Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/AST/Expr.cpp |
//===--- Expr.cpp - Expression AST Node Implementation --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Expr class and subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Lexer.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cstring> using namespace clang; /// isKnownToHaveBooleanValue - Return true if this is an integer expression /// that is known to return 0 or 1. This happens for _Bool/bool expressions /// but also int expressions which are produced by things like comparisons in /// C. bool Expr::isKnownToHaveBooleanValue() const { const Expr *E = IgnoreParens(); // If this value has _Bool type, it is obvious 0/1. if (E->getType()->isBooleanType()) return true; // If this is a non-scalar-integer type, we don't care enough to try. if (!E->getType()->isIntegralOrEnumerationType()) return false; if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { switch (UO->getOpcode()) { case UO_Plus: return UO->getSubExpr()->isKnownToHaveBooleanValue(); default: return false; } } // Only look through implicit casts. If the user writes // '(int) (a && b)' treat it as an arbitrary int. if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) return CE->getSubExpr()->isKnownToHaveBooleanValue(); if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { switch (BO->getOpcode()) { default: return false; case BO_LT: // Relational operators. case BO_GT: case BO_LE: case BO_GE: case BO_EQ: // Equality operators. case BO_NE: case BO_LAnd: // AND operator. case BO_LOr: // Logical OR operator. return true; case BO_And: // Bitwise AND operator. case BO_Xor: // Bitwise XOR operator. case BO_Or: // Bitwise OR operator. // Handle things like (x==2)|(y==12). return BO->getLHS()->isKnownToHaveBooleanValue() && BO->getRHS()->isKnownToHaveBooleanValue(); case BO_Comma: case BO_Assign: return BO->getRHS()->isKnownToHaveBooleanValue(); } } if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) return CO->getTrueExpr()->isKnownToHaveBooleanValue() && CO->getFalseExpr()->isKnownToHaveBooleanValue(); return false; } // Amusing macro metaprogramming hack: check whether a class provides // a more specific implementation of getExprLoc(). // // See also Stmt.cpp:{getLocStart(),getLocEnd()}. namespace { /// This implementation is used when a class provides a custom /// implementation of getExprLoc. template <class E, class T> SourceLocation getExprLocImpl(const Expr *expr, SourceLocation (T::*v)() const) { return static_cast<const E*>(expr)->getExprLoc(); } /// This implementation is used when a class doesn't provide /// a custom implementation of getExprLoc. Overload resolution /// should pick it over the implementation above because it's /// more specialized according to function template partial ordering. template <class E> SourceLocation getExprLocImpl(const Expr *expr, SourceLocation (Expr::*v)() const) { return static_cast<const E*>(expr)->getLocStart(); } } SourceLocation Expr::getExprLoc() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; #define EXPR(type, base) \ case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind"); } //===----------------------------------------------------------------------===// // Primary Expressions. //===----------------------------------------------------------------------===// /// \brief Compute the type-, value-, and instantiation-dependence of a /// declaration reference /// based on the declaration being referenced. static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T, bool &TypeDependent, bool &ValueDependent, bool &InstantiationDependent) { TypeDependent = false; ValueDependent = false; InstantiationDependent = false; // (TD) C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // // and // // (VD) C++ [temp.dep.constexpr]p2: // An identifier is value-dependent if it is: // (TD) - an identifier that was declared with dependent type // (VD) - a name declared with a dependent type, if (T->isDependentType()) { TypeDependent = true; ValueDependent = true; InstantiationDependent = true; return; } else if (T->isInstantiationDependentType()) { InstantiationDependent = true; } // (TD) - a conversion-function-id that specifies a dependent type if (D->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) { QualType T = D->getDeclName().getCXXNameType(); if (T->isDependentType()) { TypeDependent = true; ValueDependent = true; InstantiationDependent = true; return; } if (T->isInstantiationDependentType()) InstantiationDependent = true; } // (VD) - the name of a non-type template parameter, if (isa<NonTypeTemplateParmDecl>(D)) { ValueDependent = true; InstantiationDependent = true; return; } // (VD) - a constant with integral or enumeration type and is // initialized with an expression that is value-dependent. // (VD) - a constant with literal type and is initialized with an // expression that is value-dependent [C++11]. // (VD) - FIXME: Missing from the standard: // - an entity with reference type and is initialized with an // expression that is value-dependent [C++11] if (VarDecl *Var = dyn_cast<VarDecl>(D)) { if ((Ctx.getLangOpts().CPlusPlus0x ? Var->getType()->isLiteralType() : Var->getType()->isIntegralOrEnumerationType()) && (Var->getType().getCVRQualifiers() == Qualifiers::Const || Var->getType()->isReferenceType())) { if (const Expr *Init = Var->getAnyInitializer()) if (Init->isValueDependent()) { ValueDependent = true; InstantiationDependent = true; } } // (VD) - FIXME: Missing from the standard: // - a member function or a static data member of the current // instantiation if (Var->isStaticDataMember() && Var->getDeclContext()->isDependentContext()) { ValueDependent = true; InstantiationDependent = true; } return; } // (VD) - FIXME: Missing from the standard: // - a member function or a static data member of the current // instantiation if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { ValueDependent = true; InstantiationDependent = true; } } void DeclRefExpr::computeDependence(ASTContext &Ctx) { bool TypeDependent = false; bool ValueDependent = false; bool InstantiationDependent = false; computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, ValueDependent, InstantiationDependent); // (TD) C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // // and // // (VD) C++ [temp.dep.constexpr]p2: // An identifier is value-dependent if it is: if (!TypeDependent && !ValueDependent && hasExplicitTemplateArgs() && TemplateSpecializationType::anyDependentTemplateArguments( getTemplateArgs(), getNumTemplateArgs(), InstantiationDependent)) { TypeDependent = true; ValueDependent = true; InstantiationDependent = true; } ExprBits.TypeDependent = TypeDependent; ExprBits.ValueDependent = ValueDependent; ExprBits.InstantiationDependent = InstantiationDependent; // Is the declaration a parameter pack? if (getDecl()->isParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; } DeclRefExpr::DeclRefExpr(ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingLocal, const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK) : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; if (QualifierLoc) getInternalQualifierLoc() = QualifierLoc; DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; if (FoundD) getInternalFoundDecl() = FoundD; DeclRefExprBits.HasTemplateKWAndArgsInfo = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal; if (TemplateArgs) { bool Dependent = false; bool InstantiationDependent = false; bool ContainsUnexpandedParameterPack = false; getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); if (InstantiationDependent) setInstantiationDependent(true); } else if (TemplateKWLoc.isValid()) { getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); } DeclRefExprBits.HadMultipleCandidates = 0; computeDependence(Ctx); } DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingLocal, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) { return Create(Context, QualifierLoc, TemplateKWLoc, D, RefersToEnclosingLocal, DeclarationNameInfo(D->getDeclName(), NameLoc), T, VK, FoundD, TemplateArgs); } DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingLocal, const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) { // Filter out cases where the found Decl is the same as the value refenenced. if (D == FoundD) FoundD = 0; std::size_t Size = sizeof(DeclRefExpr); if (QualifierLoc != 0) Size += sizeof(NestedNameSpecifierLoc); if (FoundD) Size += sizeof(NamedDecl *); if (TemplateArgs) Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); else if (TemplateKWLoc.isValid()) Size += ASTTemplateKWAndArgsInfo::sizeFor(0); void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, RefersToEnclosingLocal, NameInfo, FoundD, TemplateArgs, T, VK); } DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { std::size_t Size = sizeof(DeclRefExpr); if (HasQualifier) Size += sizeof(NestedNameSpecifierLoc); if (HasFoundDecl) Size += sizeof(NamedDecl *); if (HasTemplateKWAndArgsInfo) Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); return new (Mem) DeclRefExpr(EmptyShell()); } SourceRange DeclRefExpr::getSourceRange() const { SourceRange R = getNameInfo().getSourceRange(); if (hasQualifier()) R.setBegin(getQualifierLoc().getBeginLoc()); if (hasExplicitTemplateArgs()) R.setEnd(getRAngleLoc()); return R; } SourceLocation DeclRefExpr::getLocStart() const { if (hasQualifier()) return getQualifierLoc().getBeginLoc(); return getNameInfo().getLocStart(); } SourceLocation DeclRefExpr::getLocEnd() const { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getNameInfo().getLocEnd(); } // FIXME: Maybe this should use DeclPrinter with a special "print predefined // expr" policy instead. std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { ASTContext &Context = CurrentDecl->getASTContext(); if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) return FD->getNameAsString(); SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) Out << "virtual "; if (MD->isStatic()) Out << "static "; } PrintingPolicy Policy(Context.getLangOpts()); std::string Proto = FD->getQualifiedNameAsString(Policy); llvm::raw_string_ostream POut(Proto); const FunctionDecl *Decl = FD; if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) Decl = Pattern; const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); const FunctionProtoType *FT = 0; if (FD->hasWrittenPrototype()) FT = dyn_cast<FunctionProtoType>(AFT); POut << "("; if (FT) { for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { if (i) POut << ", "; std::string Param; Decl->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); POut << Param; } if (FT->isVariadic()) { if (FD->getNumParams()) POut << ", "; POut << "..."; } } POut << ")"; if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); if (ThisQuals.hasConst()) POut << " const"; if (ThisQuals.hasVolatile()) POut << " volatile"; RefQualifierKind Ref = MD->getRefQualifier(); if (Ref == RQ_LValue) POut << " &"; else if (Ref == RQ_RValue) POut << " &&"; } typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; SpecsTy Specs; const DeclContext *Ctx = FD->getDeclContext(); while (Ctx && isa<NamedDecl>(Ctx)) { const ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); if (Spec && !Spec->isExplicitSpecialization()) Specs.push_back(Spec); Ctx = Ctx->getParent(); } std::string TemplateParams; llvm::raw_string_ostream TOut(TemplateParams); for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); I != E; ++I) { const TemplateParameterList *Params = (*I)->getSpecializedTemplate()->getTemplateParameters(); const TemplateArgumentList &Args = (*I)->getTemplateArgs(); assert(Params->size() == Args.size()); for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { StringRef Param = Params->getParam(i)->getName(); if (Param.empty()) continue; TOut << Param << " = "; Args.get(i).print(Policy, TOut); TOut << ", "; } } FunctionTemplateSpecializationInfo *FSI = FD->getTemplateSpecializationInfo(); if (FSI && !FSI->isExplicitSpecialization()) { const TemplateParameterList* Params = FSI->getTemplate()->getTemplateParameters(); const TemplateArgumentList* Args = FSI->TemplateArguments; assert(Params->size() == Args->size()); for (unsigned i = 0, e = Params->size(); i != e; ++i) { StringRef Param = Params->getParam(i)->getName(); if (Param.empty()) continue; TOut << Param << " = "; Args->get(i).print(Policy, TOut); TOut << ", "; } } TOut.flush(); if (!TemplateParams.empty()) { // remove the trailing comma and space TemplateParams.resize(TemplateParams.size() - 2); POut << " [" << TemplateParams << "]"; } POut.flush(); if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) AFT->getResultType().getAsStringInternal(Proto, Policy); Out << Proto; Out.flush(); return Name.str().str(); } if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { SmallString<256> Name; llvm::raw_svector_ostream Out(Name); Out << (MD->isInstanceMethod() ? '-' : '+'); Out << '['; // For incorrect code, there might not be an ObjCInterfaceDecl. Do // a null check to avoid a crash. if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) Out << *ID; if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) Out << '(' << *CID << ')'; Out << ' '; Out << MD->getSelector().getAsString(); Out << ']'; Out.flush(); return Name.str().str(); } if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. return "top level"; } return ""; } void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { if (hasAllocation()) C.Deallocate(pVal); BitWidth = Val.getBitWidth(); unsigned NumWords = Val.getNumWords(); const uint64_t* Words = Val.getRawData(); if (NumWords > 1) { pVal = new (C) uint64_t[NumWords]; std::copy(Words, Words + NumWords, pVal); } else if (NumWords == 1) VAL = Words[0]; else VAL = 0; } IntegerLiteral * IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l) { return new (C) IntegerLiteral(C, V, type, l); } IntegerLiteral * IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { return new (C) IntegerLiteral(Empty); } FloatingLiteral * FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L) { return new (C) FloatingLiteral(C, V, isexact, Type, L); } FloatingLiteral * FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { return new (C) FloatingLiteral(C, Empty); } /// getValueAsApproximateDouble - This returns the value as an inaccurate /// double. Note that this may cause loss of precision, but is useful for /// debugging dumps, etc. double FloatingLiteral::getValueAsApproximateDouble() const { llvm::APFloat V = getValue(); bool ignored; V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, &ignored); return V.convertToDouble(); } int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { int CharByteWidth = 0; switch(k) { case Ascii: case UTF8: CharByteWidth = target.getCharWidth(); break; case Wide: CharByteWidth = target.getWCharWidth(); break; case UTF16: CharByteWidth = target.getChar16Width(); break; case UTF32: CharByteWidth = target.getChar32Width(); break; } assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); CharByteWidth /= 8; assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) && "character byte widths supported are 1, 2, and 4 only"); return CharByteWidth; } StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumStrs) { // Allocate enough space for the StringLiteral plus an array of locations for // any concatenated string tokens. void *Mem = C.Allocate(sizeof(StringLiteral)+ sizeof(SourceLocation)*(NumStrs-1), llvm::alignOf<StringLiteral>()); StringLiteral *SL = new (Mem) StringLiteral(Ty); // OPTIMIZE: could allocate this appended to the StringLiteral. SL->setString(C,Str,Kind,Pascal); SL->TokLocs[0] = Loc[0]; SL->NumConcatenated = NumStrs; if (NumStrs != 1) memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); return SL; } StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { void *Mem = C.Allocate(sizeof(StringLiteral)+ sizeof(SourceLocation)*(NumStrs-1), llvm::alignOf<StringLiteral>()); StringLiteral *SL = new (Mem) StringLiteral(QualType()); SL->CharByteWidth = 0; SL->Length = 0; SL->NumConcatenated = NumStrs; return SL; } void StringLiteral::setString(ASTContext &C, StringRef Str, StringKind Kind, bool IsPascal) { //FIXME: we assume that the string data comes from a target that uses the same // code unit size and endianess for the type of string. this->Kind = Kind; this->IsPascal = IsPascal; CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); assert((Str.size()%CharByteWidth == 0) && "size of data must be multiple of CharByteWidth"); Length = Str.size()/CharByteWidth; switch(CharByteWidth) { case 1: { char *AStrData = new (C) char[Length]; std::memcpy(AStrData,Str.data(),Str.size()); StrData.asChar = AStrData; break; } case 2: { uint16_t *AStrData = new (C) uint16_t[Length]; std::memcpy(AStrData,Str.data(),Str.size()); StrData.asUInt16 = AStrData; break; } case 4: { uint32_t *AStrData = new (C) uint32_t[Length]; std::memcpy(AStrData,Str.data(),Str.size()); StrData.asUInt32 = AStrData; break; } default: assert(false && "unsupported CharByteWidth"); } } /// getLocationOfByte - Return a source location that points to the specified /// byte of this string literal. /// /// Strings are amazingly complex. They can be formed from multiple tokens and /// can have escape sequences in them in addition to the usual trigraph and /// escaped newline business. This routine handles this complexity. /// SourceLocation StringLiteral:: getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target) const { assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings"); // Loop over all of the tokens in this string until we find the one that // contains the byte we're looking for. unsigned TokNo = 0; while (1) { assert(TokNo < getNumConcatenated() && "Invalid byte number!"); SourceLocation StrTokLoc = getStrTokenLoc(TokNo); // Get the spelling of the string so that we can get the data that makes up // the string literal, not the identifier for the macro it is potentially // expanded through. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); // Re-lex the token to get its length and original spelling. std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); bool Invalid = false; StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); if (Invalid) return StrTokSpellingLoc; const char *StrData = Buffer.data()+LocInfo.second; // Create a langops struct and enable trigraphs. This is sufficient for // relexing tokens. LangOptions LangOpts; LangOpts.Trigraphs = true; // Create a lexer starting at the beginning of this token. Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, Buffer.end()); Token TheTok; TheLexer.LexFromRawLexer(TheTok); // Use the StringLiteralParser to compute the length of the string in bytes. StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); unsigned TokNumBytes = SLP.GetStringLength(); // If the byte is in this token, return the location of the byte. if (ByteNo < TokNumBytes || (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); // Now that we know the offset of the token in the spelling, use the // preprocessor to get the offset in the original source. return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); } // Move to the next string token. ++TokNo; ByteNo -= TokNumBytes; } } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "sizeof" or "[pre]++". const char *UnaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { case UO_PostInc: return "++"; case UO_PostDec: return "--"; case UO_PreInc: return "++"; case UO_PreDec: return "--"; case UO_AddrOf: return "&"; case UO_Deref: return "*"; case UO_Plus: return "+"; case UO_Minus: return "-"; case UO_Not: return "~"; case UO_LNot: return "!"; case UO_Real: return "__real"; case UO_Imag: return "__imag"; case UO_Extension: return "__extension__"; } llvm_unreachable("Unknown unary operator"); } UnaryOperatorKind UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { switch (OO) { default: llvm_unreachable("No unary operator for overloaded function"); case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; case OO_Amp: return UO_AddrOf; case OO_Star: return UO_Deref; case OO_Plus: return UO_Plus; case OO_Minus: return UO_Minus; case OO_Tilde: return UO_Not; case OO_Exclaim: return UO_LNot; } } OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { switch (Opc) { case UO_PostInc: case UO_PreInc: return OO_PlusPlus; case UO_PostDec: case UO_PreDec: return OO_MinusMinus; case UO_AddrOf: return OO_Amp; case UO_Deref: return OO_Star; case UO_Plus: return OO_Plus; case UO_Minus: return OO_Minus; case UO_Not: return OO_Tilde; case UO_LNot: return OO_Exclaim; default: return OO_None; } } //===----------------------------------------------------------------------===// // Postfix Operators. //===----------------------------------------------------------------------===// CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, Expr **args, unsigned numargs, QualType t, ExprValueKind VK, SourceLocation rparenloc) : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(), fn->isValueDependent(), fn->isInstantiationDependent(), fn->containsUnexpandedParameterPack()), NumArgs(numargs) { SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; SubExprs[FN] = fn; for (unsigned i = 0; i != numargs; ++i) { if (args[i]->isTypeDependent()) ExprBits.TypeDependent = true; if (args[i]->isValueDependent()) ExprBits.ValueDependent = true; if (args[i]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (args[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; } CallExprBits.NumPreArgs = NumPreArgs; RParenLoc = rparenloc; } CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t, ExprValueKind VK, SourceLocation rparenloc) : Expr(CallExprClass, t, VK, OK_Ordinary, fn->isTypeDependent(), fn->isValueDependent(), fn->isInstantiationDependent(), fn->containsUnexpandedParameterPack()), NumArgs(numargs) { SubExprs = new (C) Stmt*[numargs+PREARGS_START]; SubExprs[FN] = fn; for (unsigned i = 0; i != numargs; ++i) { if (args[i]->isTypeDependent()) ExprBits.TypeDependent = true; if (args[i]->isValueDependent()) ExprBits.ValueDependent = true; if (args[i]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (args[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; SubExprs[i+PREARGS_START] = args[i]; } CallExprBits.NumPreArgs = 0; RParenLoc = rparenloc; } CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) : Expr(SC, Empty), SubExprs(0), NumArgs(0) { // FIXME: Why do we allocate this? SubExprs = new (C) Stmt*[PREARGS_START]; CallExprBits.NumPreArgs = 0; } CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty) : Expr(SC, Empty), SubExprs(0), NumArgs(0) { // FIXME: Why do we allocate this? SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; CallExprBits.NumPreArgs = NumPreArgs; } Decl *CallExpr::getCalleeDecl() { Expr *CEE = getCallee()->IgnoreParenImpCasts(); while (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { CEE = NTTP->getReplacement()->IgnoreParenCasts(); } // If we're calling a dereference, look at the pointer instead. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { if (BO->isPtrMemOp()) CEE = BO->getRHS()->IgnoreParenCasts(); } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { if (UO->getOpcode() == UO_Deref) CEE = UO->getSubExpr()->IgnoreParenCasts(); } if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) return DRE->getDecl(); if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) return ME->getMemberDecl(); return 0; } FunctionDecl *CallExpr::getDirectCallee() { return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); } /// setNumArgs - This changes the number of arguments present in this call. /// Any orphaned expressions are deleted by this, and any new operands are set /// to null. void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { // No change, just return. if (NumArgs == getNumArgs()) return; // If shrinking # arguments, just delete the extras and forgot them. if (NumArgs < getNumArgs()) { this->NumArgs = NumArgs; return; } // Otherwise, we are growing the # arguments. New an bigger argument array. unsigned NumPreArgs = getNumPreArgs(); Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; // Copy over args. for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) NewSubExprs[i] = SubExprs[i]; // Null out new args. for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; i != NumArgs+PREARGS_START+NumPreArgs; ++i) NewSubExprs[i] = 0; if (SubExprs) C.Deallocate(SubExprs); SubExprs = NewSubExprs; this->NumArgs = NumArgs; } /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If /// not, return 0. unsigned CallExpr::isBuiltinCall() const { // All simple function calls (e.g. func()) are implicitly cast to pointer to // function. As a result, we try and obtain the DeclRefExpr from the // ImplicitCastExpr. const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). return 0; const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); if (!DRE) return 0; const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); if (!FDecl) return 0; if (!FDecl->getIdentifier()) return 0; return FDecl->getBuiltinID(); } QualType CallExpr::getCallReturnType() const { QualType CalleeType = getCallee()->getType(); if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) CalleeType = FnTypePtr->getPointeeType(); else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) CalleeType = BPT->getPointeeType(); else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) // This should never be overloaded and so should never return null. CalleeType = Expr::findBoundMemberType(getCallee()); const FunctionType *FnType = CalleeType->castAs<FunctionType>(); return FnType->getResultType(); } SourceRange CallExpr::getSourceRange() const { if (isa<CXXOperatorCallExpr>(this)) return cast<CXXOperatorCallExpr>(this)->getSourceRange(); SourceLocation begin = getCallee()->getLocStart(); if (begin.isInvalid() && getNumArgs() > 0) begin = getArg(0)->getLocStart(); SourceLocation end = getRParenLoc(); if (end.isInvalid() && getNumArgs() > 0) end = getArg(getNumArgs() - 1)->getLocEnd(); return SourceRange(begin, end); } SourceLocation CallExpr::getLocStart() const { if (isa<CXXOperatorCallExpr>(this)) return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin(); SourceLocation begin = getCallee()->getLocStart(); if (begin.isInvalid() && getNumArgs() > 0) begin = getArg(0)->getLocStart(); return begin; } SourceLocation CallExpr::getLocEnd() const { if (isa<CXXOperatorCallExpr>(this)) return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd(); SourceLocation end = getRParenLoc(); if (end.isInvalid() && getNumArgs() > 0) end = getArg(getNumArgs() - 1)->getLocEnd(); return end; } OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc) { void *Mem = C.Allocate(sizeof(OffsetOfExpr) + sizeof(OffsetOfNode) * numComps + sizeof(Expr*) * numExprs); return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, exprsPtr, numExprs, RParenLoc); } OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, unsigned numComps, unsigned numExprs) { void *Mem = C.Allocate(sizeof(OffsetOfExpr) + sizeof(OffsetOfNode) * numComps + sizeof(Expr*) * numExprs); return new (Mem) OffsetOfExpr(numComps, numExprs); } OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc) : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, /*TypeDependent=*/false, /*ValueDependent=*/tsi->getType()->isDependentType(), tsi->getType()->isInstantiationDependentType(), tsi->getType()->containsUnexpandedParameterPack()), OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), NumComps(numComps), NumExprs(numExprs) { for(unsigned i = 0; i < numComps; ++i) { setComponent(i, compsPtr[i]); } for(unsigned i = 0; i < numExprs; ++i) { if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) ExprBits.ValueDependent = true; if (exprsPtr[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; setIndexExpr(i, exprsPtr[i]); } } IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { assert(getKind() == Field || getKind() == Identifier); if (getKind() == Field) return getField()->getIdentifier(); return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); } MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind vk, ExprObjectKind ok) { std::size_t Size = sizeof(MemberExpr); bool hasQualOrFound = (QualifierLoc || founddecl.getDecl() != memberdecl || founddecl.getAccess() != memberdecl->getAccess()); if (hasQualOrFound) Size += sizeof(MemberNameQualifier); if (targs) Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); else if (TemplateKWLoc.isValid()) Size += ASTTemplateKWAndArgsInfo::sizeFor(0); void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, ty, vk, ok); if (hasQualOrFound) { // FIXME: Wrong. We should be looking at the member declaration we found. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { E->setValueDependent(true); E->setTypeDependent(true); E->setInstantiationDependent(true); } else if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) E->setInstantiationDependent(true); E->HasQualifierOrFoundDecl = true; MemberNameQualifier *NQ = E->getMemberQualifier(); NQ->QualifierLoc = QualifierLoc; NQ->FoundDecl = founddecl; } E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); if (targs) { bool Dependent = false; bool InstantiationDependent = false; bool ContainsUnexpandedParameterPack = false; E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); if (InstantiationDependent) E->setInstantiationDependent(true); } else if (TemplateKWLoc.isValid()) { E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); } return E; } SourceRange MemberExpr::getSourceRange() const { return SourceRange(getLocStart(), getLocEnd()); } SourceLocation MemberExpr::getLocStart() const { if (isImplicitAccess()) { if (hasQualifier()) return getQualifierLoc().getBeginLoc(); return MemberLoc; } // FIXME: We don't want this to happen. Rather, we should be able to // detect all kinds of implicit accesses more cleanly. SourceLocation BaseStartLoc = getBase()->getLocStart(); if (BaseStartLoc.isValid()) return BaseStartLoc; return MemberLoc; } SourceLocation MemberExpr::getLocEnd() const { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getMemberNameInfo().getEndLoc(); } void CastExpr::CheckCastConsistency() const { switch (getCastKind()) { case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_DerivedToBaseMemberPointer: case CK_BaseToDerived: case CK_BaseToDerivedMemberPointer: assert(!path_empty() && "Cast kind should have a base path!"); break; case CK_CPointerToObjCPointerCast: assert(getType()->isObjCObjectPointerType()); assert(getSubExpr()->getType()->isPointerType()); goto CheckNoBasePath; case CK_BlockPointerToObjCPointerCast: assert(getType()->isObjCObjectPointerType()); assert(getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; case CK_ReinterpretMemberPointer: assert(getType()->isMemberPointerType()); assert(getSubExpr()->getType()->isMemberPointerType()); goto CheckNoBasePath; case CK_BitCast: // Arbitrary casts to C pointer types count as bitcasts. // Otherwise, we should only have block and ObjC pointer casts // here if they stay within the type kind. if (!getType()->isPointerType()) { assert(getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()); assert(getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()); } goto CheckNoBasePath; case CK_AnyPointerToBlockPointerCast: assert(getType()->isBlockPointerType()); assert(getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; case CK_CopyAndAutoreleaseBlockObject: assert(getType()->isBlockPointerType()); assert(getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; // These should not have an inheritance path. case CK_Dynamic: case CK_ToUnion: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToMemberPointer: case CK_NullToPointer: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_ToVoid: case CK_VectorSplat: case CK_IntegralCast: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingCast: case CK_ObjCObjectLValueCast: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: assert(!getType()->isBooleanType() && "unheralded conversion to bool"); goto CheckNoBasePath; case CK_Dependent: case CK_LValueToRValue: case CK_NoOp: case CK_AtomicToNonAtomic: case CK_NonAtomicToAtomic: case CK_PointerToBoolean: case CK_IntegralToBoolean: case CK_FloatingToBoolean: case CK_MemberPointerToBoolean: case CK_FloatingComplexToBoolean: case CK_IntegralComplexToBoolean: case CK_LValueBitCast: // -> bool& case CK_UserDefinedConversion: // operator bool() CheckNoBasePath: assert(path_empty() && "Cast kind should not have a base path!"); break; } } const char *CastExpr::getCastKindName() const { switch (getCastKind()) { case CK_Dependent: return "Dependent"; case CK_BitCast: return "BitCast"; case CK_LValueBitCast: return "LValueBitCast"; case CK_LValueToRValue: return "LValueToRValue"; case CK_NoOp: return "NoOp"; case CK_BaseToDerived: return "BaseToDerived"; case CK_DerivedToBase: return "DerivedToBase"; case CK_UncheckedDerivedToBase: return "UncheckedDerivedToBase"; case CK_Dynamic: return "Dynamic"; case CK_ToUnion: return "ToUnion"; case CK_ArrayToPointerDecay: return "ArrayToPointerDecay"; case CK_FunctionToPointerDecay: return "FunctionToPointerDecay"; case CK_NullToMemberPointer: return "NullToMemberPointer"; case CK_NullToPointer: return "NullToPointer"; case CK_BaseToDerivedMemberPointer: return "BaseToDerivedMemberPointer"; case CK_DerivedToBaseMemberPointer: return "DerivedToBaseMemberPointer"; case CK_ReinterpretMemberPointer: return "ReinterpretMemberPointer"; case CK_UserDefinedConversion: return "UserDefinedConversion"; case CK_ConstructorConversion: return "ConstructorConversion"; case CK_IntegralToPointer: return "IntegralToPointer"; case CK_PointerToIntegral: return "PointerToIntegral"; case CK_PointerToBoolean: return "PointerToBoolean"; case CK_ToVoid: return "ToVoid"; case CK_VectorSplat: return "VectorSplat"; case CK_IntegralCast: return "IntegralCast"; case CK_IntegralToBoolean: return "IntegralToBoolean"; case CK_IntegralToFloating: return "IntegralToFloating"; case CK_FloatingToIntegral: return "FloatingToIntegral"; case CK_FloatingCast: return "FloatingCast"; case CK_FloatingToBoolean: return "FloatingToBoolean"; case CK_MemberPointerToBoolean: return "MemberPointerToBoolean"; case CK_CPointerToObjCPointerCast: return "CPointerToObjCPointerCast"; case CK_BlockPointerToObjCPointerCast: return "BlockPointerToObjCPointerCast"; case CK_AnyPointerToBlockPointerCast: return "AnyPointerToBlockPointerCast"; case CK_ObjCObjectLValueCast: return "ObjCObjectLValueCast"; case CK_FloatingRealToComplex: return "FloatingRealToComplex"; case CK_FloatingComplexToReal: return "FloatingComplexToReal"; case CK_FloatingComplexToBoolean: return "FloatingComplexToBoolean"; case CK_FloatingComplexCast: return "FloatingComplexCast"; case CK_FloatingComplexToIntegralComplex: return "FloatingComplexToIntegralComplex"; case CK_IntegralRealToComplex: return "IntegralRealToComplex"; case CK_IntegralComplexToReal: return "IntegralComplexToReal"; case CK_IntegralComplexToBoolean: return "IntegralComplexToBoolean"; case CK_IntegralComplexCast: return "IntegralComplexCast"; case CK_IntegralComplexToFloatingComplex: return "IntegralComplexToFloatingComplex"; case CK_ARCConsumeObject: return "ARCConsumeObject"; case CK_ARCProduceObject: return "ARCProduceObject"; case CK_ARCReclaimReturnedObject: return "ARCReclaimReturnedObject"; case CK_ARCExtendBlockObject: return "ARCCExtendBlockObject"; case CK_AtomicToNonAtomic: return "AtomicToNonAtomic"; case CK_NonAtomicToAtomic: return "NonAtomicToAtomic"; case CK_CopyAndAutoreleaseBlockObject: return "CopyAndAutoreleaseBlockObject"; } llvm_unreachable("Unhandled cast kind!"); } Expr *CastExpr::getSubExprAsWritten() { Expr *SubExpr = 0; CastExpr *E = this; do { SubExpr = E->getSubExpr(); // Skip through reference binding to temporary. if (MaterializeTemporaryExpr *Materialize = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) SubExpr = Materialize->GetTemporaryExpr(); // Skip any temporary bindings; they're implicit. if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) SubExpr = Binder->getSubExpr(); // Conversions by constructor and conversion functions have a // subexpression describing the call; strip it off. if (E->getCastKind() == CK_ConstructorConversion) SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); else if (E->getCastKind() == CK_UserDefinedConversion) SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); // If the subexpression we're left with is an implicit cast, look // through that, too. } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); return SubExpr; } CXXBaseSpecifier **CastExpr::path_buffer() { switch (getStmtClass()) { #define ABSTRACT_STMT(x) #define CASTEXPR(Type, Base) \ case Stmt::Type##Class: \ return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); #define STMT(Type, Base) #include "clang/AST/StmtNodes.inc" default: llvm_unreachable("non-cast expressions not possible here"); } } void CastExpr::setCastPath(const CXXCastPath &Path) { assert(Path.size() == path_size()); memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); } ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind VK) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); ImplicitCastExpr *E = new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); if (PathSize) E->setCastPath(*BasePath); return E; } ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); } CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); CStyleCastExpr *E = new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); if (PathSize) E->setCastPath(*BasePath); return E; } CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "<<=". const char *BinaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { case BO_PtrMemD: return ".