attrs, ParsingDeclSpec *DS = 0); bool isDeclarationAfterDeclarator(); bool isStartOfFunctionDefinition(const ParsingDeclarator &Declarator); DeclGroupPtrTy ParseDeclarationOrFunctionDefinition(ParsedAttributes &attrs, AccessSpecifier AS = AS_none); DeclGroupPtrTy ParseDeclarationOrFunctionDefinition(ParsingDeclSpec &DS, AccessSpecifier AS = AS_none); Decl *ParseFunctionDefinition(ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(), LateParsedAttrList *LateParsedAttrs = 0); void ParseKNRParamDeclarations(Declarator &D); // EndLoc, if non-NULL, is filled with the location of the last token of // the simple-asm. ExprResult ParseSimpleAsm(SourceLocation *EndLoc = 0); ExprResult ParseAsmStringLiteral(); // Objective-C External Declarations DeclGroupPtrTy ParseObjCAtDirectives(); DeclGroupPtrTy ParseObjCAtClassDeclaration(SourceLocation atLoc); Decl *ParseObjCAtInterfaceDeclaration(SourceLocation AtLoc, ParsedAttributes &prefixAttrs); void ParseObjCClassInstanceVariables(Decl *interfaceDecl, tok::ObjCKeywordKind visibility, SourceLocation atLoc); bool ParseObjCProtocolReferences(SmallVectorImpl<Decl *> &P, SmallVectorImpl<SourceLocation> &PLocs, bool WarnOnDeclarations, SourceLocation &LAngleLoc, SourceLocation &EndProtoLoc); bool ParseObjCProtocolQualifiers(DeclSpec &DS); void ParseObjCInterfaceDeclList(tok::ObjCKeywordKind contextKey, Decl *CDecl); DeclGroupPtrTy ParseObjCAtProtocolDeclaration(SourceLocation atLoc, ParsedAttributes &prefixAttrs); struct ObjCImplParsingDataRAII { Parser &P; Decl *Dcl; typedef SmallVector<LexedMethod*, 8> LateParsedObjCMethodContainer; LateParsedObjCMethodContainer LateParsedObjCMethods; ObjCImplParsingDataRAII(Parser &parser, Decl *D) : P(parser), Dcl(D) { P.CurParsedObjCImpl = this; Finished = false; } ~ObjCImplParsingDataRAII(); void finish(SourceRange AtEnd); bool isFinished() const { return Finished; } private: bool Finished; }; ObjCImplParsingDataRAII *CurParsedObjCImpl; DeclGroupPtrTy ParseObjCAtImplementationDeclaration(SourceLocation AtLoc); DeclGroupPtrTy ParseObjCAtEndDeclaration(SourceRange atEnd); Decl *ParseObjCAtAliasDeclaration(SourceLocation atLoc); Decl *ParseObjCPropertySynthesize(SourceLocation atLoc); Decl *ParseObjCPropertyDynamic(SourceLocation atLoc); IdentifierInfo *ParseObjCSelectorPiece(SourceLocation &MethodLocation); // Definitions for Objective-c context sensitive keywords recognition. enum ObjCTypeQual { objc_in=0, objc_out, objc_inout, objc_oneway, objc_bycopy, objc_byref, objc_NumQuals }; IdentifierInfo *ObjCTypeQuals[objc_NumQuals]; bool isTokIdentifier_in() const; ParsedType ParseObjCTypeName(ObjCDeclSpec &DS, Declarator::TheContext Ctx, ParsedAttributes *ParamAttrs); void ParseObjCMethodRequirement(); Decl *ParseObjCMethodPrototype( tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword, bool MethodDefinition = true); Decl *ParseObjCMethodDecl(SourceLocation mLoc, tok::TokenKind mType, tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword, bool MethodDefinition=true); void ParseObjCPropertyAttribute(ObjCDeclSpec &DS); Decl *ParseObjCMethodDefinition(); //===--------------------------------------------------------------------===// // C99 6.5: Expressions. /// TypeCastState - State whether an expression is or may be a type cast. enum TypeCastState { NotTypeCast = 0, MaybeTypeCast, IsTypeCast }; ExprResult ParseExpression(TypeCastState isTypeCast = NotTypeCast); ExprResult ParseConstantExpression(TypeCastState isTypeCast = NotTypeCast); // Expr that doesn't include commas. ExprResult ParseAssignmentExpression(TypeCastState isTypeCast = NotTypeCast); ExprResult ParseExpressionWithLeadingAt(SourceLocation AtLoc); ExprResult ParseExpressionWithLeadingExtension(SourceLocation ExtLoc); ExprResult ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec); ExprResult ParseCastExpression(bool isUnaryExpression, bool isAddressOfOperand, bool &NotCastExpr, TypeCastState isTypeCast); ExprResult ParseCastExpression(bool isUnaryExpression, bool isAddressOfOperand = false, TypeCastState isTypeCast = NotTypeCast); /// Returns true if the next token would start a postfix-expression /// suffix. bool isPostfixExpressionSuffixStart() { tok::TokenKind K = Tok.getKind(); return (K == tok::l_square || K == tok::l_paren || K == tok::period || K == tok::arrow || K == tok::plusplus || K == tok::minusminus); } ExprResult ParsePostfixExpressionSuffix(ExprResult LHS); ExprResult ParseUnaryExprOrTypeTraitExpression(); ExprResult ParseBuiltinPrimaryExpression(); ExprResult ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, bool &isCastExpr, ParsedType &CastTy, SourceRange &CastRange); typedef SmallVector<Expr*, 20> ExprListTy; typedef SmallVector<SourceLocation, 20> CommaLocsTy; /// ParseExpressionList - Used for C/C++ (argument-)expression-list. bool ParseExpressionList(SmallVectorImpl<Expr*> &Exprs, SmallVectorImpl<SourceLocation> &CommaLocs, void (Sema::*Completer)(Scope *S, Expr *Data, llvm::ArrayRef<Expr *> Args) = 0, Expr *Data = 0); /// ParenParseOption - Control what ParseParenExpression will parse. enum ParenParseOption { SimpleExpr, // Only parse '(' expression ')' CompoundStmt, // Also allow '(' compound-statement ')' CompoundLiteral, // Also allow '(' type-name ')' '{' ... '}' CastExpr // Also allow '(' type-name ')' <anything> }; ExprResult ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, bool isTypeCast, ParsedType &CastTy, SourceLocation &RParenLoc); ExprResult ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, ParsedType &CastTy, BalancedDelimiterTracker &Tracker); ExprResult ParseCompoundLiteralExpression(ParsedType Ty, SourceLocation LParenLoc, SourceLocation RParenLoc); ExprResult ParseStringLiteralExpression(bool AllowUserDefinedLiteral = false); ExprResult ParseGenericSelectionExpression(); ExprResult ParseObjCBoolLiteral(); //===--------------------------------------------------------------------===// // C++ Expressions ExprResult ParseCXXIdExpression(bool isAddressOfOperand = false); void CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectTypePtr, bool EnteringContext, IdentifierInfo &II, CXXScopeSpec &SS); bool ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext, bool *MayBePseudoDestructor = 0, bool IsTypename = false); //===--------------------------------------------------------------------===// // C++0x 5.1.2: Lambda expressions // [...] () -> type {...} ExprResult ParseLambdaExpression(); ExprResult TryParseLambdaExpression(); llvm::Optional<unsigned> ParseLambdaIntroducer(LambdaIntroducer &Intro); bool TryParseLambdaIntroducer(LambdaIntroducer &Intro); ExprResult ParseLambdaExpressionAfterIntroducer( LambdaIntroducer &Intro); //===--------------------------------------------------------------------===// // C++ 5.2p1: C++ Casts ExprResult ParseCXXCasts(); //===--------------------------------------------------------------------===// // C++ 5.2p1: C++ Type Identification ExprResult ParseCXXTypeid(); //===--------------------------------------------------------------------===// // C++ : Microsoft __uuidof Expression ExprResult ParseCXXUuidof(); //===--------------------------------------------------------------------===// // C++ 5.2.4: C++ Pseudo-Destructor Expressions ExprResult ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, ParsedType ObjectType); //===--------------------------------------------------------------------===// // C++ 9.3.2: C++ 'this' pointer ExprResult ParseCXXThis(); //===--------------------------------------------------------------------===// // C++ 15: C++ Throw Expression ExprResult ParseThrowExpression(); ExceptionSpecificationType tryParseExceptionSpecification( SourceRange &SpecificationRange, SmallVectorImpl<ParsedType> &DynamicExceptions, SmallVectorImpl<SourceRange> &DynamicExceptionRanges, ExprResult &NoexceptExpr); // EndLoc is filled with the location of the last token of the specification. ExceptionSpecificationType ParseDynamicExceptionSpecification( SourceRange &SpecificationRange, SmallVectorImpl<ParsedType> &Exceptions, SmallVectorImpl<SourceRange> &Ranges); //===--------------------------------------------------------------------===// // C++0x 8: Function declaration trailing-return-type TypeResult ParseTrailingReturnType(SourceRange &Range); //===--------------------------------------------------------------------===// // C++ 2.13.5: C++ Boolean Literals ExprResult ParseCXXBoolLiteral(); //===--------------------------------------------------------------------===// // C++ 5.2.3: Explicit type conversion (functional notation) ExprResult ParseCXXTypeConstructExpression(const DeclSpec &DS); bool isCXXSimpleTypeSpecifier() const; /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. /// This should only be called when the current token is known to be part of /// simple-type-specifier. void ParseCXXSimpleTypeSpecifier(DeclSpec &DS); bool ParseCXXTypeSpecifierSeq(DeclSpec &DS); //===--------------------------------------------------------------------===// // C++ 5.3.4 and 5.3.5: C++ new and delete bool ParseExpressionListOrTypeId(SmallVectorImpl<Expr*> &Exprs, Declarator &D); void ParseDirectNewDeclarator(Declarator &D); ExprResult ParseCXXNewExpression(bool UseGlobal, SourceLocation Start); ExprResult ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start); //===--------------------------------------------------------------------===// // C++ if/switch/while condition expression. bool ParseCXXCondition(ExprResult &ExprResult, Decl *&DeclResult, SourceLocation Loc, bool ConvertToBoolean); //===--------------------------------------------------------------------===// // C++ types //===--------------------------------------------------------------------===// // C99 6.7.8: Initialization. /// ParseInitializer /// initializer: [C99 6.7.8] /// assignment-expression /// '{' ... ExprResult ParseInitializer() { if (Tok.isNot(tok::l_brace)) return ParseAssignmentExpression(); return ParseBraceInitializer(); } bool MayBeDesignationStart(); ExprResult ParseBraceInitializer(); ExprResult ParseInitializerWithPotentialDesignator(); //===--------------------------------------------------------------------===// // clang Expressions ExprResult ParseBlockLiteralExpression(); // ^{...} //===--------------------------------------------------------------------===// // Objective-C Expressions ExprResult ParseObjCAtExpression(SourceLocation AtLocation); ExprResult ParseObjCStringLiteral(SourceLocation AtLoc); ExprResult ParseObjCCharacterLiteral(SourceLocation AtLoc); ExprResult ParseObjCNumericLiteral(SourceLocation AtLoc); ExprResult ParseObjCBooleanLiteral(SourceLocation AtLoc, bool ArgValue); ExprResult ParseObjCArrayLiteral(SourceLocation AtLoc); ExprResult ParseObjCDictionaryLiteral(SourceLocation AtLoc); ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc); ExprResult ParseObjCSelectorExpression(SourceLocation AtLoc); ExprResult ParseObjCProtocolExpression(SourceLocation AtLoc); bool isSimpleObjCMessageExpression(); ExprResult ParseObjCMessageExpression(); ExprResult ParseObjCMessageExpressionBody(SourceLocation LBracloc, SourceLocation SuperLoc, ParsedType ReceiverType, ExprArg ReceiverExpr); ExprResult ParseAssignmentExprWithObjCMessageExprStart( SourceLocation LBracloc, SourceLocation SuperLoc, ParsedType ReceiverType, ExprArg ReceiverExpr); bool ParseObjCXXMessageReceiver(bool &IsExpr, void *&TypeOrExpr); //===--------------------------------------------------------------------===// // C99 6.8: Statements and Blocks. StmtResult ParseStatement(SourceLocation *TrailingElseLoc = 0) { StmtVector Stmts(Actions); return ParseStatementOrDeclaration(Stmts, true, TrailingElseLoc); } StmtResult ParseStatementOrDeclaration(StmtVector &Stmts, bool OnlyStatement, SourceLocation *TrailingElseLoc = 0); StmtResult ParseStatementOrDeclarationAfterAttributes( StmtVector &Stmts, bool OnlyStatement, SourceLocation *TrailingElseLoc, ParsedAttributesWithRange &Attrs); StmtResult ParseExprStatement(); StmtResult ParseLabeledStatement(ParsedAttributesWithRange &attrs); StmtResult ParseCaseStatement(bool MissingCase = false, ExprResult Expr = ExprResult()); StmtResult ParseDefaultStatement(); StmtResult ParseCompoundStatement(bool isStmtExpr = false); StmtResult ParseCompoundStatement(bool isStmtExpr, unsigned ScopeFlags); StmtResult ParseCompoundStatementBody(bool isStmtExpr = false); bool ParseParenExprOrCondition(ExprResult &ExprResult, Decl *&DeclResult, SourceLocation Loc, bool ConvertToBoolean); StmtResult ParseIfStatement(SourceLocation *TrailingElseLoc); StmtResult ParseSwitchStatement(SourceLocation *TrailingElseLoc); StmtResult ParseWhileStatement(SourceLocation *TrailingElseLoc); StmtResult ParseDoStatement(); StmtResult ParseForStatement(SourceLocation *TrailingElseLoc); StmtResult ParseGotoStatement(); StmtResult ParseContinueStatement(); StmtResult ParseBreakStatement(); StmtResult ParseReturnStatement(); StmtResult ParseAsmStatement(bool &msAsm); StmtResult ParseMicrosoftAsmStatement(SourceLocation AsmLoc); /// \brief Describes the behavior that should be taken for an __if_exists /// block. enum IfExistsBehavior { /// \brief Parse the block; this code is always used. IEB_Parse, /// \brief Skip the block entirely; this code is never used. IEB_Skip, /// \brief Parse the block as a dependent block, which may be used in /// some template instantiations but not others. IEB_Dependent }; /// \brief Describes the condition of a Microsoft __if_exists or /// __if_not_exists block. struct IfExistsCondition { /// \brief The location of the initial keyword. SourceLocation KeywordLoc; /// \brief Whether this is an __if_exists block (rather than an /// __if_not_exists block). bool IsIfExists; /// \brief Nested-name-specifier preceding the name. CXXScopeSpec SS; /// \brief The name we're looking for. UnqualifiedId Name; /// \brief The behavior of