Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Sema/Ownership.h |
//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains classes for managing ownership of Stmt and Expr nodes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_OWNERSHIP_H #define LLVM_CLANG_SEMA_OWNERSHIP_H #include "clang/Basic/LLVM.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/PointerIntPair.h" //===----------------------------------------------------------------------===// // OpaquePtr //===----------------------------------------------------------------------===// namespace clang { class Attr; class CXXCtorInitializer; class CXXBaseSpecifier; class Decl; class DeclGroupRef; class Expr; class NestedNameSpecifier; class QualType; class Sema; class Stmt; class TemplateName; class TemplateParameterList; /// OpaquePtr - This is a very simple POD type that wraps a pointer that the /// Parser doesn't know about but that Sema or another client does. The UID /// template argument is used to make sure that "Decl" pointers are not /// compatible with "Type" pointers for example. template <class PtrTy> class OpaquePtr { void *Ptr; explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {} typedef llvm::PointerLikeTypeTraits<PtrTy> Traits; public: OpaquePtr() : Ptr(0) {} static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; } template <typename T> T* getAs() const { return get(); } template <typename T> T getAsVal() const { return get(); } PtrTy get() const { return Traits::getFromVoidPointer(Ptr); } void set(PtrTy P) { Ptr = Traits::getAsVoidPointer(P); } operator bool() const { return Ptr != 0; } void *getAsOpaquePtr() const { return Ptr; } static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); } }; /// UnionOpaquePtr - A version of OpaquePtr suitable for membership /// in a union. template <class T> struct UnionOpaquePtr { void *Ptr; static UnionOpaquePtr make(OpaquePtr<T> P) { UnionOpaquePtr OP = { P.getAsOpaquePtr() }; return OP; } OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); } operator OpaquePtr<T>() const { return get(); } UnionOpaquePtr &operator=(OpaquePtr<T> P) { Ptr = P.getAsOpaquePtr(); return *this; } }; } namespace llvm { template <class T> class PointerLikeTypeTraits<clang::OpaquePtr<T> > { public: static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) { // FIXME: Doesn't work? return P.getAs< void >(); return P.getAsOpaquePtr(); } static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) { return clang::OpaquePtr<T>::getFromOpaquePtr(P); } enum { NumLowBitsAvailable = 0 }; }; template <class T> struct isPodLike<clang::OpaquePtr<T> > { static const bool value = true; }; } // -------------------------- About Move Emulation -------------------------- // // The smart pointer classes in this file attempt to emulate move semantics // as they appear in C++0x with rvalue references. Since C++03 doesn't have // rvalue references, some tricks are needed to get similar results. // Move semantics in C++0x have the following properties: // 1) "Moving" means transferring the value of an object to another object, // similar to copying, but without caring what happens to the old object. // In particular, this means that the new object can steal the old object's // resources instead of creating a copy. // 2) Since moving can modify the source object, it must either be explicitly // requested by the user, or the modifications must be unnoticeable. // 3) As such, C++0x moving is only allowed in three contexts: // * By explicitly using std::move() to request it. // * From a temporary object, since that object cannot be accessed // afterwards anyway, thus making the state unobservable. // * On function return, since the object is not observable afterwards. // // To sum up: moving from a named object should only be possible with an // explicit std::move(), or on function return. Moving from a temporary should // be implicitly done. Moving from a const object is forbidden. // // The emulation is not perfect, and has the following shortcomings: // * move() is not in namespace std. // * move() is required on function return. // * There are difficulties with implicit conversions. // * Microsoft's compiler must be given the /Za switch to successfully compile. // // -------------------------- Implementation -------------------------------- // // The move emulation relies on the peculiar reference binding semantics of // C++03: as a rule, a non-const reference may not bind to a temporary object, // except for the implicit object parameter in a member function call, which // can refer to a temporary even when not being const. // The moveable object has five important functions to facilitate moving: // * A private, unimplemented constructor taking a non-const reference to its // own class. This constructor serves a two-fold purpose. // - It prevents the creation of a copy constructor that takes a const // reference. Temporaries would be able to bind to the argument of such a // constructor, and that would be bad. // - Named objects will bind to the non-const reference, but since it's // private, this will fail to compile. This prevents implicit moving from // named objects. // There's also a copy