*"; case BO_PtrMemI: return "->*"; case BO_Mul: return "*"; case BO_Div: return "/"; case BO_Rem: return "%"; case BO_Add: return "+"; case BO_Sub: return "-"; case BO_Shl: return "<<"; case BO_Shr: return ">>"; case BO_LT: return "<"; case BO_GT: return ">"; case BO_LE: return "<="; case BO_GE: return ">="; case BO_EQ: return "=="; case BO_NE: return "!="; case BO_And: return "&"; case BO_Xor: return "^"; case BO_Or: return "|"; case BO_LAnd: return "&&"; case BO_LOr: return "||"; case BO_Assign: return "="; case BO_MulAssign: return "*="; case BO_DivAssign: return "/="; case BO_RemAssign: return "%="; case BO_AddAssign: return "+="; case BO_SubAssign: return "-="; case BO_ShlAssign: return "<<="; case BO_ShrAssign: return ">>="; case BO_AndAssign: return "&="; case BO_XorAssign: return "^="; case BO_OrAssign: return "|="; case BO_Comma: return ","; } llvm_unreachable("Invalid OpCode!"); } BinaryOperatorKind BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { switch (OO) { default: llvm_unreachable("Not an overloadable binary operator"); case OO_Plus: return BO_Add; case OO_Minus: return BO_Sub; case OO_Star: return BO_Mul; case OO_Slash: return BO_Div; case OO_Percent: return BO_Rem; case OO_Caret: return BO_Xor; case OO_Amp: return BO_And; case OO_Pipe: return BO_Or; case OO_Equal: return BO_Assign; case OO_Less: return BO_LT; case OO_Greater: return BO_GT; case OO_PlusEqual: return BO_AddAssign; case OO_MinusEqual: return BO_SubAssign; case OO_StarEqual: return BO_MulAssign; case OO_SlashEqual: return BO_DivAssign; case OO_PercentEqual: return BO_RemAssign; case OO_CaretEqual: return BO_XorAssign; case OO_AmpEqual: return BO_AndAssign; case OO_PipeEqual: return BO_OrAssign; case OO_LessLess: return BO_Shl; case OO_GreaterGreater: return BO_Shr; case OO_LessLessEqual: return BO_ShlAssign; case OO_GreaterGreaterEqual: return BO_ShrAssign; case OO_EqualEqual: return BO_EQ; case OO_ExclaimEqual: return BO_NE; case OO_LessEqual: return BO_LE; case OO_GreaterEqual: return BO_GE; case OO_AmpAmp: return BO_LAnd; case OO_PipePipe: return BO_LOr; case OO_Comma: return BO_Comma; case OO_ArrowStar: return BO_PtrMemI; } } OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { static const OverloadedOperatorKind OverOps[] = { /* .* Cannot be overloaded */OO_None, OO_ArrowStar, OO_Star, OO_Slash, OO_Percent, OO_Plus, OO_Minus, OO_LessLess, OO_GreaterGreater, OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, OO_EqualEqual, OO_ExclaimEqual, OO_Amp, OO_Caret, OO_Pipe, OO_AmpAmp, OO_PipePipe, OO_Equal, OO_StarEqual, OO_SlashEqual, OO_PercentEqual, OO_PlusEqual, OO_MinusEqual, OO_LessLessEqual, OO_GreaterGreaterEqual, OO_AmpEqual, OO_CaretEqual, OO_PipeEqual, OO_Comma }; return OverOps[Opc]; } InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, Expr **initExprs, unsigned numInits, SourceLocation rbraceloc) : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, false, false), InitExprs(C, numInits), LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0) { sawArrayRangeDesignator(false); setInitializesStdInitializerList(false); for (unsigned I = 0; I != numInits; ++I) { if (initExprs[I]->isTypeDependent()) ExprBits.TypeDependent = true; if (initExprs[I]->isValueDependent()) ExprBits.ValueDependent = true; if (initExprs[I]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (initExprs[I]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; } InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); } void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { if (NumInits > InitExprs.size()) InitExprs.reserve(C, NumInits); } void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { InitExprs.resize(C, NumInits, 0); } Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { if (Init >= InitExprs.size()) { InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); InitExprs.back() = expr; return 0; } Expr *Result = cast_or_null<Expr>(InitExprs[Init]); InitExprs[Init] = expr; return Result; } void InitListExpr::setArrayFiller(Expr *filler) { assert(!hasArrayFiller() && "Filler already set!"); ArrayFillerOrUnionFieldInit = filler; // Fill out any "holes" in the array due to designated initializers. Expr **inits = getInits(); for (unsigned i = 0, e = getNumInits(); i != e; ++i) if (inits[i] == 0) inits[i] = filler; } bool InitListExpr::isStringLiteralInit() const { if (getNumInits() != 1) return false; const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType()); if (!CAT || !CAT->getElementType()->isIntegerType()) return false; const Expr *Init = getInit(0)->IgnoreParenImpCasts(); return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); } SourceRange InitListExpr::getSourceRange() const { if (SyntacticForm) return SyntacticForm->getSourceRange(); SourceLocation Beg = LBraceLoc, End = RBraceLoc; if (Beg.isInvalid()) { // Find the first non-null initializer. for (InitExprsTy::const_iterator I = InitExprs.begin(), E = InitExprs.end(); I != E; ++I) { if (Stmt *S = *I) { Beg = S->getLocStart(); break; } } } if (End.isInvalid()) { // Find the first non-null initializer from the end. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), E = InitExprs.rend(); I != E; ++I) { if (Stmt *S = *I) { End = S->getSourceRange().getEnd(); break; } } } return SourceRange(Beg, End); } /// getFunctionType - Return the underlying function type for this block. /// const FunctionProtoType *BlockExpr::getFunctionType() const { // The block pointer is never sugared, but the function type might be. return cast<BlockPointerType>(getType()) ->getPointeeType()->castAs<FunctionProtoType>(); } SourceLocation BlockExpr::getCaretLocation() const { return TheBlock->getCaretLocation(); } const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); } Stmt *BlockExpr::getBody() { return TheBlock->getBody(); } //===----------------------------------------------------------------------===// // Generic Expression Routines //===----------------------------------------------------------------------===// /// isUnusedResultAWarning - Return true if this immediate expression should /// be warned about if the result is unused. If so, fill in Loc and Ranges /// with location to warn on and the source range[s] to report with the /// warning. bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const { // Don't warn if the expr is type dependent. The type could end up // instantiating to void. if (isTypeDependent()) return false; switch (getStmtClass()) { default: if (getType()->isVoidType()) return false; Loc = getExprLoc(); R1 = getSourceRange(); return true; case ParenExprClass: return cast<ParenExpr>(this)->getSubExpr()-> isUnusedResultAWarning(Loc, R1, R2, Ctx); case GenericSelectionExprClass: return cast<GenericSelectionExpr>(this)->getResultExpr()-> isUnusedResultAWarning(Loc, R1, R2, Ctx); case UnaryOperatorClass: { const UnaryOperator *UO = cast<UnaryOperator>(this); switch (UO->getOpcode()) { default: break; case UO_PostInc: case UO_PostDec: case UO_PreInc: case UO_PreDec: // ++/-- return false; // Not a warning. case UO_Deref: // Dereferencing a volatile pointer is a side-effect. if (Ctx.getCanonicalType(getType()).isVolatileQualified()) return false; break; case UO_Real: case UO_Imag: // accessing a piece of a volatile complex is a side-effect. if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) .isVolatileQualified()) return false; break; case UO_Extension: return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); } Loc = UO->getOperatorLoc(); R1 = UO->getSubExpr()->getSourceRange(); return true; } case BinaryOperatorClass: { const BinaryOperator *BO = cast<BinaryOperator>(this); switch (BO->getOpcode()) { default: break; // Consider the RHS of comma for side effects. LHS was checked by // Sema::CheckCommaOperands. case BO_Comma: // ((foo = <blah>), 0) is an idiom for hiding the result (and // lvalue-ness) of an assignment written in a macro. if (IntegerLiteral *IE = dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) if (IE->getValue() == 0) return false; return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); // Consider '||', '&&' to have side effects if the LHS or RHS does. case BO_LAnd: case BO_LOr: if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) return false; break; } if (BO->isAssignmentOp()) return false; Loc = BO->getOperatorLoc(); R1 = BO->getLHS()->getSourceRange(); R2 = BO->getRHS()->getSourceRange(); return true; } case CompoundAssignOperatorClass: case VAArgExprClass: case AtomicExprClass: return false; case ConditionalOperatorClass: { // If only one of the LHS or RHS is a warning, the operator might // be being used for control flow. Only warn if both the LHS and // RHS are warnings. const ConditionalOperator *Exp = cast<ConditionalOperator>(this); if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) return false; if (!Exp->getLHS()) return true; return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); } case MemberExprClass: // If the base pointer or element is to a volatile pointer/field, accessing // it is a side effect. if (Ctx.getCanonicalType(getType()).isVolatileQualified()) return false; Loc = cast<MemberExpr>(this)->getMemberLoc(); R1 = SourceRange(Loc, Loc); R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); return true; case ArraySubscriptExprClass: // If the base pointer or element is to a volatile pointer/field, accessing // it is a side effect. if (Ctx.getCanonicalType(getType()).isVolatileQualified()) return false; Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); return true; case CXXOperatorCallExprClass: { // We warn about operator== and operator!