this __if_exists or __if_not_exists block /// should. IfExistsBehavior Behavior; }; bool ParseMicrosoftIfExistsCondition(IfExistsCondition& Result); void ParseMicrosoftIfExistsStatement(StmtVector &Stmts); void ParseMicrosoftIfExistsExternalDeclaration(); void ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType, AccessSpecifier& CurAS); bool ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs, bool &InitExprsOk); bool ParseAsmOperandsOpt(SmallVectorImpl<IdentifierInfo *> &Names, SmallVectorImpl<Expr *> &Constraints, SmallVectorImpl<Expr *> &Exprs); //===--------------------------------------------------------------------===// // C++ 6: Statements and Blocks StmtResult ParseCXXTryBlock(); StmtResult ParseCXXTryBlockCommon(SourceLocation TryLoc); StmtResult ParseCXXCatchBlock(); //===--------------------------------------------------------------------===// // MS: SEH Statements and Blocks StmtResult ParseSEHTryBlock(); StmtResult ParseSEHTryBlockCommon(SourceLocation Loc); StmtResult ParseSEHExceptBlock(SourceLocation Loc); StmtResult ParseSEHFinallyBlock(SourceLocation Loc); //===--------------------------------------------------------------------===// // Objective-C Statements StmtResult ParseObjCAtStatement(SourceLocation atLoc); StmtResult ParseObjCTryStmt(SourceLocation atLoc); StmtResult ParseObjCThrowStmt(SourceLocation atLoc); StmtResult ParseObjCSynchronizedStmt(SourceLocation atLoc); StmtResult ParseObjCAutoreleasePoolStmt(SourceLocation atLoc); //===--------------------------------------------------------------------===// // C99 6.7: Declarations. /// A context for parsing declaration specifiers. TODO: flesh this /// out, there are other significant restrictions on specifiers than /// would be best implemented in the parser. enum DeclSpecContext { DSC_normal, // normal context DSC_class, // class context, enables 'friend' DSC_type_specifier, // C++ type-specifier-seq DSC_trailing, // C++11 trailing-type-specifier in a trailing return type DSC_top_level // top-level/namespace declaration context }; /// Information on a C++0x for-range-initializer found while parsing a /// declaration which turns out to be a for-range-declaration. struct ForRangeInit { SourceLocation ColonLoc; ExprResult RangeExpr; bool ParsedForRangeDecl() { return !ColonLoc.isInvalid(); } }; DeclGroupPtrTy ParseDeclaration(StmtVector &Stmts, unsigned Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs); DeclGroupPtrTy ParseSimpleDeclaration(StmtVector &Stmts, unsigned Context, SourceLocation &DeclEnd, ParsedAttributes &attrs, bool RequireSemi, ForRangeInit *FRI = 0); bool MightBeDeclarator(unsigned Context); DeclGroupPtrTy ParseDeclGroup(ParsingDeclSpec &DS, unsigned Context, bool AllowFunctionDefinitions, SourceLocation *DeclEnd = 0, ForRangeInit *FRI = 0); Decl *ParseDeclarationAfterDeclarator(Declarator &D, const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo()); bool ParseAsmAttributesAfterDeclarator(Declarator &D); Decl *ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D, const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo()); Decl *ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope); Decl *ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope); /// \brief When in code-completion, skip parsing of the function/method body /// unless the body contains the code-completion point. /// /// \returns true if the function body was skipped. bool trySkippingFunctionBody(); bool ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC); DeclSpecContext getDeclSpecContextFromDeclaratorContext(unsigned Context); void ParseDeclarationSpecifiers(DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(), AccessSpecifier AS = AS_none, DeclSpecContext DSC = DSC_normal, LateParsedAttrList *LateAttrs = 0); void ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS = AS_none, DeclSpecContext DSC = DSC_normal); void ParseObjCTypeQualifierList(ObjCDeclSpec &DS, Declarator::TheContext Context); void ParseEnumSpecifier(SourceLocation TagLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC); void ParseEnumBody(SourceLocation StartLoc, Decl *TagDecl); void ParseStructUnionBody(SourceLocation StartLoc, unsigned TagType, Decl *TagDecl); struct FieldCallback { virtual Decl *invoke(FieldDeclarator &Field) = 0; virtual ~FieldCallback() {} private: virtual void _anchor(); }; struct ObjCPropertyCallback; void ParseStructDeclaration(DeclSpec &DS, FieldCallback &Callback); bool isDeclarationSpecifier(bool DisambiguatingWithExpression = false); bool isTypeSpecifierQualifier(); bool isTypeQualifier() const; /// isKnownToBeTypeSpecifier - Return true if we know that the specified token /// is definitely a type-specifier. Return false if it isn't part of a type /// specifier or if we're not sure. bool isKnownToBeTypeSpecifier(const Token &Tok) const; /// isDeclarationStatement - Disambiguates between a declaration or an /// expression statement, when parsing function bodies. /// Returns true for declaration, false for expression. bool isDeclarationStatement() { if (getLangOpts().CPlusPlus) return isCXXDeclarationStatement(); return isDeclarationSpecifier(true); } /// isForInitDeclaration - Disambiguates between a declaration or an /// expression in the context of the C 'clause-1' or the C++ // 'for-init-statement' part of a 'for' statement. /// Returns true for declaration, false for expression. bool isForInitDeclaration() { if (getLangOpts().CPlusPlus) return isCXXSimpleDeclaration(/*AllowForRangeDecl=*/true); return isDeclarationSpecifier(true); } /// \brief Determine whether we are currently at the start of an Objective-C /// class message that appears to be missing the open bracket '['. bool isStartOfObjCClassMessageMissingOpenBracket(); /// \brief Starting with a scope specifier, identifier, or /// template-id that refers to the current class, determine whether /// this is a constructor declarator. bool isConstructorDeclarator(); /// \brief Specifies the context in which type-id/expression /// disambiguation will occur. enum TentativeCXXTypeIdContext { TypeIdInParens, TypeIdAsTemplateArgument }; /// isTypeIdInParens - Assumes that a '(' was parsed and now we want to know /// whether the parens contain an expression or a type-id. /// Returns true for a type-id and false for an expression. bool isTypeIdInParens(bool &isAmbiguous) { if (getLangOpts().CPlusPlus) return isCXXTypeId(TypeIdInParens, isAmbiguous); isAmbiguous = false; return isTypeSpecifierQualifier(); } bool isTypeIdInParens() { bool isAmbiguous; return isTypeIdInParens(isAmbiguous); } /// isCXXDeclarationStatement - C++-specialized function that disambiguates /// between a declaration or an expression statement, when parsing function /// bodies. Returns true for declaration, false for expression. bool isCXXDeclarationStatement(); /// isCXXSimpleDeclaration - C++-specialized function that disambiguates /// between a simple-declaration or an expression-statement. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. /// Returns false if the statement is disambiguated as expression. bool isCXXSimpleDeclaration(bool AllowForRangeDecl); /// isCXXFunctionDeclarator - Disambiguates between a function declarator or /// a constructor-style initializer, when parsing declaration statements. /// Returns true for function declarator and false for constructor-style /// initializer. If 'warnIfAmbiguous' is true a warning will be emitted to /// indicate that the parens were disambiguated as function declarator. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. bool isCXXFunctionDeclarator(bool warnIfAmbiguous); /// isCXXConditionDeclaration - Disambiguates between a declaration or an /// expression for a condition of a if/switch/while/for statement. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. bool isCXXConditionDeclaration(); bool isCXXTypeId(TentativeCXXTypeIdContext Context, bool &isAmbiguous); bool isCXXTypeId(TentativeCXXTypeIdContext Context) { bool isAmbiguous; return isCXXTypeId(Context, isAmbiguous); } /// TPResult - Used as the result value for functions whose purpose is to /// disambiguate C++ constructs by "tentatively parsing" them. /// This is a class instead of a simple enum because the implicit enum-to-bool /// conversions may cause subtle bugs. class TPResult { enum Result { TPR_true, TPR_false, TPR_ambiguous, TPR_error }; Result Res; TPResult(Result result) : Res(result) {} public: static TPResult True() { return TPR_true; } static TPResult False() { return TPR_false; } static TPResult Ambiguous() { return TPR_ambiguous; } static TPResult Error() { return TPR_error; } bool operator==(const TPResult &RHS) const { return Res == RHS.Res; } bool operator!