assignment operator for the same purpose. // * An implicit, non-const conversion operator to a special mover type. This // type represents the rvalue reference of C++0x. Being a non-const member, // its implicit this parameter can bind to temporaries. // * A constructor that takes an object of this mover type. This constructor // performs the actual move operation. There is an equivalent assignment // operator. // There is also a free move() function that takes a non-const reference to // an object and returns a temporary. Internally, this function uses explicit // constructor calls to move the value from the referenced object to the return // value. // // There are now three possible scenarios of use. // * Copying from a const object. Constructor overload resolution will find the // non-const copy constructor, and the move constructor. The first is not // viable because the const object cannot be bound to the non-const reference. // The second fails because the conversion to the mover object is non-const. // Moving from a const object fails as intended. // * Copying from a named object. Constructor overload resolution will select // the non-const copy constructor, but fail as intended, because this // constructor is private. // * Copying from a temporary. Constructor overload resolution cannot select // the non-const copy constructor, because the temporary cannot be bound to // the non-const reference. It thus selects the move constructor. The // temporary can be bound to the implicit this parameter of the conversion // operator, because of the special binding rule. Construction succeeds. // Note that the Microsoft compiler, as an extension, allows binding // temporaries against non-const references. The compiler thus selects the // non-const copy constructor and fails, because the constructor is private. // Passing /Za (disable extensions) disables this behaviour. // The free move() function is used to move from a named object. // // Note that when passing an object of a different type (the classes below // have OwningResult and OwningPtr, which should be mixable), you get a problem. // Argument passing and function return use copy initialization rules. The // effect of this is that, when the source object is not already of the target // type, the compiler will first seek a way to convert the source object to the // target type, and only then attempt to copy the resulting object. This means // that when passing an OwningResult where an OwningPtr is expected, the // compiler will first seek a conversion from OwningResult to OwningPtr, then // copy the OwningPtr. The resulting conversion sequence is: // OwningResult object -> ResultMover -> OwningResult argument to // OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr // This conversion sequence is too complex to be allowed. Thus the special // move_* functions, which help the compiler out with some explicit // conversions. namespace clang { // Basic class DiagnosticBuilder; // Determines whether the low bit of the result pointer for the // given UID is always zero. If so, ActionResult will use that bit // for it's "invalid" flag. template<class Ptr> struct IsResultPtrLowBitFree { static const bool value = false; }; /// ActionResult - This structure is used while parsing/acting on /// expressions, stmts, etc. It encapsulates both the object returned by /// the action, plus a sense of whether or not it is valid. /// When CompressInvalid is true, the "invalid" flag will be /// stored in the low bit of the Val pointer. template<class PtrTy, bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value> class ActionResult { PtrTy Val; bool Invalid; public: ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {} ActionResult(PtrTy val) : Val(val), Invalid(false) {} ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {} // These two overloads prevent void* -> bool conversions. ActionResult(const void *); ActionResult(volatile void *); bool isInvalid() const { return Invalid; } bool isUsable() const { return !Invalid && Val; } PtrTy get() const { return Val; } PtrTy release() const { return Val; } PtrTy take() const { return Val; } template <typename T> T *takeAs() { return static_cast<T*>(get()); } void set(PtrTy V) { Val = V; } const ActionResult &operator=(PtrTy RHS) { Val = RHS; Invalid = false; return *this; } }; // This ActionResult partial specialization places the "invalid" // flag into the low bit of the pointer. template<typename PtrTy> class ActionResult<PtrTy, true> { // A pointer whose low bit is 1 if this result is invalid, 0 // otherwise. uintptr_t PtrWithInvalid; typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits; public: ActionResult(bool Invalid = false) : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { } ActionResult(PtrTy V) { void *VP = PtrTraits::getAsVoidPointer(V); PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); } ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { } // These two overloads prevent void* -> bool conversions. ActionResult(const void *); ActionResult(volatile void *); bool isInvalid() const { return PtrWithInvalid & 0x01; } bool isUsable() const { return PtrWithInvalid > 0x01; } PtrTy