= even when user-defined operator // overloads as there is no reasonable way to define these such that they // have non-trivial, desirable side-effects. See the -Wunused-comparison // warning: these operators are commonly typo'ed, and so warning on them // provides additional value as well. If this list is updated, // DiagnoseUnusedComparison should be as well. const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); if (Op->getOperator() == OO_EqualEqual || Op->getOperator() == OO_ExclaimEqual) { Loc = Op->getOperatorLoc(); R1 = Op->getSourceRange(); return true; } // Fallthrough for generic call handling. } case CallExprClass: case CXXMemberCallExprClass: case UserDefinedLiteralClass: { // If this is a direct call, get the callee. const CallExpr *CE = cast<CallExpr>(this); if (const Decl *FD = CE->getCalleeDecl()) { // If the callee has attribute pure, const, or warn_unused_result, warn // about it. void foo() { strlen("bar"); } should warn. // // Note: If new cases are added here, DiagnoseUnusedExprResult should be // updated to match for QoI. if (FD->getAttr<WarnUnusedResultAttr>() || FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { Loc = CE->getCallee()->getLocStart(); R1 = CE->getCallee()->getSourceRange(); if (unsigned NumArgs = CE->getNumArgs()) R2 = SourceRange(CE->getArg(0)->getLocStart(), CE->getArg(NumArgs-1)->getLocEnd()); return true; } } return false; } case CXXTemporaryObjectExprClass: case CXXConstructExprClass: return false; case ObjCMessageExprClass: { const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); if (Ctx.getLangOpts().ObjCAutoRefCount && ME->isInstanceMessage() && !ME->getType()->isVoidType() && ME->getSelector().getIdentifierInfoForSlot(0) && ME->getSelector().getIdentifierInfoForSlot(0) ->getName().startswith("init")) { Loc = getExprLoc(); R1 = ME->getSourceRange(); return true; } const ObjCMethodDecl *MD = ME->getMethodDecl(); if (MD && MD->getAttr<WarnUnusedResultAttr>()) { Loc = getExprLoc(); return true; } return false; } case ObjCPropertyRefExprClass: Loc = getExprLoc(); R1 = getSourceRange(); return true; case PseudoObjectExprClass: { const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); // Only complain about things that have the form of a getter. if (isa<UnaryOperator>(PO->getSyntacticForm()) || isa<BinaryOperator>(PO->getSyntacticForm())) return false; Loc = getExprLoc(); R1 = getSourceRange(); return true; } case StmtExprClass: { // Statement exprs don't logically have side effects themselves, but are // sometimes used in macros in ways that give them a type that is unused. // For example ({ blah; foo(); }) will end up with a type if foo has a type. // however, if the result of the stmt expr is dead, we don't want to emit a // warning. const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); if (!CS->body_empty()) { if (const Expr *E = dyn_cast<Expr>(CS->body_back())) return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); } if (getType()->isVoidType()) return false; Loc = cast<StmtExpr>(this)->getLParenLoc(); R1 = getSourceRange(); return true; } case CStyleCastExprClass: // If this is an explicit cast to void, allow it. People do this when they // think they know what they're doing :). if (getType()->isVoidType()) return false; Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); return true; case CXXFunctionalCastExprClass: { if (getType()->isVoidType()) return false; const CastExpr *CE = cast<CastExpr>(this); // If this is a cast to void or a constructor conversion, check the operand. // Otherwise, the result of the cast is unused. if (CE->getCastKind() == CK_ToVoid || CE->getCastKind() == CK_ConstructorConversion) return (cast<CastExpr>(this)->getSubExpr() ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); return true; } case ImplicitCastExprClass: // Check the operand, since implicit casts are inserted by Sema return (cast<ImplicitCastExpr>(this) ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); case CXXDefaultArgExprClass: return (cast<CXXDefaultArgExpr>(this) ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); case CXXNewExprClass: // FIXME: In theory, there might be new expressions that don't have side // effects (e.g. a placement new with an uninitialized POD). case CXXDeleteExprClass: return false; case CXXBindTemporaryExprClass: return (cast<CXXBindTemporaryExpr>(this) ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); case ExprWithCleanupsClass: return (cast<ExprWithCleanups>(this) ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); } } /// isOBJCGCCandidate - Check if an expression is objc gc'able. /// returns true, if it is; false otherwise. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { const Expr *E = IgnoreParens(); switch (E->getStmtClass()) { default: return false; case ObjCIvarRefExprClass: return true; case Expr::UnaryOperatorClass: return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case ImplicitCastExprClass: return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case MaterializeTemporaryExprClass: return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() ->isOBJCGCCandidate(Ctx); case CStyleCastExprClass: return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case DeclRefExprClass: { const Decl *D = cast<DeclRefExpr>(E)->getDecl(); if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { if (VD->hasGlobalStorage()) return true; QualType T = VD->getType(); // dereferencing to a pointer is always a gc'able candidate, // unless it is __weak. return T->isPointerType() && (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); } return false; } case MemberExprClass: { const MemberExpr *M = cast<MemberExpr>(E); return M->getBase()->isOBJCGCCandidate(Ctx); } case ArraySubscriptExprClass: return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); } } bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { if (isTypeDependent()) return false; return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; } QualType Expr::findBoundMemberType(const Expr *expr) { assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); // Bound member expressions are always one of these possibilities: // x->m x.m x->*y x.*y // (possibly parenthesized) expr = expr->IgnoreParens(); if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { assert(isa<CXXMethodDecl>(mem->getMemberDecl())); return mem->getMemberDecl()->getType(); } if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() ->getPointeeType(); assert(type->isFunctionType()); return type; } assert(isa<UnresolvedMemberExpr>(expr)); return QualType(); } Expr* Expr::IgnoreParens() { Expr* E = this; while (true) { if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { E = P->getSubExpr(); continue; } if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { if (P->getOpcode() == UO_Extension) { E = P->getSubExpr(); continue; } } if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { if (!P->isResultDependent()) { E = P->getResultExpr(); continue; } } return E; } } /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr /// or CastExprs or ImplicitCastExprs, returning their operand. Expr *Expr::IgnoreParenCasts() { Expr *E = this; while (true) { if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { E = P->getSubExpr(); continue; } if (CastExpr *P = dyn_cast<CastExpr>(E)) { E = P->getSubExpr(); continue; } if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { if (P->getOpcode() == UO_Extension) { E = P->getSubExpr(); continue; } } if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { if (!P->isResultDependent()) { E = P->getResultExpr(); continue; } } if (MaterializeTemporaryExpr *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) { E = Materialize->GetTemporaryExpr(); continue; } if (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { E = NTTP->getReplacement(); continue; } return E; } } /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue /// casts. This is intended purely as a temporary workaround for code /// that hasn't yet been rewritten to do the right thing about those /// casts, and may disappear along with the last internal use. Expr *Expr::IgnoreParenLValueCasts() { Expr *E = this; while (true) { if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { E = P->getSubExpr(); continue; } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { if (P->getCastKind() == CK_LValueToRValue) { E = P->getSubExpr(); continue; } } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { if (P->getOpcode() == UO_Extension) { E = P->getSubExpr(); continue; } } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { if (!P->isResultDependent()) { E = P->getResultExpr(); continue; } } else if (MaterializeTemporaryExpr *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) { E = Materialize->GetTemporaryExpr(); continue; } else if (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { E = NTTP->getReplacement(); continue; } break; } return E; } Expr *Expr::IgnoreParenImpCasts() { Expr *E = this; while (true) { if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { E = P->getSubExpr(); continue; } if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { E = P->getSubExpr(); continue; } if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { if (P->getOpcode() == UO_Extension) { E = P->getSubExpr(); continue; } } if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { if (!P->isResultDependent()) { E = P->getResultExpr(); continue; } } if (MaterializeTemporaryExpr *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) { E = Materialize->GetTemporaryExpr(); continue; } if (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { E = NTTP->getReplacement(); continue; } return E; } } Expr *Expr::IgnoreConversionOperator() { if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) return MCE->getImplicitObjectArgument(); } return this; } /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the /// value (including ptr->int casts of the same size). Strip off any /// ParenExpr or CastExprs, returning their operand. Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { Expr *E = this; while (true) { if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { E = P->getSubExpr(); continue; } if (CastExpr *P = dyn_cast<CastExpr>(E)) { // We ignore integer <-> casts that are of the same width, ptr<->ptr and // ptr<->int casts of the same width. We also ignore all identity casts. Expr *SE = P->getSubExpr(); if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { E = SE; continue; } if ((E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && (SE->getType()->isPointerType() || SE->getType()->isIntegralType(Ctx)) && Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { E = SE; continue; } } if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { if (P->getOpcode() == UO_Extension) { E = P->getSubExpr(); continue; } } if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { if (!P->isResultDependent()) { E = P->getResultExpr(); continue; } } if (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { E = NTTP->getReplacement(); continue; } return E; } } bool Expr::isDefaultArgument() const { const Expr *E = this; if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) E = M->GetTemporaryExpr(); while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) E = ICE->getSubExprAsWritten(); return isa<CXXDefaultArgExpr>(E); } /// \brief Skip over any no-op casts and any temporary-binding /// expressions. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) E = M->GetTemporaryExpr(); while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr(); else break; } while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) E = BE->getSubExpr(); while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr(); else break; } return E->IgnoreParens(); } /// isTemporaryObject - Determines if this expression produces a /// temporary of the given class type. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) return false; const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); // Temporaries are by definition pr-values of class type. if (!E->Classify(C).isPRValue()) { // In this context, property reference is a message call and is pr-value. if (!isa<ObjCPropertyRefExpr>(E)) return false; } // Black-list a few cases which yield pr-values of class type that don't // refer to temporaries of that type: // - implicit derived-to-base conversions if (isa<ImplicitCastExpr>(E)) { switch (cast<ImplicitCastExpr>(E)->getCastKind()) { case CK_DerivedToBase: case CK_UncheckedDerivedToBase: return false; default: break; } } // - member expressions (all) if (isa<MemberExpr>(E)) return false; // - opaque values (all) if (isa<OpaqueValueExpr>(E)) return false; return true; } bool Expr::isImplicitCXXThis() const { const Expr *E = this; // Strip away parentheses and casts we don't care about. while (true) { if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { E = Paren->getSubExpr(); continue; } if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getCastKind() == CK_NoOp || ICE->getCastKind() == CK_LValueToRValue || ICE->getCastKind() == CK_DerivedToBase || ICE->getCastKind() == CK_UncheckedDerivedToBase) { E = ICE->getSubExpr(); continue; } } if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { if (UnOp->getOpcode() == UO_Extension) { E = UnOp->getSubExpr(); continue; } } if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) { E = M->GetTemporaryExpr(); continue; } break; } if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) return This->isImplicit(); return false; } /// hasAnyTypeDependentArguments - Determines if any of the expressions /// in Exprs is type-dependent. bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) { for (unsigned I = 0; I < Exprs.size(); ++I) if (Exprs[I]->isTypeDependent()) return true; return false; } bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { // This function is attempting whether an expression is an initializer // which can be evaluated at compile-time. isEvaluatable handles most // of the cases, but it can't deal with some initializer-specific // expressions, and it can't deal with aggregates; we deal with those here, // and fall back to isEvaluatable for the other cases. // If we ever capture reference-binding directly in the AST, we can // kill the second parameter. if (IsForRef) { EvalResult Result; return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; } switch (getStmtClass()) { default: break; case IntegerLiteralClass: case FloatingLiteralClass: case StringLiteralClass: case ObjCStringLiteralClass: case ObjCEncodeExprClass: return true; case CXXTemporaryObjectExprClass: case CXXConstructExprClass: { const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); // Only if it's if (CE->getConstructor()->isTrivial()) { // 1) an application of the trivial default constructor or if (!CE->getNumArgs()) return true; // 2) an elidable trivial copy construction of an operand which is // itself a constant initializer. Note that we consider the // operand on its own, *not* as a reference binding. if (CE->isElidable() && CE->getArg(0)->isConstantInitializer(Ctx, false)) return true; } // 3) a foldable constexpr constructor. break; } case CompoundLiteralExprClass: { // This handles gcc's extension that allows global initializers like // "struct x {int x;} x = (struct x) {};". // FIXME: This accepts other cases it shouldn't! const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); return Exp->isConstantInitializer(Ctx, false); } case InitListExprClass: { // FIXME: This doesn't deal with fields with reference types correctly. // FIXME: This incorrectly allows pointers cast to integers to be assigned // to bitfields. const InitListExpr *Exp = cast<InitListExpr>(this); unsigned numInits = Exp->getNumInits(); for (unsigned i = 0; i < numInits; i++) { if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) return false; } return true; } case ImplicitValueInitExprClass: return true; case ParenExprClass: return cast<ParenExpr>(this)->getSubExpr() ->isConstantInitializer(Ctx, IsForRef); case GenericSelectionExprClass: if (cast<GenericSelectionExpr>(this)->isResultDependent()) return false; return cast<GenericSelectionExpr>(this)->getResultExpr() ->isConstantInitializer(Ctx, IsForRef); case ChooseExprClass: return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) ->isConstantInitializer(Ctx, IsForRef); case UnaryOperatorClass: { const UnaryOperator* Exp = cast<UnaryOperator>(this); if (Exp->getOpcode() == UO_Extension) return Exp->getSubExpr()->isConstantInitializer(Ctx, false); break; } case CXXFunctionalCastExprClass: case CXXStaticCastExprClass: case ImplicitCastExprClass: case CStyleCastExprClass: { const CastExpr *CE = cast<CastExpr>(this); // If we're promoting an integer to an _Atomic type then this is constant // if the integer is constant. We also need to check the converse in case // someone does something like: // // int a = (_Atomic(int))42; // // I doubt anyone would write code like this directly, but it's quite // possible as the result of macro expansions. if (CE->getCastKind() == CK_NonAtomicToAtomic || CE->getCastKind() == CK_AtomicToNonAtomic) return CE->getSubExpr()->isConstantInitializer(Ctx, false); // Handle bitcasts of vector constants. if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast) return CE->getSubExpr()->isConstantInitializer(Ctx, false); // Handle misc casts we want to ignore. // FIXME: Is it really safe to ignore all these? if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue || CE->getCastKind() == CK_ToUnion || CE->getCastKind() == CK_ConstructorConversion) return CE->getSubExpr()->isConstantInitializer(Ctx, false); break; } case MaterializeTemporaryExprClass: return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() ->isConstantInitializer(Ctx, false); } return isEvaluatable(Ctx); } namespace { /// \brief Look for a call to a non-trivial function within an expression. class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> { typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; bool NonTrivial; public: explicit NonTrivialCallFinder(ASTContext &Context) : Inherited(Context), NonTrivial(false) { } bool hasNonTrivialCall() const { return NonTrivial; } void VisitCallExpr(CallExpr *E) { if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { if (Method->isTrivial()) { // Recurse to children of the call. Inherited::VisitStmt(E); return; } } NonTrivial = true; } void VisitCXXConstructExpr(CXXConstructExpr *E) { if (E->getConstructor()->isTrivial()) { // Recurse to children of the call. Inherited::VisitStmt(E); return; } NonTrivial = true; } void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { if (E->getTemporary()->getDestructor()->isTrivial()) { Inherited::VisitStmt(E); return; } NonTrivial = true; } }; } bool Expr::hasNonTrivialCall(ASTContext &Ctx) { NonTrivialCallFinder Finder(Ctx); Finder.Visit(this); return Finder.hasNonTrivialCall(); } /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null /// pointer constant or not, as well as the specific kind of constant detected. /// Null pointer constants can be integer constant expressions with the /// value zero, casts of zero to void*, nullptr (C++0X), or __null /// (a GNU extension). Expr::NullPointerConstantKind Expr::isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const { if (isValueDependent()) { switch (NPC) { case NPC_NeverValueDependent: llvm_unreachable("Unexpected value dependent expression!"); case NPC_ValueDependentIsNull: if (isTypeDependent() || getType()->isIntegralType(Ctx)) return NPCK_ZeroInteger; else return NPCK_NotNull; case NPC_ValueDependentIsNotNull: return NPCK_NotNull; } } // Strip off a cast to void*, if it exists. Except in C++. if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { if (!Ctx.getLangOpts().CPlusPlus) { // Check that it is a cast to void*. if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { QualType Pointee = PT->getPointeeType(); if (!Pointee.hasQualifiers() && Pointee->isVoidType() && // to void* CE->getSubExpr()->getType()->isIntegerType()) // from int. return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } } } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { // Ignore the ImplicitCastExpr type entirely. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { // Accept ((void*)0) as a null pointer constant, as many other // implementations do. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const GenericSelectionExpr *GE = dyn_cast<GenericSelectionExpr>(this)) { return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); } else if (const CXXDefaultArgExpr *DefaultArg = dyn_cast<CXXDefaultArgExpr>(this)) { // See through default argument expressions return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); } else if (isa<GNUNullExpr>(this)) { // The GNU __null extension is always a null pointer constant. return NPCK_GNUNull; } else if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(this)) { return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { if (const Expr *Source = OVE->getSourceExpr()) return Source->isNullPointerConstant(Ctx, NPC); } // C++0x nullptr_t is always a null pointer constant. if (getType()->isNullPtrType()) return NPCK_CXX0X_nullptr; if (const RecordType *UT = getType()->getAsUnionType()) if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ const Expr *InitExpr = CLE->getInitializer(); if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); } // This expression must be an integer type. if (!getType()->isIntegerType() || (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) return NPCK_NotNull; // If we have an integer constant expression, we need to *evaluate* it and // test for the value 0. Don't use the C++11 constant expression semantics // for this, for now; once the dust settles on core issue 903, we might only // allow a literal 0 here in C++11 mode. if (Ctx.getLangOpts().CPlusPlus0x) { if (!isCXX98IntegralConstantExpr(Ctx)) return NPCK_NotNull; } else { if (!isIntegerConstantExpr(Ctx)) return NPCK_NotNull; } return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull; } /// \brief If this expression is an l-value for an Objective C /// property, find the underlying property reference expression. const ObjCPropertyRefExpr *Expr::getObjCProperty() const { const Expr *E = this; while (true) { assert((E->getValueKind() == VK_LValue && E->getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"); E = E->IgnoreParenCasts(); if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { if (BO->getOpcode() == BO_Comma) { E = BO->getRHS(); continue; } } break; } return cast<ObjCPropertyRefExpr>(E); } FieldDecl *Expr::getBitField() { Expr *E = this->IgnoreParens(); while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getCastKind() == CK_LValueToRValue || (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) E = ICE->getSubExpr()->IgnoreParens(); else break; } if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) if (Field->isBitField()) return Field; if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) if (Field->isBitField()) return Field; if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { if (BinOp->isAssignmentOp() && BinOp->getLHS()) return BinOp->getLHS()->getBitField(); if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) return BinOp->getRHS()->getBitField(); } return 0; } bool Expr::refersToVectorElement() const { const Expr *E = this->IgnoreParens(); while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { if (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr()->IgnoreParens(); else break; } if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) return ASE->getBase()->getType()->isVectorType(); if (isa<ExtVectorElementExpr>(E)) return true; return false; } /// isArrow - Return true if the base expression is a pointer to vector, /// return false if the base expression is a vector. bool ExtVectorElementExpr::isArrow() const { return getBase()->getType()->isPointerType(); } unsigned ExtVectorElementExpr::getNumElements() const { if (const VectorType *VT = getType()->getAs<VectorType>()) return VT->getNumElements(); return 1; } /// containsDuplicateElements - Return true if any element access is repeated. bool ExtVectorElementExpr::containsDuplicateElements() const { // FIXME: Refactor this code to an accessor on the AST node which returns the // "type" of component access, and share with code below and in Sema. StringRef Comp = Accessor->getName(); // Halving swizzles do not contain duplicate elements. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") return false; // Advance past s-char prefix on hex swizzles. if (Comp[0] == 's' || Comp[0] == 'S') Comp = Comp.substr(1); for (unsigned i = 0, e = Comp.size(); i != e; ++i) if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) return true; return false; } /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. void ExtVectorElementExpr::getEncodedElementAccess( SmallVectorImpl<unsigned> &Elts) const { StringRef Comp = Accessor->getName(); if (Comp[0] == 's' || Comp[0] == 'S') Comp = Comp.substr(1); bool isHi = Comp == "hi"; bool isLo = Comp == "lo"; bool isEven = Comp == "even"; bool isOdd = Comp == "odd"; for (unsigned i = 0, e = getNumElements(); i != e; ++i) { uint64_t Index; if (isHi) Index = e + i; else if (isLo) Index = i; else if (isEven) Index = 2 * i; else if (isOdd) Index = 2 * i + 1; else Index = ExtVectorType::getAccessorIdx(Comp[i]); Elts.push_back(Index); } } ObjCMessageExpr::ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, SourceLocation SuperLoc, bool IsInstanceSuper, QualType SuperType, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, /*TypeDependent=*/false, /*ValueDependent=*/false, /*InstantiationDependent=*/false, /*ContainsUnexpandedParameterPack=*/false), SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method : Sel.getAsOpaquePtr())), Kind(IsInstanceSuper? SuperInstance : SuperClass), HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) { initArgsAndSelLocs(Args, SelLocs, SelLocsK); setReceiverPointer(SuperType.getAsOpaquePtr()); } ObjCMessageExpr::ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, TypeSourceInfo *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), T->isDependentType(), T->isInstantiationDependentType(), T->containsUnexpandedParameterPack()), SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method : Sel.getAsOpaquePtr())), Kind(Class), HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) { initArgsAndSelLocs(Args, SelLocs, SelLocsK); setReceiverPointer(Receiver); } ObjCMessageExpr::ObjCMessageExpr(QualType T, ExprValueKind VK, SourceLocation LBracLoc, Expr *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), Receiver->isTypeDependent(), Receiver->isInstantiationDependent(), Receiver->containsUnexpandedParameterPack()), SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method : Sel.getAsOpaquePtr())), Kind(Instance), HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) { initArgsAndSelLocs(Args, SelLocs, SelLocsK); setReceiverPointer(Receiver); } void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, ArrayRef<SourceLocation> SelLocs, SelectorLocationsKind SelLocsK) { setNumArgs(Args.size()); Expr **MyArgs = getArgs(); for (unsigned I = 0; I != Args.size(); ++I) { if (Args[I]->isTypeDependent()) ExprBits.TypeDependent = true; if (Args[I]->isValueDependent()) ExprBits.ValueDependent = true; if (Args[I]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (Args[I]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; MyArgs[I] = Args[I]; } SelLocsKind = SelLocsK; if (!isImplicit()) { if (SelLocsK == SelLoc_NonStandard) std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); } } ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, SourceLocation SuperLoc, bool IsInstanceSuper, QualType SuperType, Selector Sel, ArrayRef<SourceLocation> SelLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) { assert((!SelLocs.empty() || isImplicit) && "No selector locs for non-implicit message"); ObjCMessageExpr *Mem; SelectorLocationsKind SelLocsK = SelectorLocationsKind(); if (isImplicit) Mem = alloc(Context, Args.size(), 0); else Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, SuperType, Sel, SelLocs, SelLocsK, Method, Args, RBracLoc, isImplicit); } ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, TypeSourceInfo *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) { assert((!SelLocs.empty() || isImplicit) && "No selector locs for non-implicit message"); ObjCMessageExpr *Mem; SelectorLocationsKind SelLocsK = SelectorLocationsKind(); if (isImplicit) Mem = alloc(Context, Args.size(), 0); else Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLocs, SelLocsK, Method, Args, RBracLoc, isImplicit); } ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, ExprValueKind VK, SourceLocation LBracLoc, Expr *Receiver, Selector Sel, ArrayRef<SourceLocation> SelLocs, ObjCMethodDecl *Method, ArrayRef<Expr *> Args, SourceLocation RBracLoc, bool isImplicit) { assert((!SelLocs.empty() || isImplicit) && "No selector locs for non-implicit message"); ObjCMessageExpr *Mem; SelectorLocationsKind SelLocsK = SelectorLocationsKind(); if (isImplicit) Mem = alloc(Context, Args.size(), 0); else Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLocs, SelLocsK, Method, Args, RBracLoc, isImplicit); } ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, unsigned NumArgs, unsigned NumStoredSelLocs) { ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); } ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, ArrayRef<Expr *> Args, SourceLocation RBraceLoc, ArrayRef<SourceLocation> SelLocs, Selector Sel, SelectorLocationsKind &SelLocsK) { SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() : 0; return alloc(C, Args.size(), NumStoredSelLocs); } ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, unsigned NumArgs, unsigned NumStoredSelLocs) { unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); return (ObjCMessageExpr *)C.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); } void ObjCMessageExpr::getSelectorLocs( SmallVectorImpl<SourceLocation> &SelLocs) const { for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) SelLocs.push_back(getSelectorLoc(i)); } SourceRange ObjCMessageExpr::getReceiverRange() const { switch (getReceiverKind()) { case Instance: return getInstanceReceiver()->getSourceRange(); case Class: return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); case SuperInstance: case SuperClass: return getSuperLoc(); } llvm_unreachable("Invalid ReceiverKind!"); } Selector ObjCMessageExpr::getSelector() const { if (HasMethod) return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) ->getSelector(); return Selector(SelectorOrMethod); } ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { switch (getReceiverKind()) { case Instance: if (const ObjCObjectPointerType *Ptr = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) return Ptr->getInterfaceDecl(); break; case Class: if (const ObjCObjectType *Ty = getClassReceiver()->getAs<ObjCObjectType>()) return Ty->getInterface(); break; case SuperInstance: if (const ObjCObjectPointerType *Ptr = getSuperType()->getAs<ObjCObjectPointerType>()) return Ptr->getInterfaceDecl(); break; case SuperClass: if (const ObjCObjectType *Iface = getSuperType()->getAs<ObjCObjectType>()) return Iface->getInterface(); break; } return 0; } StringRef ObjCBridgedCastExpr::getBridgeKindName() const { switch (getBridgeKind()) { case OBC_Bridge: return "__bridge"; case OBC_BridgeTransfer: return "__bridge_transfer"; case OBC_BridgeRetained: return "__bridge_retained"; } llvm_unreachable("Invalid BridgeKind!"); } bool ChooseExpr::isConditionTrue(const ASTContext &C) const { return getCond()->EvaluateKnownConstInt(C) != 0; } ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, QualType Type, SourceLocation BLoc, SourceLocation RP) : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, Type->isDependentType(), Type->isDependentType(), Type->isInstantiationDependentType(), Type->containsUnexpandedParameterPack()), BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) { SubExprs = new (C) Stmt*[nexpr]; for (unsigned i = 0; i < nexpr; i++) { if (args[i]->isTypeDependent()) ExprBits.TypeDependent = true; if (args[i]->isValueDependent()) ExprBits.ValueDependent = true; if (args[i]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (args[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; SubExprs[i] = args[i]; } } void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs) { if (SubExprs) C.Deallocate(SubExprs); SubExprs = new (C) Stmt* [NumExprs]; this->NumExprs = NumExprs; memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); } GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, TypeSourceInfo **AssocTypes, Expr **AssocExprs, unsigned NumAssocs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex) : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), AssocExprs[ResultIndex]->getValueKind(), AssocExprs[ResultIndex]->getObjectKind(), AssocExprs[ResultIndex]->isTypeDependent(), AssocExprs[ResultIndex]->isValueDependent(), AssocExprs[ResultIndex]->isInstantiationDependent(), ContainsUnexpandedParameterPack), AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { SubExprs[CONTROLLING] = ControllingExpr; std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); } GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, TypeSourceInfo **AssocTypes, Expr **AssocExprs, unsigned NumAssocs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, OK_Ordinary, /*isTypeDependent=*/true, /*isValueDependent=*/true, /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack), AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { SubExprs[CONTROLLING] = ControllingExpr; std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); } //===----------------------------------------------------------------------===// // DesignatedInitExpr //===----------------------------------------------------------------------===// IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); if (Field.NameOrField & 0x01) return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); else return getField()->getIdentifier(); } DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators, const Designator *Designators, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr **IndexExprs, unsigned NumIndexExprs, Expr *Init) : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), Init->getObjectKind(), Init->isTypeDependent(), Init->isValueDependent(), Init->isInstantiationDependent(), Init->containsUnexpandedParameterPack()), EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { this->Designators = new (C) Designator[NumDesignators]; // Record the initializer itself. child_range Child = children(); *Child++ = Init; // Copy the designators and their subexpressions, computing // value-dependence along the way. unsigned IndexIdx = 0; for (unsigned I = 0; I != NumDesignators; ++I) { this->Designators[I] = Designators[I]; if (this->Designators[I].isArrayDesignator()) { // Compute type- and value-dependence. Expr *Index = IndexExprs[IndexIdx]; if (Index->isTypeDependent() || Index->isValueDependent()) ExprBits.ValueDependent = true; if (Index->isInstantiationDependent()) ExprBits.InstantiationDependent = true; // Propagate unexpanded parameter packs. if (Index->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; // Copy the index expressions into permanent storage. *Child++ = IndexExprs[IndexIdx++]; } else if (this->Designators[I].isArrayRangeDesignator()) { // Compute type- and value-dependence. Expr *Start = IndexExprs[IndexIdx]; Expr *End = IndexExprs[IndexIdx + 1]; if (Start->isTypeDependent() || Start->isValueDependent() || End->isTypeDependent() || End->isValueDependent()) { ExprBits.ValueDependent = true; ExprBits.InstantiationDependent = true; } else if (Start->isInstantiationDependent() || End->isInstantiationDependent()) { ExprBits.InstantiationDependent = true; } // Propagate unexpanded parameter packs. if (Start->containsUnexpandedParameterPack() || End->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; // Copy the start/end expressions into permanent storage. *Child++ = IndexExprs[IndexIdx++]; *Child++ = IndexExprs[IndexIdx++]; } } assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); } DesignatedInitExpr * DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, unsigned NumDesignators, Expr **IndexExprs, unsigned NumIndexExprs, SourceLocation ColonOrEqualLoc, bool UsesColonSyntax, Expr *Init) { void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + sizeof(Stmt *) * (NumIndexExprs + 1), 8); return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, ColonOrEqualLoc, UsesColonSyntax, IndexExprs, NumIndexExprs, Init); } DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, unsigned