=(const TPResult &RHS) const { return Res != RHS.Res; } }; /// \brief Based only on the given token kind, determine whether we know that /// we're at the start of an expression or a type-specifier-seq (which may /// be an expression, in C++). /// /// This routine does not attempt to resolve any of the trick cases, e.g., /// those involving lookup of identifiers. /// /// \returns \c TPR_true if this token starts an expression, \c TPR_false if /// this token starts a type-specifier-seq, or \c TPR_ambiguous if it cannot /// tell. TPResult isExpressionOrTypeSpecifierSimple(tok::TokenKind Kind); /// isCXXDeclarationSpecifier - Returns TPResult::True() if it is a /// declaration specifier, TPResult::False() if it is not, /// TPResult::Ambiguous() if it could be either a decl-specifier or a /// function-style cast, and TPResult::Error() if a parsing error was /// encountered. If it could be a braced C++11 function-style cast, returns /// BracedCastResult. /// Doesn't consume tokens. TPResult isCXXDeclarationSpecifier(TPResult BracedCastResult = TPResult::False()); // "Tentative parsing" functions, used for disambiguation. If a parsing error // is encountered they will return TPResult::Error(). // Returning TPResult::True()/False() indicates that the ambiguity was // resolved and tentative parsing may stop. TPResult::Ambiguous() indicates // that more tentative parsing is necessary for disambiguation. // They all consume tokens, so backtracking should be used after calling them. TPResult TryParseDeclarationSpecifier(); TPResult TryParseSimpleDeclaration(bool AllowForRangeDecl); TPResult TryParseTypeofSpecifier(); TPResult TryParseProtocolQualifiers(); TPResult TryParseInitDeclaratorList(); TPResult TryParseDeclarator(bool mayBeAbstract, bool mayHaveIdentifier=true); TPResult TryParseParameterDeclarationClause(); TPResult TryParseFunctionDeclarator(); TPResult TryParseBracketDeclarator(); TypeResult ParseTypeName(SourceRange *Range = 0, Declarator::TheContext Context = Declarator::TypeNameContext, AccessSpecifier AS = AS_none, Decl **OwnedType = 0); void ParseBlockId(); // Check for the start of a C++11 attribute-specifier-seq in a context where // an attribute is not allowed. bool CheckProhibitedCXX11Attribute() { assert(Tok.is(tok::l_square)); if (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square)) return false; return DiagnoseProhibitedCXX11Attribute(); } bool DiagnoseProhibitedCXX11Attribute(); void ProhibitAttributes(ParsedAttributesWithRange &attrs) { if (!attrs.Range.isValid()) return; DiagnoseProhibitedAttributes(attrs); attrs.clear(); } void DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs); void MaybeParseGNUAttributes(Declarator &D, LateParsedAttrList *LateAttrs = 0) { if (Tok.is(tok::kw___attribute)) { ParsedAttributes attrs(AttrFactory); SourceLocation endLoc; ParseGNUAttributes(attrs, &endLoc, LateAttrs); D.takeAttributes(attrs, endLoc); } } void MaybeParseGNUAttributes(ParsedAttributes &attrs, SourceLocation *endLoc = 0, LateParsedAttrList *LateAttrs = 0) { if (Tok.is(tok::kw___attribute)) ParseGNUAttributes(attrs, endLoc, LateAttrs); } void ParseGNUAttributes(ParsedAttributes &attrs, SourceLocation *endLoc = 0, LateParsedAttrList *LateAttrs = 0); void ParseGNUAttributeArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc); void MaybeParseCXX0XAttributes(Declarator &D) { if (getLangOpts().CPlusPlus0x && isCXX11AttributeSpecifier()) { ParsedAttributesWithRange attrs(AttrFactory); SourceLocation endLoc; ParseCXX11Attributes(attrs, &endLoc); D.takeAttributes(attrs, endLoc); } } void MaybeParseCXX0XAttributes(ParsedAttributes &attrs, SourceLocation *endLoc = 0) { if (getLangOpts().CPlusPlus0x && isCXX11AttributeSpecifier()) { ParsedAttributesWithRange attrsWithRange(AttrFactory); ParseCXX11Attributes(attrsWithRange, endLoc); attrs.takeAllFrom(attrsWithRange); } } void MaybeParseCXX0XAttributes(ParsedAttributesWithRange &attrs, SourceLocation *endLoc = 0, bool OuterMightBeMessageSend = false) { if (getLangOpts().CPlusPlus0x && isCXX11AttributeSpecifier(false, OuterMightBeMessageSend)) ParseCXX11Attributes(attrs, endLoc); } void ParseCXX11AttributeSpecifier(ParsedAttributes &attrs, SourceLocation *EndLoc = 0); void ParseCXX11Attributes(ParsedAttributesWithRange &attrs, SourceLocation *EndLoc = 0); IdentifierInfo *TryParseCXX11AttributeIdentifier(SourceLocation &Loc); void MaybeParseMicrosoftAttributes(ParsedAttributes &attrs, SourceLocation *endLoc = 0) { if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square)) ParseMicrosoftAttributes(attrs, endLoc); } void ParseMicrosoftAttributes(ParsedAttributes &attrs, SourceLocation *endLoc = 0); void ParseMicrosoftDeclSpec(ParsedAttributes &attrs); void ParseMicrosoftTypeAttributes(ParsedAttributes &attrs); void ParseBorlandTypeAttributes(ParsedAttributes &attrs); void ParseOpenCLAttributes(ParsedAttributes &attrs); void ParseOpenCLQualifiers(DeclSpec &DS); VersionTuple ParseVersionTuple(SourceRange &Range); void ParseAvailabilityAttribute(IdentifierInfo &Availability, SourceLocation AvailabilityLoc, ParsedAttributes &attrs, SourceLocation *endLoc); bool IsThreadSafetyAttribute(llvm::StringRef