Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/include/clang/Sema/ScopeInfo.h |
//===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines FunctionScopeInfo and BlockScopeInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SCOPE_INFO_H #define LLVM_CLANG_SEMA_SCOPE_INFO_H #include "clang/AST/Type.h" #include "clang/Basic/PartialDiagnostic.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" namespace clang { class BlockDecl; class CXXMethodDecl; class IdentifierInfo; class LabelDecl; class ReturnStmt; class Scope; class SwitchStmt; class VarDecl; namespace sema { /// \brief Contains information about the compound statement currently being /// parsed. class CompoundScopeInfo { public: CompoundScopeInfo() : HasEmptyLoopBodies(false) { } /// \brief Whether this compound stamement contains `for' or `while' loops /// with empty bodies. bool HasEmptyLoopBodies; void setHasEmptyLoopBodies() { HasEmptyLoopBodies = true; } }; class PossiblyUnreachableDiag { public: PartialDiagnostic PD; SourceLocation Loc; const Stmt *stmt; PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc, const Stmt *stmt) : PD(PD), Loc(Loc), stmt(stmt) {} }; /// \brief Retains information about a function, method, or block that is /// currently being parsed. class FunctionScopeInfo { protected: enum ScopeKind { SK_Function, SK_Block, SK_Lambda }; public: /// \brief What kind of scope we are describing. /// ScopeKind Kind; /// \brief Whether this function contains a VLA, @try, try, C++ /// initializer, or anything else that can't be jumped past. bool HasBranchProtectedScope; /// \brief Whether this function contains any switches or direct gotos. bool HasBranchIntoScope; /// \brief Whether this function contains any indirect gotos. bool HasIndirectGoto; /// \brief Used to determine if errors occurred in this function or block. DiagnosticErrorTrap ErrorTrap; /// SwitchStack - This is the current set of active switch statements in the /// block. SmallVector<SwitchStmt*, 8> SwitchStack; /// \brief The list of return statements that occur within the function or /// block, if there is any chance of applying the named return value /// optimization. SmallVector<ReturnStmt*, 4> Returns; /// \brief The stack of currently active compound stamement scopes in the /// function. SmallVector<CompoundScopeInfo, 4> CompoundScopes; /// \brief A list of PartialDiagnostics created but delayed within the /// current function scope. These diagnostics are vetted for reachability /// prior to being emitted. SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags; void setHasBranchIntoScope() { HasBranchIntoScope = true; } void setHasBranchProtectedScope() { HasBranchProtectedScope = true; } void setHasIndirectGoto() { HasIndirectGoto = true; } bool NeedsScopeChecking() const { return HasIndirectGoto || (HasBranchProtectedScope && HasBranchIntoScope); } FunctionScopeInfo(DiagnosticsEngine &Diag) : Kind(SK_Function), HasBranchProtectedScope(false), HasBranchIntoScope(false), HasIndirectGoto(false), ErrorTrap(Diag) { } virtual ~FunctionScopeInfo(); /// \brief Clear out the information in this function scope, making it /// suitable for reuse. void Clear(); static bool classof(const FunctionScopeInfo *FSI) { return true; } }; class CapturingScopeInfo : public FunctionScopeInfo { public: enum ImplicitCaptureStyle { ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block }; ImplicitCaptureStyle ImpCaptureStyle; class Capture { // There are two categories of capture: capturing 'this', and capturing // local variables. There are three ways to capture a local variable: // capture by copy in the C++11 sense, capture by reference // in the C++11 sense, and __block capture. Lambdas explicitly specify // capture by copy or capture by reference. For blocks, __block capture // applies to variables with that annotation, variables of reference type // are captured by reference, and other variables are captured by copy. enum CaptureKind { Cap_This, Cap_ByCopy, Cap_ByRef, Cap_Block }; // The variable being captured (if we are not capturing 'this'), // and misc bits descibing the capture. llvm::PointerIntPair<VarDecl*, 2, CaptureKind> VarAndKind; // Expression to initialize a field of the given type, and whether this // is a nested capture; the expression is only required if we are // capturing ByVal and the variable's type has a non-trivial // copy constructor. llvm::PointerIntPair<Expr*, 1, bool> CopyExprAndNested; /// \brief The source location at which the first capture occurred.. SourceLocation Loc; /// \brief The location of the ellipsis that expands a parameter pack. SourceLocation EllipsisLoc; /// \brief The type as it was captured, which is in effect the type of the /// non-static data member that would hold the capture. QualType CaptureType; public: Capture(VarDecl *Var, bool block, bool byRef, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy) : VarAndKind(Var, block ? Cap_Block : byRef ? Cap_ByRef : Cap_ByCopy), CopyExprAndNested(Cpy, isNested), Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType){} enum IsThisCapture { ThisCapture }; Capture(IsThisCapture, bool isNested, SourceLocation Loc, QualType CaptureType, Expr *Cpy) : VarAndKind(0, Cap_This), CopyExprAndNested(Cpy, isNested), Loc(Loc), EllipsisLoc(), CaptureType(CaptureType) { } bool isThisCapture() const { return