Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/AST/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/AST/Type.cpp |
//===--- Type.cpp - Type representation and manipulation ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements type-related functionality. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Type.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/TypeVisitor.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace clang; bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const { return (*this != Other) && // CVR qualifiers superset (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) && // ObjC GC qualifiers superset ((getObjCGCAttr() == Other.getObjCGCAttr()) || (hasObjCGCAttr() && !Other.hasObjCGCAttr())) && // Address space superset. ((getAddressSpace() == Other.getAddressSpace()) || (hasAddressSpace()&& !Other.hasAddressSpace())) && // Lifetime qualifier superset. ((getObjCLifetime() == Other.getObjCLifetime()) || (hasObjCLifetime() && !Other.hasObjCLifetime())); } const IdentifierInfo* QualType::getBaseTypeIdentifier() const { const Type* ty = getTypePtr(); NamedDecl *ND = NULL; if (ty->isPointerType() || ty->isReferenceType()) return ty->getPointeeType().getBaseTypeIdentifier(); else if (ty->isRecordType()) ND = ty->getAs<RecordType>()->getDecl(); else if (ty->isEnumeralType()) ND = ty->getAs<EnumType>()->getDecl(); else if (ty->getTypeClass() == Type::Typedef) ND = ty->getAs<TypedefType>()->getDecl(); else if (ty->isArrayType()) return ty->castAsArrayTypeUnsafe()-> getElementType().getBaseTypeIdentifier(); if (ND) return ND->getIdentifier(); return NULL; } bool QualType::isConstant(QualType T, ASTContext &Ctx) { if (T.isConstQualified()) return true; if (const ArrayType *AT = Ctx.getAsArrayType(T)) return AT->getElementType().isConstant(Ctx); return false; } unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements) { llvm::APSInt SizeExtended(NumElements, true); unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType()); SizeExtended = SizeExtended.extend(std::max(SizeTypeBits, SizeExtended.getBitWidth()) * 2); uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity(); llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize)); TotalSize *= SizeExtended; return TotalSize.getActiveBits(); } unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) { unsigned Bits = Context.getTypeSize(Context.getSizeType()); // GCC appears to only allow 63 bits worth of address space when compiling // for 64-bit, so we do the same. if (Bits == 64) --Bits; return Bits; } DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can, Expr *e, ArraySizeModifier sm, unsigned tq, SourceRange brackets) : ArrayType(DependentSizedArray, et, can, sm, tq, (et->containsUnexpandedParameterPack() || (e && e->containsUnexpandedParameterPack()))), Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) { } void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType ET, ArraySizeModifier SizeMod, unsigned TypeQuals, Expr *E) { ID.AddPointer(ET.getAsOpaquePtr()); ID.AddInteger(SizeMod); ID.AddInteger(TypeQuals); E->Profile(ID, Context, true); } DependentSizedExtVectorType::DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType, QualType can, Expr *SizeExpr, SourceLocation loc) : Type(DependentSizedExtVector, can, /*Dependent=*/true, /*InstantiationDependent=*/true, ElementType->isVariablyModifiedType(), (ElementType->containsUnexpandedParameterPack() || (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))), Context(Context), SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) { } void DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, QualType ElementType, Expr *SizeExpr) { ID.AddPointer(ElementType.getAsOpaquePtr()); SizeExpr->Profile(ID, Context, true); } VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind) : Type(Vector, canonType, vecType->isDependentType(), vecType->isInstantiationDependentType(), vecType->isVariablyModifiedType(), vecType->containsUnexpandedParameterPack()), ElementType(vecType) { VectorTypeBits.VecKind = vecKind; VectorTypeBits.NumElements = nElements; } VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind) : Type(tc, canonType, vecType->isDependentType(), vecType->isInstantiationDependentType(), vecType->isVariablyModifiedType(), vecType->containsUnexpandedParameterPack()), ElementType(vecType) { VectorTypeBits.VecKind = vecKind; VectorTypeBits.NumElements = nElements; } /// getArrayElementTypeNoTypeQual - If this is an array type, return the /// element type of the array, potentially with type qualifiers missing. /// This method should never be used when type qualifiers are meaningful. const Type *Type::getArrayElementTypeNoTypeQual() const { // If this is directly an array type, return it. if (const ArrayType *ATy = dyn_cast<ArrayType>(this)) return ATy->getElementType().getTypePtr(); // If the canonical form of this type isn't the right kind, reject it. if (!isa<ArrayType>(CanonicalType)) return 0; // If this is a typedef for an array type, strip the typedef off without // losing all typedef information. return cast<ArrayType>(getUnqualifiedDesugaredType()) ->getElementType().getTypePtr(); } /// getDesugaredType - Return the specified type with any "sugar" removed from /// the type. This takes off typedefs, typeof's etc. If the outer level of /// the type is already concrete, it returns it unmodified. This is similar /// to getting the canonical type, but it doesn't remove *all* typedefs. For /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is /// concrete. QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) { SplitQualType split = getSplitDesugaredType(T); return Context.getQualifiedType(split.Ty, split.Quals); } QualType QualType::getSingleStepDesugaredTypeImpl(QualType type, const ASTContext &Context) { SplitQualType split = type.split(); QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); return Context.getQualifiedType(desugar, split.Quals); } QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const { switch (getTypeClass()) { #define ABSTRACT_TYPE(Class, Parent) #define TYPE(Class, Parent) \ case Type::Class: { \ const Class##Type *ty = cast<Class##Type>(this); \ if (!ty->isSugared()) return QualType(ty, 0); \ return ty->desugar(); \ } #include "clang/AST/TypeNodes.def" } llvm_unreachable("bad type kind!"); } SplitQualType QualType::getSplitDesugaredType(QualType T) { QualifierCollector Qs; QualType Cur = T; while (true) { const Type *CurTy = Qs.strip(Cur); switch (CurTy->getTypeClass()) { #define ABSTRACT_TYPE(Class, Parent) #define TYPE(Class, Parent) \ case Type::Class: { \ const Class##Type *Ty = cast<Class##Type>(CurTy); \ if (!Ty->isSugared()) \ return SplitQualType(Ty, Qs); \ Cur = Ty->desugar(); \ break; \ } #include "clang/AST/TypeNodes.def" } } } SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) { SplitQualType split = type.split(); // All the qualifiers we've seen so far. Qualifiers quals = split.Quals; // The last type node we saw with any nodes inside it. const Type *lastTypeWithQuals = split.Ty; while (true) { QualType next; // Do a single-step desugar, aborting the loop if the type isn't // sugared. switch (split.Ty->getTypeClass()) { #define ABSTRACT_TYPE(Class, Parent) #define TYPE(Class, Parent) \ case Type::Class: { \ const Class##Type *ty = cast<Class##Type>(split.Ty); \ if (!ty->isSugared()) goto done; \ next = ty->desugar(); \ break; \ } #include "clang/AST/TypeNodes.def" } // Otherwise, split the underlying type. If that yields qualifiers, // update the information. split = next.split(); if (!split.Quals.empty()) { lastTypeWithQuals = split.Ty; quals.addConsistentQualifiers(split.Quals); } } done: return SplitQualType(lastTypeWithQuals, quals); } QualType QualType::IgnoreParens(QualType T) { // FIXME: this seems inherently un-qualifiers-safe. while (const ParenType *PT = T->getAs<ParenType>()) T = PT->getInnerType(); return T; } /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic /// sugar off the given type. This should produce an object of the /// same dynamic type as the canonical type. const Type *Type::getUnqualifiedDesugaredType() const { const Type *Cur = this; while (true) { switch (Cur->getTypeClass()) { #define ABSTRACT_TYPE(Class, Parent) #define TYPE(Class, Parent) \ case Class: { \ const Class##Type *Ty = cast<Class##Type>(Cur); \ if (!Ty->isSugared()) return Cur; \ Cur = Ty->desugar().getTypePtr(); \ break; \ } #include "clang/AST/TypeNodes.def" } } } bool Type::isDerivedType() const { switch (CanonicalType->getTypeClass()) { case Pointer: case VariableArray: case ConstantArray: case IncompleteArray: case FunctionProto: case FunctionNoProto: case LValueReference: case RValueReference: case Record: return true; default: return false; } } bool Type::isClassType() const { if (const RecordType *RT = getAs<RecordType>()) return RT->getDecl()->isClass(); return false; } bool Type::isStructureType() const { if (const RecordType *RT = getAs<RecordType>()) return RT->getDecl()->isStruct(); return false; } bool Type::isStructureOrClassType() const { if (const RecordType *RT = getAs<RecordType>()) return RT->getDecl()->isStruct() || RT->getDecl()->isClass(); return false; } bool Type::isVoidPointerType() const { if (const PointerType *PT = getAs<PointerType>()) return PT->getPointeeType()->isVoidType(); return false; } bool Type::isUnionType() const { if (const RecordType *RT = getAs<RecordType>()) return RT->getDecl()->isUnion(); return false; } bool Type::isComplexType() const { if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType)) return CT->getElementType()->isFloatingType(); return false; } bool Type::isComplexIntegerType() const { // Check for GCC complex integer extension. return getAsComplexIntegerType(); } const ComplexType *Type::getAsComplexIntegerType() const { if (const ComplexType *Complex = getAs<ComplexType>()) if (Complex->getElementType()->isIntegerType()) return Complex; return 0; } QualType Type::getPointeeType() const { if (const PointerType *PT = getAs<PointerType>()) return PT->getPointeeType(); if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) return OPT->getPointeeType(); if (const BlockPointerType *BPT = getAs<BlockPointerType>()) return BPT->getPointeeType(); if (const ReferenceType *RT = getAs<ReferenceType>()) return RT->getPointeeType(); return QualType(); } const RecordType *Type::getAsStructureType() const { // If this is directly a structure type, return it. if (const RecordType *RT = dyn_cast<RecordType>(this)) { if (RT->getDecl()->isStruct()) return RT; } // If the canonical form of this type isn't the right kind, reject it. if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) { if (!RT->getDecl()->isStruct()) return 0; // If this is a typedef for a structure type, strip the typedef off without // losing all typedef information. return cast<RecordType>(getUnqualifiedDesugaredType()); } return 0; } const RecordType *Type::getAsUnionType() const { // If this is directly a union type, return it. if (const RecordType *RT = dyn_cast<RecordType>(this)) { if (RT->getDecl()->isUnion()) return RT; } // If the canonical form of this type isn't the right kind, reject it. if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) { if (!RT->getDecl()->isUnion()) return 0; // If this is a typedef for a union type, strip the typedef off without // losing all typedef information. return cast<RecordType>(getUnqualifiedDesugaredType()); } return 0; } ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base, ObjCProtocolDecl * const *Protocols, unsigned NumProtocols) : Type(ObjCObject, Canonical, false, false, false, false), BaseType(Base) { ObjCObjectTypeBits.NumProtocols = NumProtocols; assert(getNumProtocols() == NumProtocols && "bitfield overflow in protocol count"); if (NumProtocols) memcpy(getProtocolStorage(), Protocols, NumProtocols * sizeof(ObjCProtocolDecl*)); } const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const { // There is no sugar for ObjCObjectType's, just return the canonical // type pointer if it