AttrName); void ParseThreadSafetyAttribute(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc); void ParseTypeofSpecifier(DeclSpec &DS); SourceLocation ParseDecltypeSpecifier(DeclSpec &DS); void AnnotateExistingDecltypeSpecifier(const DeclSpec &DS, SourceLocation StartLoc, SourceLocation EndLoc); void ParseUnderlyingTypeSpecifier(DeclSpec &DS); void ParseAtomicSpecifier(DeclSpec &DS); ExprResult ParseAlignArgument(SourceLocation Start, SourceLocation &EllipsisLoc); void ParseAlignmentSpecifier(ParsedAttributes &Attrs, SourceLocation *endLoc = 0); VirtSpecifiers::Specifier isCXX0XVirtSpecifier(const Token &Tok) const; VirtSpecifiers::Specifier isCXX0XVirtSpecifier() const { return isCXX0XVirtSpecifier(Tok); } void ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS); bool isCXX0XFinalKeyword() const; /// DeclaratorScopeObj - RAII object used in Parser::ParseDirectDeclarator to /// enter a new C++ declarator scope and exit it when the function is /// finished. class DeclaratorScopeObj { Parser &P; CXXScopeSpec &SS; bool EnteredScope; bool CreatedScope; public: DeclaratorScopeObj(Parser &p, CXXScopeSpec &ss) : P(p), SS(ss), EnteredScope(false), CreatedScope(false) {} void EnterDeclaratorScope() { assert(!EnteredScope && "Already entered the scope!"); assert(SS.isSet() && "C++ scope was not set!"); CreatedScope = true; P.EnterScope(0); // Not a decl scope. if (!P.Actions.ActOnCXXEnterDeclaratorScope(P.getCurScope(), SS)) EnteredScope = true; } ~DeclaratorScopeObj() { if (EnteredScope) { assert(SS.isSet() && "C++ scope was cleared ?"); P.Actions.ActOnCXXExitDeclaratorScope(P.getCurScope(), SS); } if (CreatedScope) P.ExitScope(); } }; /// ParseDeclarator - Parse and verify a newly-initialized declarator. void ParseDeclarator(Declarator &D); /// A function that parses a variant of direct-declarator. typedef void (Parser::*DirectDeclParseFunction)(Declarator&); void ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser); void ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed = true, bool CXX0XAttributesAllowed = true); void ParseDirectDeclarator(Declarator &D); void ParseParenDeclarator(Declarator &D); void ParseFunctionDeclarator(Declarator &D, ParsedAttributes &attrs, BalancedDelimiterTracker &Tracker, bool RequiresArg = false); bool isFunctionDeclaratorIdentifierList(); void ParseFunctionDeclaratorIdentifierList( Declarator &D, SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo); void ParseParameterDeclarationClause( Declarator &D, ParsedAttributes &attrs, SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo, SourceLocation &EllipsisLoc); void ParseBracketDeclarator(Declarator &D); //===--------------------------------------------------------------------===// // C++ 7: Declarations [dcl.dcl] /// The kind of attribute specifier we have found. enum CXX11AttributeKind { /// This is not an attribute specifier. CAK_NotAttributeSpecifier, /// This should be treated as an attribute-specifier. CAK_AttributeSpecifier, /// The next tokens are '[[', but this is not an attribute-specifier. This /// is ill-formed by C++11 [dcl.attr.grammar]p6. CAK_InvalidAttributeSpecifier }; CXX11AttributeKind isCXX11AttributeSpecifier(bool Disambiguate = false, bool OuterMightBeMessageSend = false); Decl *ParseNamespace(unsigned Context, SourceLocation &DeclEnd, SourceLocation InlineLoc = SourceLocation()); void ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc, std::vector<IdentifierInfo*>& Ident, std::vector<SourceLocation>& NamespaceLoc, unsigned int index, SourceLocation& InlineLoc, ParsedAttributes& attrs, BalancedDelimiterTracker &Tracker); Decl *ParseLinkage(ParsingDeclSpec &DS, unsigned Context); Decl *ParseUsingDirectiveOrDeclaration(unsigned Context, const ParsedTemplateInfo &TemplateInfo, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs, Decl **OwnedType = 0); Decl *ParseUsingDirective(unsigned Context, SourceLocation UsingLoc, SourceLocation &DeclEnd, ParsedAttributes &attrs); Decl *ParseUsingDeclaration(unsigned Context, const ParsedTemplateInfo &TemplateInfo, SourceLocation UsingLoc, SourceLocation &DeclEnd, AccessSpecifier AS = AS_none, Decl **OwnedType = 0); Decl *ParseStaticAssertDeclaration(SourceLocation &DeclEnd); Decl *ParseNamespaceAlias(SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceLocation &DeclEnd); //===--------------------------------------------------------------------===// // C++ 9: classes [class] and C structs/unions. void ParseClassSpecifier(tok::TokenKind TagTokKind, SourceLocation TagLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, bool EnteringContext, DeclSpecContext