get() const { void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01); return PtrTraits::getFromVoidPointer(VP); } PtrTy take() const { return get(); } PtrTy release() const { return get(); } template <typename T> T *takeAs() { return static_cast<T*>(get()); } void set(PtrTy V) { void *VP = PtrTraits::getAsVoidPointer(V); PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); } const ActionResult &operator=(PtrTy RHS) { void *VP = PtrTraits::getAsVoidPointer(RHS); PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); return *this; } }; /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns /// the individual pointers, not the array holding them. template <typename PtrTy> class ASTMultiPtr; template <class PtrTy> class ASTMultiPtr { PtrTy *Nodes; unsigned Count; public: // Normal copying implicitly defined ASTMultiPtr() : Nodes(0), Count(0) {} explicit ASTMultiPtr(Sema &) : Nodes(0), Count(0) {} ASTMultiPtr(Sema &, PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {} // Fake mover in Parse/AstGuard.h needs this: ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {} /// Access to the raw pointers. PtrTy *get() const { return Nodes; } /// Access to the count. unsigned size() const { return Count; } PtrTy *release() { return Nodes; } }; class ParsedTemplateArgument; class ASTTemplateArgsPtr { ParsedTemplateArgument *Args; mutable unsigned Count; public: ASTTemplateArgsPtr(Sema &actions, ParsedTemplateArgument *args, unsigned count) : Args(args), Count(count) { } // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'. ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) : Args(Other.Args), Count(Other.Count) { } // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'. ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other) { Args = Other.Args; Count = Other.Count; return *this; } ParsedTemplateArgument *getArgs() const { return Args; } unsigned size() const { return Count; } void reset(ParsedTemplateArgument *args, unsigned count) { Args = args; Count = count; } const ParsedTemplateArgument &operator[](unsigned Arg) const; ParsedTemplateArgument *release() const { return Args; } }; /// \brief A small vector that owns a set of AST nodes. template <class PtrTy, unsigned N = 8> class ASTOwningVector : public SmallVector<PtrTy, N> { ASTOwningVector(ASTOwningVector &); // do not implement ASTOwningVector &operator=(ASTOwningVector &); // do not implement public: explicit ASTOwningVector(Sema &Actions) { } PtrTy *take() { return &this->front(); } template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); } }; /// An opaque type for threading parsed type information through the /// parser. typedef OpaquePtr<QualType> ParsedType; typedef UnionOpaquePtr<QualType> UnionParsedType; /// A SmallVector of statements, with stack size 32 (as that is the only one /// used.) typedef ASTOwningVector<Stmt*, 32> StmtVector; /// A SmallVector of expressions, with stack size 12 (the maximum used.) typedef ASTOwningVector<Expr*, 12> ExprVector; /// A SmallVector of types. typedef ASTOwningVector<ParsedType, 12> TypeVector; template <class T, unsigned N> inline ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) { return ASTMultiPtr<T>(vec.take(), vec.size()); } // These versions are hopefully no-ops. template <class T, bool C> inline ActionResult<T,C> move(ActionResult<T,C> &ptr) { return ptr; } template <class T> inline ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) { return ptr; } // We can re-use the low bit of expression, statement, base, and // member-initializer pointers for the "invalid" flag of // ActionResult. template<> struct IsResultPtrLowBitFree<Expr*> { static const bool value = true; }; template<> struct IsResultPtrLowBitFree<Stmt*> { static const bool value = true; }; template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> { static const bool value = true; }; template<> struct IsResultPtrLowBitFree<CXXCtorInitializer*> { static const bool value = true; }; typedef ActionResult<Expr*> ExprResult; typedef ActionResult<Stmt*> StmtResult; typedef ActionResult<ParsedType> TypeResult; typedef ActionResult<CXXBaseSpecifier*> BaseResult; typedef ActionResult<CXXCtorInitializer*> MemInitResult; typedef ActionResult<Decl*> DeclResult; typedef OpaquePtr<TemplateName> ParsedTemplateTy; inline Expr *move(Expr *E) { return E; } inline Stmt *move(Stmt *S) { return S; } typedef ASTMultiPtr<Expr*> MultiExprArg; typedef ASTMultiPtr<Stmt*> MultiStmtArg; typedef ASTMultiPtr<ParsedType> MultiTypeArg; typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg; inline ExprResult ExprError() { return ExprResult(true); } inline StmtResult StmtError() { return StmtResult(true); } inline ExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); } inline StmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); } inline ExprResult ExprEmpty() { return ExprResult(false); } inline StmtResult StmtEmpty() { return StmtResult(false); } inline Expr *AssertSuccess(ExprResult R) { assert(!R.isInvalid() && "operation was asserted to never fail!"); return R.get(); } inline Stmt *AssertSuccess(StmtResult R) { assert(!R.isInvalid() && "operation was asserted to never fail!"); return R.get(); } } #endif