is the right class. There is no typedef information to // return and these cannot be Address-space qualified. if (const ObjCObjectType *T = getAs<ObjCObjectType>()) if (T->getNumProtocols() && T->getInterface()) return T; return 0; } bool Type::isObjCQualifiedInterfaceType() const { return getAsObjCQualifiedInterfaceType() != 0; } const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const { // There is no sugar for ObjCQualifiedIdType's, just return the canonical // type pointer if it is the right class. if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) { if (OPT->isObjCQualifiedIdType()) return OPT; } return 0; } const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const { // There is no sugar for ObjCQualifiedClassType's, just return the canonical // type pointer if it is the right class. if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) { if (OPT->isObjCQualifiedClassType()) return OPT; } return 0; } const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const { if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) { if (OPT->getInterfaceType()) return OPT; } return 0; } const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const { if (const PointerType *PT = getAs<PointerType>()) if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) return dyn_cast<CXXRecordDecl>(RT->getDecl()); return 0; } CXXRecordDecl *Type::getAsCXXRecordDecl() const { if (const RecordType *RT = getAs<RecordType>()) return dyn_cast<CXXRecordDecl>(RT->getDecl()); else if (const InjectedClassNameType *Injected = getAs<InjectedClassNameType>()) return Injected->getDecl(); return 0; } namespace { class GetContainedAutoVisitor : public TypeVisitor<GetContainedAutoVisitor, AutoType*> { public: using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit; AutoType *Visit(QualType T) { if (T.isNull()) return 0; return Visit(T.getTypePtr()); } // The 'auto' type itself. AutoType *VisitAutoType(const AutoType *AT) { return const_cast<AutoType*>(AT); } // Only these types can contain the desired 'auto' type. AutoType *VisitPointerType(const PointerType *T) { return Visit(T->getPointeeType()); } AutoType *VisitBlockPointerType(const BlockPointerType *T) { return Visit(T->getPointeeType()); } AutoType *VisitReferenceType(const ReferenceType *T) { return Visit(T->getPointeeTypeAsWritten()); } AutoType *VisitMemberPointerType(const MemberPointerType *T) { return Visit(T->getPointeeType()); } AutoType *VisitArrayType(const ArrayType *T) { return Visit(T->getElementType()); } AutoType *VisitDependentSizedExtVectorType( const DependentSizedExtVectorType *T) { return Visit(T->getElementType()); } AutoType *VisitVectorType(const VectorType *T) { return Visit(T->getElementType()); } AutoType *VisitFunctionType(const FunctionType *T) { return Visit(T->getResultType()); } AutoType *VisitParenType(const ParenType *T) { return Visit(T->getInnerType()); } AutoType *VisitAttributedType(const AttributedType *T) { return Visit(T->getModifiedType()); } }; } AutoType *Type::getContainedAutoType() const { return GetContainedAutoVisitor().Visit(this); } bool Type::hasIntegerRepresentation() const { if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType)) return VT->getElementType()->isIntegerType(); else return isIntegerType(); } /// \brief Determine whether this type is an integral type. /// /// This routine determines whether the given type is an integral type per /// C++ [basic.fundamental]p7. Although the C standard does not define the /// term "integral type", it has a similar term "integer type", and in C++ /// the two terms are equivalent. However, C's "integer type" includes /// enumeration types, while C++'s "integer type" does not. The \c ASTContext /// parameter is used to determine whether we should be following the C or /// C++ rules when determining whether this type is an integral/integer type. /// /// For cases where C permits "an integer type" and C++ permits "an integral /// type", use this routine. /// /// For cases where C permits "an integer type" and C++ permits "an integral /// or enumeration type", use \c isIntegralOrEnumerationType() instead. /// /// \param Ctx The context in which this type occurs. /// /// \returns true if the type is considered an integral type, false otherwise. bool Type::isIntegralType(ASTContext &Ctx) const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::Int128; if (!Ctx.getLangOpts().CPlusPlus) if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) return ET->getDecl()->isComplete(); // Complete enum types are integral in C. return false; } bool Type::isIntegralOrUnscopedEnumerationType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::Int128; // Check for a complete enum type; incomplete enum types are not properly an // enumeration type in the sense required here. // C++0x: However, if the underlying type of the enum is fixed, it is // considered complete. if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped(); return false; } bool Type::isCharType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() == BuiltinType::Char_U || BT->getKind() == BuiltinType::UChar || BT->getKind() == BuiltinType::Char_S || BT->getKind() == BuiltinType::SChar; return false; } bool Type::isWideCharType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() == BuiltinType::WChar_S || BT->getKind() == BuiltinType::WChar_U; return false; } bool Type::isChar16Type() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() == BuiltinType::Char16; return false; } bool Type::isChar32Type() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() == BuiltinType::Char32; return false; } /// \brief Determine whether this type is any of the built-in character /// types. bool Type::isAnyCharacterType() const { const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType); if (BT == 0) return false; switch (BT->getKind()) { default: return false; case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::WChar_U: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::Char_S: case