VarAndKind.getInt() == Cap_This; } bool isVariableCapture() const { return !isThisCapture(); } bool isCopyCapture() const { return VarAndKind.getInt() == Cap_ByCopy; } bool isReferenceCapture() const { return VarAndKind.getInt() == Cap_ByRef; } bool isBlockCapture() const { return VarAndKind.getInt() == Cap_Block; } bool isNested() { return CopyExprAndNested.getInt(); } VarDecl *getVariable() const { return VarAndKind.getPointer(); } /// \brief Retrieve the location at which this variable was captured. SourceLocation getLocation() const { return Loc; } /// \brief Retrieve the source location of the ellipsis, whose presence /// indicates that the capture is a pack expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// \brief Retrieve the capture type for this capture, which is effectively /// the type of the non-static data member in the lambda/block structure /// that would store this capture. QualType getCaptureType() const { return CaptureType; } Expr *getCopyExpr() const { return CopyExprAndNested.getPointer(); } }; CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style) : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0), HasImplicitReturnType(false) {} /// CaptureMap - A map of captured variables to (index+1) into Captures. llvm::DenseMap<VarDecl*, unsigned> CaptureMap; /// CXXThisCaptureIndex - The (index+1) of the capture of 'this'; /// zero if 'this' is not captured. unsigned CXXThisCaptureIndex; /// Captures - The captures. SmallVector<Capture, 4> Captures; /// \brief - Whether the target type of return statements in this context /// is deduced (e.g. a lambda or block with omitted return type). bool HasImplicitReturnType; /// ReturnType - The target type of return statements in this context, /// or null if unknown. QualType ReturnType; void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy) { Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc, EllipsisLoc, CaptureType, Cpy)); CaptureMap[Var] = Captures.size(); } void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, Expr *Cpy) { Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType, Cpy)); CXXThisCaptureIndex = Captures.size(); } /// \brief Determine whether the C++ 'this' is captured. bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; } /// \brief Retrieve the capture of C++ 'this', if it has been captured. Capture &getCXXThisCapture() { assert(isCXXThisCaptured() && "this has not been captured"); return Captures[CXXThisCaptureIndex - 1]; } /// \brief Determine whether the given variable has been captured. bool isCaptured(VarDecl *Var) const { return CaptureMap.count(Var); } /// \brief Retrieve the capture of the given variable, if it has been /// captured already. Capture &getCapture(VarDecl *Var) { assert(isCaptured(Var) && "Variable has not been captured"); return Captures[CaptureMap[Var] - 1]; } const Capture &getCapture(VarDecl *Var) const { llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known = CaptureMap.find(Var); assert(Known != CaptureMap.end() && "Variable has not been captured"); return Captures[Known->second - 1]; } static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda; } static bool classof(const CapturingScopeInfo *BSI) { return true; } }; /// \brief Retains information about a block that is currently being parsed. class BlockScopeInfo : public CapturingScopeInfo { public: BlockDecl *TheDecl; /// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope; /// BlockType - The function type of the block, if one was given. /// Its return type may be BuiltinType::Dependent. QualType FunctionType; BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block) : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block), TheScope(BlockScope) { Kind = SK_Block; } virtual ~BlockScopeInfo(); static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block; } static bool classof(const BlockScopeInfo *BSI) { return true; } }; class LambdaScopeInfo : public CapturingScopeInfo { public: /// \brief The class that describes the lambda. CXXRecordDecl *Lambda; /// \brief The class that describes the lambda. CXXMethodDecl *CallOperator; /// \brief Source range covering the lambda introducer [...]. SourceRange IntroducerRange; /// \brief The number of captures in the \c Captures list that are /// explicit captures. unsigned NumExplicitCaptures; /// \brief Whether this is a mutable lambda. bool Mutable; /// \brief Whether the (empty) parameter list is explicit. bool ExplicitParams; /// \brief Whether any of the capture expressions requires cleanups. bool ExprNeedsCleanups; /// \brief Variables used to index into by-copy array captures. llvm::SmallVector<VarDecl *, 4> ArrayIndexVars; /// \brief Offsets into the ArrayIndexVars array at which each capture starts /// its list of array index variables. llvm::SmallVector<unsigned, 4> ArrayIndexStarts; LambdaScopeInfo(DiagnosticsEngine &Diag, CXXRecordDecl *Lambda, CXXMethodDecl *CallOperator) : CapturingScopeInfo(Diag, ImpCap_None), Lambda(Lambda), CallOperator(CallOperator), NumExplicitCaptures(0), Mutable(false), ExprNeedsCleanups(false) { Kind = SK_Lambda; } virtual ~LambdaScopeInfo(); /// \brief Note when void finishedExplicitCaptures() { NumExplicitCaptures = Captures.size(); } static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Lambda; } static bool classof(const LambdaScopeInfo *BSI) { return true; } }; } } #endif