NumIndexExprs) { void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + sizeof(Stmt *) * (NumIndexExprs + 1), 8); return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); } void DesignatedInitExpr::setDesignators(ASTContext &C, const Designator *Desigs, unsigned NumDesigs) { Designators = new (C) Designator[NumDesigs]; NumDesignators = NumDesigs; for (unsigned I = 0; I != NumDesigs; ++I) Designators[I] = Desigs[I]; } SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); if (size() == 1) return DIE->getDesignator(0)->getSourceRange(); return SourceRange(DIE->getDesignator(0)->getStartLocation(), DIE->getDesignator(size()-1)->getEndLocation()); } SourceRange DesignatedInitExpr::getSourceRange() const { SourceLocation StartLoc; Designator &First = *const_cast<DesignatedInitExpr*>(this)->designators_begin(); if (First.isFieldDesignator()) { if (GNUSyntax) StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); else StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); } else StartLoc = SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); } Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); char* Ptr = static_cast<char*>(static_cast<void *>(this)); Ptr += sizeof(DesignatedInitExpr); Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); } Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); char* Ptr = static_cast<char*>(static_cast<void *>(this)); Ptr += sizeof(DesignatedInitExpr); Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); } Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); char* Ptr = static_cast<char*>(static_cast<void *>(this)); Ptr += sizeof(DesignatedInitExpr); Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); } /// \brief Replaces the designator at index @p Idx with the series /// of designators in [First, Last). void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last) { unsigned NumNewDesignators = Last - First; if (NumNewDesignators == 0) { std::copy_backward(Designators + Idx + 1, Designators + NumDesignators, Designators + Idx); --NumNewDesignators; return; } else if (NumNewDesignators == 1) { Designators[Idx] = *First; return; } Designator *NewDesignators = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; std::copy(Designators, Designators + Idx, NewDesignators); std::copy(First, Last, NewDesignators + Idx); std::copy(Designators + Idx + 1, Designators + NumDesignators, NewDesignators + Idx + NumNewDesignators); Designators = NewDesignators; NumDesignators = NumDesignators - 1 + NumNewDesignators; } ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs, unsigned nexprs, SourceLocation rparenloc) : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, false, false), NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { Exprs = new (C) Stmt*[nexprs]; for (unsigned i = 0; i != nexprs; ++i) { if (exprs[i]->isTypeDependent()) ExprBits.TypeDependent = true; if (exprs[i]->isValueDependent()) ExprBits.ValueDependent = true; if (exprs[i]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (exprs[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; Exprs[i] = exprs[i]; } } const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) e = ewc->getSubExpr(); if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) e = m->GetTemporaryExpr(); e = cast<CXXConstructExpr>(e)->getArg(0); while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) e = ice->getSubExpr(); return cast<OpaqueValueExpr>(e); } PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh, unsigned numSemanticExprs) { void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + (1 + numSemanticExprs) * sizeof(Expr*), llvm::alignOf<PseudoObjectExpr>()); return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); } PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) : Expr(PseudoObjectExprClass, shell) { PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; } PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax, ArrayRef<Expr*> semantics, unsigned resultIndex) { assert(syntax && "no syntactic expression!"); assert(semantics.size() && "no semantic expressions!"); QualType type; ExprValueKind VK; if (resultIndex == NoResult) { type = C.VoidTy; VK = VK_RValue; } else { assert(resultIndex < semantics.size()); type = semantics[resultIndex]->getType(); VK = semantics[resultIndex]->getValueKind(); assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); } void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + (1 + semantics.size()) * sizeof(Expr*), llvm::alignOf<PseudoObjectExpr>()); return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, resultIndex); } PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, Expr *syntax, ArrayRef<Expr*> semantics, unsigned resultIndex) : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, /*filled in at end of ctor*/ false, false, false, false) { PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; PseudoObjectExprBits.ResultIndex = resultIndex + 1; for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { Expr *E = (i == 0 ? syntax : semantics[i-1]); getSubExprsBuffer()[i] = E; if (E->isTypeDependent()) ExprBits.TypeDependent = true; if (E->isValueDependent()) ExprBits.ValueDependent = true; if (E->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (E->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; if (isa<OpaqueValueExpr>(E)) assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 && "opaque-value semantic expressions for pseudo-object " "operations must have sources"); } } //===----------------------------------------------------------------------===// // ExprIterator. //===----------------------------------------------------------------------===// Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } const Expr* ConstExprIterator::operator[](size_t idx) const { return cast<Expr>(I[idx]); } const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// // UnaryExprOrTypeTraitExpr Stmt::child_range UnaryExprOrTypeTraitExpr::children() { // If this is of a type and the type is a VLA type (and not a typedef), the // size expression of the VLA needs to be treated as an executable expression. // Why isn't this weirdness documented better in StmtIterator? if (isArgumentType()) { if (const VariableArrayType* T = dyn_cast<VariableArrayType>( getArgumentType().getTypePtr())) return child_range(child_iterator(T), child_iterator()); return child_range(); } return child_range(&Argument.Ex, &Argument.Ex + 1); } // ObjCMessageExpr Stmt::child_range ObjCMessageExpr::children() { Stmt **begin; if (getReceiverKind() == Instance) begin = reinterpret_cast<Stmt **>(this + 1); else begin = reinterpret_cast<Stmt **>(getArgs()); return child_range(begin, reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); } ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements, QualType T, ObjCMethodDecl *Method, SourceRange SR) : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, false, false, false, false), NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method) { Expr **SaveElements = getElements(); for (unsigned I = 0, N = Elements.size(); I != N; ++I) { if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent()) ExprBits.ValueDependent = true; if (Elements[I]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (Elements[I]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; SaveElements[I] = Elements[I]; } } ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C, llvm::ArrayRef<Expr *> Elements, QualType T, ObjCMethodDecl * Method, SourceRange SR) { void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) + Elements.size() * sizeof(Expr *)); return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR); } ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C, unsigned NumElements) { void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) + NumElements * sizeof(Expr *)); return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements); } ObjCDictionaryLiteral::ObjCDictionaryLiteral( ArrayRef<ObjCDictionaryElement> VK, bool HasPackExpansions, QualType T, ObjCMethodDecl *method, SourceRange SR) : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false, false, false), NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), DictWithObjectsMethod(method) { KeyValuePair *KeyValues = getKeyValues(); ExpansionData *Expansions = getExpansionData(); for (unsigned I = 0; I < NumElements; I++) { if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() || VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent()) ExprBits.ValueDependent = true; if (VK[I].Key->isInstantiationDependent() || VK[I].Value->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (VK[I].EllipsisLoc.isInvalid() && (VK[I].Key->containsUnexpandedParameterPack() || VK[I].Value->containsUnexpandedParameterPack())) ExprBits.ContainsUnexpandedParameterPack = true; KeyValues[I].Key = VK[I].Key; KeyValues[I].Value = VK[I].Value; if (Expansions) { Expansions[I].EllipsisLoc = VK[I].EllipsisLoc; if (VK[I].NumExpansions) Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1; else Expansions[I].NumExpansionsPlusOne = 0; } } } ObjCDictionaryLiteral * ObjCDictionaryLiteral::Create(ASTContext &C, ArrayRef<ObjCDictionaryElement> VK, bool HasPackExpansions, QualType T, ObjCMethodDecl *method, SourceRange SR) { unsigned ExpansionsSize = 0; if (HasPackExpansions) ExpansionsSize = sizeof(ExpansionData) * VK.size(); void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + sizeof(KeyValuePair) * VK.size() + ExpansionsSize); return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR); } ObjCDictionaryLiteral * ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements, bool HasPackExpansions) { unsigned ExpansionsSize = 0; if (HasPackExpansions) ExpansionsSize = sizeof(ExpansionData) * NumElements; void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + sizeof(KeyValuePair) * NumElements + ExpansionsSize); return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, HasPackExpansions); } ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C, Expr *base, Expr *key, QualType T, ObjCMethodDecl *getMethod, ObjCMethodDecl *setMethod, SourceLocation RB) { void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr)); return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, OK_ObjCSubscript, getMethod, setMethod, RB); } AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t, AtomicOp op, SourceLocation RP) : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, false, false, false, false), NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions"); for (unsigned i = 0; i < nexpr; i++) { if (args[i]->isTypeDependent()) ExprBits.TypeDependent = true; if (args[i]->isValueDependent()) ExprBits.ValueDependent = true; if (args[i]->isInstantiationDependent()) ExprBits.InstantiationDependent = true; if (args[i]->containsUnexpandedParameterPack()) ExprBits.ContainsUnexpandedParameterPack = true; SubExprs[i] = args[i]; } } unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { switch (Op) { case AO__c11_atomic_init: case AO__c11_atomic_load: case AO__atomic_load_n: return 2; case AO__c11_atomic_store: case AO__c11_atomic_exchange: case AO__atomic_load: case AO__atomic_store: case AO__atomic_store_n: case AO__atomic_exchange_n: case AO__c11_atomic_fetch_add: case AO__c11_atomic_fetch_sub: case AO__c11_atomic_fetch_and: case AO__c11_atomic_fetch_or: case AO__c11_atomic_fetch_xor: case AO__atomic_fetch_add: case AO__atomic_fetch_sub: case AO__atomic_fetch_and: case AO__atomic_fetch_or: case AO__atomic_fetch_xor: case AO__atomic_fetch_nand: case AO__atomic_add_fetch: case AO__atomic_sub_fetch: case AO__atomic_and_fetch: case AO__atomic_or_fetch: case AO__atomic_xor_fetch: case AO__atomic_nand_fetch: return 3; case AO__atomic_exchange: return 4; case AO__c11_atomic_compare_exchange_strong: case AO__c11_atomic_compare_exchange_weak: return 5; case AO__atomic_compare_exchange: case AO__atomic_compare_exchange_n: return 6; } llvm_unreachable("unknown atomic op"); }