BuiltinType::SChar: case BuiltinType::WChar_S: return true; } } /// isSignedIntegerType - Return true if this is an integer type that is /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], /// an enum decl which has a signed representation bool Type::isSignedIntegerType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) { return BT->getKind() >= BuiltinType::Char_S && BT->getKind() <= BuiltinType::Int128; } if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { // Incomplete enum types are not treated as integer types. // FIXME: In C++, enum types are never integer types. if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) return ET->getDecl()->getIntegerType()->isSignedIntegerType(); } return false; } bool Type::isSignedIntegerOrEnumerationType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) { return BT->getKind() >= BuiltinType::Char_S && BT->getKind() <= BuiltinType::Int128; } if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { if (ET->getDecl()->isComplete()) return ET->getDecl()->getIntegerType()->isSignedIntegerType(); } return false; } bool Type::hasSignedIntegerRepresentation() const { if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType)) return VT->getElementType()->isSignedIntegerType(); else return isSignedIntegerType(); } /// isUnsignedIntegerType - Return true if this is an integer type that is /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum /// decl which has an unsigned representation bool Type::isUnsignedIntegerType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) { return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::UInt128; } if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { // Incomplete enum types are not treated as integer types. // FIXME: In C++, enum types are never integer types. if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); } return false; } bool Type::isUnsignedIntegerOrEnumerationType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) { return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::UInt128; } if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { if (ET->getDecl()->isComplete()) return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); } return false; } bool Type::hasUnsignedIntegerRepresentation() const { if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType)) return VT->getElementType()->isUnsignedIntegerType(); else return isUnsignedIntegerType(); } bool Type::isFloatingType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() >= BuiltinType::Half && BT->getKind() <= BuiltinType::LongDouble; if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType)) return CT->getElementType()->isFloatingType(); return false; } bool Type::hasFloatingRepresentation() const { if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType)) return VT->getElementType()->isFloatingType(); else return isFloatingType(); } bool Type::isRealFloatingType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->isFloatingPoint(); return false; } bool Type::isRealType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::LongDouble; if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped(); return false; } bool Type::isArithmeticType() const { if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) return BT->getKind() >= BuiltinType::Bool && BT->getKind() <= BuiltinType::LongDouble; if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2). // If a body isn't seen by the time we get here, return false. // // C++0x: Enumerations are not arithmetic types. For now, just return // false for scoped enumerations since that will disable any // unwanted implicit conversions. return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete(); return isa<ComplexType>(CanonicalType); } Type::ScalarTypeKind Type::getScalarTypeKind() const { assert(isScalarType()); const Type *T = CanonicalType.getTypePtr(); if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) { if (BT->getKind() == BuiltinType::Bool) return STK_Bool; if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer; if (BT->isInteger()) return STK_Integral; if (BT->isFloatingPoint()) return STK_Floating; llvm_unreachable("unknown scalar builtin type"); } else if (isa<PointerType>(T)) { return STK_CPointer; } else if (isa<BlockPointerType>(T)) { return STK_BlockPointer; } else if (isa<ObjCObjectPointerType>(T)) { return STK_ObjCObjectPointer; } else if (isa<MemberPointerType>(T)) { return STK_MemberPointer; } else if (isa<EnumType>(T)) { assert(cast<EnumType>(T)->getDecl()->isComplete()); return STK_Integral; } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) { if (CT->getElementType()->isRealFloatingType()) return STK_FloatingComplex; return STK_IntegralComplex; } llvm_unreachable("unknown scalar type"); } /// \brief Determines whether the type is a C++ aggregate type or C /// aggregate or union type. /// /// An aggregate type is an array or a class type (struct, union, or /// class) that has no user-declared constructors, no private or /// protected non-static data members, no base classes, and no virtual /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also /// includes union types. bool Type::isAggregateType() const { if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) { if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl())) return ClassDecl->isAggregate(); return true; } return isa<ArrayType>(CanonicalType); } /// isConstantSizeType - Return true if this is not a variable sized type, /// according to the rules of C99 6.7.5p3. It is not legal to call this on /// incomplete types or dependent types. bool Type::isConstantSizeType() const { assert(!isIncompleteType() && "This doesn't make sense for incomplete types"); assert(!isDependentType() && "This doesn't make sense for dependent types"); // The VAT must have a size, as it is known to be complete. return !isa<VariableArrayType>(CanonicalType); } /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1) /// - a type that can describe objects, but which lacks information