DSC); void ParseCXXMemberSpecification(SourceLocation StartLoc, unsigned TagType, Decl *TagDecl); ExprResult ParseCXXMemberInitializer(Decl *D, bool IsFunction, SourceLocation &EqualLoc); void ParseCXXClassMemberDeclaration(AccessSpecifier AS, AttributeList *Attr, const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(), ParsingDeclRAIIObject *DiagsFromTParams = 0); void ParseConstructorInitializer(Decl *ConstructorDecl); MemInitResult ParseMemInitializer(Decl *ConstructorDecl); void HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo, Decl *ThisDecl); //===--------------------------------------------------------------------===// // C++ 10: Derived classes [class.derived] TypeResult ParseBaseTypeSpecifier(SourceLocation &BaseLoc, SourceLocation &EndLocation); void ParseBaseClause(Decl *ClassDecl); BaseResult ParseBaseSpecifier(Decl *ClassDecl); AccessSpecifier getAccessSpecifierIfPresent() const; bool ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc, bool EnteringContext, ParsedType ObjectType, UnqualifiedId &Id, bool AssumeTemplateId); bool ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, ParsedType ObjectType, UnqualifiedId &Result); bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, bool AllowDestructorName, bool AllowConstructorName, ParsedType ObjectType, SourceLocation& TemplateKWLoc, UnqualifiedId &Result); //===--------------------------------------------------------------------===// // C++ 14: Templates [temp] // C++ 14.1: Template Parameters [temp.param] Decl *ParseDeclarationStartingWithTemplate(unsigned Context, SourceLocation &DeclEnd, AccessSpecifier AS = AS_none, AttributeList *AccessAttrs = 0); Decl *ParseTemplateDeclarationOrSpecialization(unsigned Context, SourceLocation &DeclEnd, AccessSpecifier AS, AttributeList *AccessAttrs); Decl *ParseSingleDeclarationAfterTemplate( unsigned Context, const ParsedTemplateInfo &TemplateInfo, ParsingDeclRAIIObject &DiagsFromParams, SourceLocation &DeclEnd, AccessSpecifier AS=AS_none, AttributeList *AccessAttrs = 0); bool ParseTemplateParameters(unsigned Depth, SmallVectorImpl<Decl*> &TemplateParams, SourceLocation &LAngleLoc, SourceLocation &RAngleLoc); bool ParseTemplateParameterList(unsigned Depth, SmallVectorImpl<Decl*> &TemplateParams); bool isStartOfTemplateTypeParameter(); Decl *ParseTemplateParameter(unsigned Depth, unsigned Position); Decl *ParseTypeParameter(unsigned Depth, unsigned Position); Decl *ParseTemplateTemplateParameter(unsigned Depth, unsigned Position); Decl *ParseNonTypeTemplateParameter(unsigned Depth, unsigned Position); // C++ 14.3: Template arguments [temp.arg] typedef SmallVector<ParsedTemplateArgument, 16> TemplateArgList; bool ParseTemplateIdAfterTemplateName(TemplateTy Template, SourceLocation TemplateNameLoc, const CXXScopeSpec &SS, bool ConsumeLastToken, SourceLocation &LAngleLoc, TemplateArgList &TemplateArgs, SourceLocation &RAngleLoc); bool AnnotateTemplateIdToken(TemplateTy Template, TemplateNameKind TNK, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &TemplateName, bool AllowTypeAnnotation = true); void AnnotateTemplateIdTokenAsType(); bool IsTemplateArgumentList(unsigned Skip = 0); bool ParseTemplateArgumentList(TemplateArgList &TemplateArgs); ParsedTemplateArgument ParseTemplateTemplateArgument(); ParsedTemplateArgument ParseTemplateArgument(); Decl *ParseExplicitInstantiation(unsigned Context, SourceLocation ExternLoc, SourceLocation TemplateLoc, SourceLocation &DeclEnd, AccessSpecifier AS = AS_none); //===--------------------------------------------------------------------===// // Modules DeclGroupPtrTy ParseModuleImport(SourceLocation AtLoc); //===--------------------------------------------------------------------===// // GNU G++: Type Traits [Type-Traits.html in the GCC manual] ExprResult ParseUnaryTypeTrait(); ExprResult ParseBinaryTypeTrait(); ExprResult ParseTypeTrait(); //===--------------------------------------------------------------------===// // Embarcadero: Arary and Expression Traits ExprResult ParseArrayTypeTrait(); ExprResult ParseExpressionTrait(); //===--------------------------------------------------------------------===// // Preprocessor code-completion pass-through virtual void CodeCompleteDirective(bool InConditional); virtual void CodeCompleteInConditionalExclusion(); virtual void CodeCompleteMacroName(bool IsDefinition); virtual void CodeCompletePreprocessorExpression(); virtual void CodeCompleteMacroArgument(IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned ArgumentIndex); virtual void CodeCompleteNaturalLanguage(); }; } // end namespace clang #endif