needed to /// determine its size. bool Type::isIncompleteType(NamedDecl **Def) const { if (Def) *Def = 0; switch (CanonicalType->getTypeClass()) { default: return false; case Builtin: // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never // be completed. return isVoidType(); case Enum: { EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl(); if (Def) *Def = EnumD; // An enumeration with fixed underlying type is complete (C++0x 7.2p3). if (EnumD->isFixed()) return false; return !EnumD->isCompleteDefinition(); } case Record: { // A tagged type (struct/union/enum/class) is incomplete if the decl is a // forward declaration, but not a full definition (C99 6.2.5p22). RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl(); if (Def) *Def = Rec; return !Rec->isCompleteDefinition(); } case ConstantArray: // An array is incomplete if its element type is incomplete // (C++ [dcl.array]p1). // We don't handle variable arrays (they're not allowed in C++) or // dependent-sized arrays (dependent types are never treated as incomplete). return cast<ArrayType>(CanonicalType)->getElementType() ->isIncompleteType(Def); case IncompleteArray: // An array of unknown size is an incomplete type (C99 6.2.5p22). return true; case ObjCObject: return cast<ObjCObjectType>(CanonicalType)->getBaseType() ->isIncompleteType(Def); case ObjCInterface: { // ObjC interfaces are incomplete if they are @class, not @interface. ObjCInterfaceDecl *Interface = cast<ObjCInterfaceType>(CanonicalType)->getDecl(); if (Def) *Def = Interface; return !Interface->hasDefinition(); } } } bool QualType::isPODType(ASTContext &Context) const { // The compiler shouldn't query this for incomplete types, but the user might. // We return false for that case. Except for incomplete arrays of PODs, which // are PODs according to the standard. if (isNull()) return 0; if ((*this)->isIncompleteArrayType()) return Context.getBaseElementType(*this).isPODType(Context); if ((*this)->isIncompleteType()) return false; if (Context.getLangOpts().ObjCAutoRefCount) { switch (getObjCLifetime()) { case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: case Qualifiers::OCL_Autoreleasing: return false; case Qualifiers::OCL_None: break; } } QualType CanonicalType = getTypePtr()->CanonicalType; switch (CanonicalType->getTypeClass()) { // Everything not explicitly mentioned is not POD. default: return false; case Type::VariableArray: case Type::ConstantArray: // IncompleteArray is handled above. return Context.getBaseElementType(*this).isPODType(Context); case Type::ObjCObjectPointer: case Type::BlockPointer: case Type::Builtin: case Type::Complex: case Type::Pointer: case Type::MemberPointer: case Type::Vector: case Type::ExtVector: return true; case Type::Enum: return true; case Type::Record: if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl())) return ClassDecl->isPOD(); // C struct/union is POD. return true; } } bool QualType::isTrivialType(ASTContext &Context) const { // The compiler shouldn't query this for incomplete types, but the user might. // We return false for that case. Except for incomplete arrays of PODs, which // are PODs according to the standard. if (isNull()) return 0; if ((*this)->isArrayType()) return Context.getBaseElementType(*this).isTrivialType(Context); // Return false for incomplete types after skipping any incomplete array // types which are expressly allowed by the standard and thus our API. if ((*this)->isIncompleteType()) return false; if (Context.getLangOpts().ObjCAutoRefCount) { switch (getObjCLifetime()) { case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: case Qualifiers::OCL_Autoreleasing: return false; case Qualifiers::OCL_None: if ((*this)->isObjCLifetimeType()) return false; break; } } QualType CanonicalType = getTypePtr()->CanonicalType; if (CanonicalType->isDependentType()) return false; // C++0x [basic.types]p9: // Scalar types, trivial class types, arrays of such types, and // cv-qualified versions of these types are collectively called trivial // types. // As an extension, Clang treats vector types as Scalar types. if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) return true; if (const RecordType *RT = CanonicalType->getAs<RecordType>()) { if (const CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { // C++0x [class]p5: // A trivial class is a class that has a trivial default constructor if (!ClassDecl->hasTrivialDefaultConstructor()) return false; // and is trivially copyable. if (!ClassDecl->isTriviallyCopyable()) return false; } return true; } // No other types can match. return false; } bool QualType::isTriviallyCopyableType(ASTContext &Context) const { if ((*this)->isArrayType()) return Context.getBaseElementType(*this).isTrivialType(Context); if (Context.getLangOpts().ObjCAutoRefCount) { switch (getObjCLifetime()) { case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: case Qualifiers::OCL_Autoreleasing: return false; case Qualifiers::OCL_None: if ((*this)->isObjCLifetimeType()) return false; break; } } // C++0x [basic.types]p9 // Scalar types, trivially copyable class types, arrays of such types, and // cv-qualified versions of these types are collectively called trivial // types. QualType CanonicalType = getCanonicalType(); if (CanonicalType->isDependentType()) return false; // Return false for incomplete types after skipping any incomplete array types // which are expressly allowed by the standard and thus our API. if (CanonicalType->isIncompleteType()) return false; // As an extension, Clang treats vector types as Scalar types. if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) return true; if (const RecordType *RT = CanonicalType->getAs<RecordType>()) { if (const CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { if (!ClassDecl->isTriviallyCopyable()) return false; } return true; } // No other types can match. return false; } bool Type::isLiteralType() const { if (isDependentType()) return false; // C++0x [basic.types]p10: // A type is a literal type if it is: // [...] // -- an array of literal type. // Extension: variable arrays cannot be literal types, since they're // runtime-sized. if (isVariableArrayType()) return false; const Type *BaseTy = getBaseElementTypeUnsafe(); assert(BaseTy && "NULL element type"); // Return false for incomplete types after skipping any incomplete array // types; those are expressly allowed by the standard and thus our API. if (BaseTy->isIncompleteType()) return false; // C++0x [basic.types]p10: // A type is a literal type if it is: // -- a scalar type; or // As an extension, Clang treats vector types and complex types as // literal types. if (BaseTy->isScalarType() || BaseTy->isVectorType() || BaseTy->isAnyComplexType()) return true; // -- a reference type; or if (BaseTy->isReferenceType()) return true; // -- a class type that has all of the following properties: if (const RecordType *RT = BaseTy->getAs<RecordType>()) { // -- a trivial destructor, // -- every constructor call and full-expression in the // brace-or-equal-initializers for non-static data members (if any) // is a constant expression, // -- it is an aggregate type or has at least one constexpr // constructor or constructor template that is not a copy or move // constructor, and // -- all non-static data members and base classes of literal types // // We resolve DR1361 by ignoring the second bullet. if (const CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) return ClassDecl->isLiteral(); return true; } return false; } bool Type::isStandardLayoutType() const { if (isDependentType()) return false; // C++0x [basic.types]p9: // Scalar types, standard-layout class types, arrays of such types, and // cv-qualified versions of these types are collectively called // standard-layout types. const Type *BaseTy = getBaseElementTypeUnsafe(); assert(BaseTy && "NULL element type"); // Return false for incomplete types after skipping any incomplete array // types which are expressly allowed by the standard and thus our API. if (BaseTy->isIncompleteType()) return false; // As an extension, Clang treats vector types as Scalar types. if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; if (const RecordType *RT = BaseTy->getAs<RecordType>()) { if (const CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) if (!ClassDecl->isStandardLayout()) return false; // Default to 'true' for non-C++ class types. // FIXME: This is a bit dubious, but plain C structs should trivially meet // all the requirements of standard layout classes. return true; } // No other types can match. return false; } // This is effectively the intersection of isTrivialType and // isStandardLayoutType. We implement it directly to avoid redundant // conversions from a type to a CXXRecordDecl. bool QualType::isCXX11PODType(ASTContext &Context) const { const Type *ty = getTypePtr(); if (ty->isDependentType()) return false; if (Context.getLangOpts().ObjCAutoRefCount) { switch (getObjCLifetime()) { case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: case Qualifiers::OCL_Autoreleasing: return false; case Qualifiers::OCL_None: if (ty->isObjCLifetimeType()) return false; break; } } // C++11 [basic.types]p9: // Scalar types, POD classes, arrays of such types, and cv-qualified // versions of these types are collectively called trivial types. const Type *BaseTy = ty->getBaseElementTypeUnsafe(); assert(BaseTy && "NULL element type"); // Return false for incomplete types after skipping any incomplete array // types which are expressly allowed by the standard and thus our API. if (BaseTy->isIncompleteType()) return false; // As an extension, Clang treats vector types as Scalar types. if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; if (const RecordType *RT = BaseTy->getAs<RecordType>()) { if (const CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { // C++11 [class]p10: // A POD struct is a non-union class that is both a trivial class [...] if (!ClassDecl->isTrivial()) return false; // C++11 [class]p10: // A POD struct is a non-union class that is both a trivial class and // a standard-layout class [...] if (!ClassDecl->isStandardLayout()) return false; // C++11 [class]p10: // A POD struct is a non-union class that is both a trivial class and // a standard-layout class, and has no non-static data members of type // non-POD struct, non-POD union (or array of such types). [...] // // We don't directly query the recursive aspect as the requiremets for // both standard-layout classes and trivial classes apply recursively // already. } return true; } // No other types can match. return false; } bool Type::isPromotableIntegerType() const { if (const BuiltinType *BT = getAs<BuiltinType>()) switch (BT->getKind()) { case BuiltinType::Bool: case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::WChar_S: case BuiltinType::WChar_U: case BuiltinType::Char16: case BuiltinType::Char32: return true; default: return false; } // Enumerated types are promotable to their compatible integer types // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). if (const EnumType *ET = getAs<EnumType>()){ if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull() || ET->getDecl()->isScoped()) return false; return true; } return false; } bool Type::isSpecifierType() const { // Note that this intentionally does not use the canonical type. switch (getTypeClass()) { case Builtin: case Record: case Enum: case Typedef: case Complex: case TypeOfExpr: case TypeOf: case TemplateTypeParm: case SubstTemplateTypeParm: case TemplateSpecialization: case Elaborated: case DependentName: case DependentTemplateSpecialization: case ObjCInterface: case ObjCObject: case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers return true; default: return false; } } ElaboratedTypeKeyword TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) { switch (TypeSpec) { default: return ETK_None; case TST_typename: return ETK_Typename; case TST_class: return ETK_Class; case TST_struct: return ETK_Struct; case TST_union: return ETK_Union; case TST_enum: return ETK_Enum; } } TagTypeKind TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) { switch(TypeSpec) { case TST_class: return TTK_Class; case TST_struct: return TTK_Struct; case TST_union: return TTK_Union; case TST_enum: return TTK_Enum; } llvm_unreachable("Type specifier is not a tag type kind."); } ElaboratedTypeKeyword TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) { switch (Kind) { case TTK_Class: return ETK_Class; case TTK_Struct: return ETK_Struct; case TTK_Union: return ETK_Union; case TTK_Enum: return ETK_Enum; } llvm_unreachable("Unknown tag type kind."); } TagTypeKind TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) { switch (Keyword) { case ETK_Class: return TTK_Class; case ETK_Struct: return TTK_Struct; case ETK_Union: return TTK_Union; case ETK_Enum: return TTK_Enum; case ETK_None: // Fall through. case ETK_Typename: llvm_unreachable("Elaborated type keyword is not a tag type kind."); } llvm_unreachable("Unknown elaborated type keyword."); } bool TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) { switch (Keyword) { case ETK_None: case ETK_Typename: return false; case ETK_Class: case ETK_Struct: case ETK_Union: case ETK_Enum: return true; } llvm_unreachable("Unknown elaborated type keyword."); } const char* TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) { switch (Keyword) { case ETK_None: return ""; case ETK_Typename: return "typename"; case ETK_Class: return "class"; case ETK_Struct: return "struct"; case ETK_Union: return "union"; case ETK_Enum: return "enum"; } llvm_unreachable("Unknown elaborated type keyword."); } DependentTemplateSpecializationType::DependentTemplateSpecializationType( ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, unsigned NumArgs, const TemplateArgument *Args, QualType Canon) : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true, /*VariablyModified=*/false, NNS && NNS->containsUnexpandedParameterPack()), NNS(NNS), Name(Name), NumArgs(NumArgs) { assert((!NNS || NNS->isDependent()) && "DependentTemplateSpecializatonType requires dependent qualifier"); for (unsigned I = 0; I != NumArgs; ++I) { if (Args[I].containsUnexpandedParameterPack()) setContainsUnexpandedParameterPack(); new (&getArgBuffer()[I]) TemplateArgument(Args[I]); } } void DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, ElaboratedTypeKeyword Keyword, NestedNameSpecifier *Qualifier, const IdentifierInfo *Name, unsigned NumArgs, const TemplateArgument *Args) { ID.AddInteger(Keyword); ID.AddPointer(Qualifier); ID.AddPointer(Name); for (unsigned Idx = 0; Idx < NumArgs; ++Idx) Args[Idx].Profile(ID, Context); } bool Type::isElaboratedTypeSpecifier() const { ElaboratedTypeKeyword Keyword; if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this)) Keyword = Elab->getKeyword(); else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this)) Keyword = DepName->getKeyword(); else if (const DependentTemplateSpecializationType *DepTST = dyn_cast<DependentTemplateSpecializationType>(this)) Keyword = DepTST->getKeyword(); else return false; return TypeWithKeyword::KeywordIsTagTypeKind(Keyword); } const char *Type::getTypeClassName() const { switch (TypeBits.TC) { #define ABSTRACT_TYPE(Derived, Base) #define TYPE(Derived, Base) case Derived: return #Derived; #include "clang/AST/TypeNodes.def" } llvm_unreachable("Invalid type class."); } const char *BuiltinType::getName(const PrintingPolicy &Policy) const { switch (getKind()) { case Void: return "void"; case Bool: return Policy.Bool ? "bool" : "_Bool"; case Char_S: return "char"; case Char_U: return "char"; case SChar: return "signed char"; case Short: return "short"; case Int: return "int"; case Long: return "long"; case LongLong: return "long long"; case Int128: return "__int128"; case UChar: return "unsigned char"; case UShort: return "unsigned short"; case UInt: return "unsigned int"; case ULong: return "unsigned long"; case ULongLong: return "unsigned long long"; case UInt128: return "unsigned __int128"; case Half: return "half"; case Float: return "float"; case Double: return "double"; case LongDouble: return "long double"; case WChar_S: case WChar_U: return "wchar_t"; case Char16: return "char16_t"; case Char32: return "char32_t"; case NullPtr: return "nullptr_t"; case Overload: return "<overloaded function type>"; case BoundMember: return "<bound member function type>"; case PseudoObject: return "<pseudo-object type>"; case Dependent: return "<dependent type>"; case UnknownAny: return "<unknown type>"; case ARCUnbridgedCast: return "<ARC unbridged cast type>"; case ObjCId: return "id"; case ObjCClass: return "Class"; case ObjCSel: return "SEL"; } llvm_unreachable("Invalid builtin type."); } QualType QualType::getNonLValueExprType(ASTContext &Context) const { if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>()) return RefType->getPointeeType(); // C++0x [basic.lval]: // Class prvalues can have cv-qualified types; non-class prvalues always // have cv-unqualified types. // // See also C99 6.3.2.1p2. if (!Context.getLangOpts().CPlusPlus || (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType())) return getUnqualifiedType(); return *this; } StringRef FunctionType::getNameForCallConv(CallingConv CC) { switch (CC) { case CC_Default: llvm_unreachable("no name for default cc"); case CC_C: return "cdecl"; case CC_X86StdCall: return "stdcall"; case CC_X86FastCall: return "fastcall"; case CC_X86ThisCall: return "thiscall"; case CC_X86Pascal: return "pascal"; case CC_AAPCS: return "aapcs"; case CC_AAPCS_VFP: return "aapcs-vfp"; } llvm_unreachable("Invalid calling convention."); } FunctionProtoType::FunctionProtoType(QualType result, const QualType *args, unsigned numArgs, QualType canonical, const ExtProtoInfo &epi) : FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier, canonical, result->isDependentType(), result->isInstantiationDependentType(), result->isVariablyModifiedType(), result->containsUnexpandedParameterPack(), epi.ExtInfo), NumArgs(numArgs), NumExceptions(epi.NumExceptions), ExceptionSpecType(epi.ExceptionSpecType), HasAnyConsumedArgs(epi.ConsumedArguments != 0), Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn) { // Fill in the trailing argument array. QualType *argSlot = reinterpret_cast<QualType*>(this+1); for (unsigned i = 0; i != numArgs; ++i) { if (args[i]->isDependentType()) setDependent(); else if (args[i]->isInstantiationDependentType()) setInstantiationDependent(); if (args[i]->containsUnexpandedParameterPack()) setContainsUnexpandedParameterPack(); argSlot[i] = args[i]; } if (getExceptionSpecType() == EST_Dynamic) { // Fill in the exception array. QualType *exnSlot = argSlot + numArgs; for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) { if (epi.Exceptions[i]->isDependentType()) setDependent(); else if (epi.Exceptions[i]->isInstantiationDependentType()) setInstantiationDependent(); if (epi.Exceptions[i]->containsUnexpandedParameterPack()) setContainsUnexpandedParameterPack(); exnSlot[i] = epi.Exceptions[i]; } } else if (getExceptionSpecType() == EST_ComputedNoexcept) { // Store the noexcept expression and context. Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs); *noexSlot = epi.NoexceptExpr; if (epi.NoexceptExpr) { if (epi.NoexceptExpr->isValueDependent() || epi.NoexceptExpr->isTypeDependent()) setDependent(); else if (epi.NoexceptExpr->isInstantiationDependent()) setInstantiationDependent(); } } else if (getExceptionSpecType() == EST_Uninstantiated) { // Store the function decl from which we will resolve our // exception specification. FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs); slot[0] = epi.ExceptionSpecDecl; slot[1] = epi.ExceptionSpecTemplate; // This exception specification doesn't make the type dependent, because // it's not instantiated as part of instantiating the type. } if (epi.ConsumedArguments) { bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer()); for (unsigned i = 0; i != numArgs; ++i) consumedArgs[i] = epi.ConsumedArguments[i]; } } FunctionProtoType::NoexceptResult FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const { ExceptionSpecificationType est = getExceptionSpecType(); if (est == EST_BasicNoexcept) return NR_Nothrow; if (est != EST_ComputedNoexcept) return NR_NoNoexcept; Expr *noexceptExpr = getNoexceptExpr(); if (!noexceptExpr) return NR_BadNoexcept; if (noexceptExpr->isValueDependent()) return NR_Dependent; llvm::APSInt value; bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0, /*evaluated*/false); (void)isICE; assert(isICE && "AST should not contain bad noexcept expressions."); return value.getBoolValue() ? NR_Nothrow : NR_Throw; } bool FunctionProtoType::isTemplateVariadic() const { for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx) if (isa<PackExpansionType>(getArgType(ArgIdx - 1))) return true; return false; } void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result, const QualType *ArgTys, unsigned NumArgs, const ExtProtoInfo &epi, const ASTContext &Context) { // We have to be careful not to get ambiguous profile encodings. // Note that valid type pointers are never ambiguous with anything else. // // The encoding grammar begins: // type type* bool int bool // If that final bool is true, then there is a section for the EH spec: // bool type* // This is followed by an optional "consumed argument" section of the // same length as the first type sequence: // bool* // Finally, we have the ext info and trailing return type flag: // int bool // // There is no ambiguity between the consumed arguments and an empty EH // spec because of the leading 'bool' which unambiguously indicates // whether the following bool is the EH spec or part of the arguments. ID.AddPointer(Result.getAsOpaquePtr()); for (unsigned i = 0; i != NumArgs; ++i) ID.AddPointer(ArgTys[i].getAsOpaquePtr()); // This method is relatively performance sensitive, so as a performance // shortcut, use one AddInteger call instead of four for the next four // fields. assert(!(unsigned(epi.Variadic) & ~1) && !(unsigned(epi.TypeQuals) & ~255) && !(unsigned(epi.RefQualifier) & ~3) && !(unsigned(epi.ExceptionSpecType) & ~7) && "Values larger than expected."); ID.AddInteger(unsigned(epi.Variadic) + (epi.TypeQuals << 1) + (epi.RefQualifier << 9) + (epi.ExceptionSpecType << 11)); if (epi.ExceptionSpecType == EST_Dynamic) { for (unsigned i = 0; i != epi.NumExceptions; ++i) ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr()); } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){ epi.NoexceptExpr->Profile(ID, Context, false); } else if (epi.ExceptionSpecType == EST_Uninstantiated) { ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl()); } if (epi.ConsumedArguments) { for (unsigned i = 0; i != NumArgs; ++i) ID.AddBoolean(epi.ConsumedArguments[i]); } epi.ExtInfo.Profile(ID); ID.AddBoolean(epi.HasTrailingReturn); } void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(), Ctx); } QualType TypedefType::desugar() const { return getDecl()->getUnderlyingType(); } TypeOfExprType::TypeOfExprType(Expr *E, QualType can) : Type(TypeOfExpr, can, E->isTypeDependent(), E->isInstantiationDependent(), E->getType()->isVariablyModifiedType(), E->containsUnexpandedParameterPack()), TOExpr(E) { } bool TypeOfExprType::isSugared() const { return !TOExpr->isTypeDependent(); } QualType TypeOfExprType::desugar() const { if (isSugared()) return getUnderlyingExpr()->getType(); return QualType(this, 0); } void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, Expr *E) { E->Profile(ID, Context, true); } DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can) // C++11 [temp.type]p2: "If an expression e involves a template parameter, // decltype(e) denotes a unique dependent type." Hence a decltype type is // type-dependent even if its expression is only instantiation-dependent. : Type(Decltype, can, E->isInstantiationDependent(), E->isInstantiationDependent(), E->getType()->isVariablyModifiedType(), E->containsUnexpandedParameterPack()), E(E), UnderlyingType(underlyingType) { } bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); } QualType DecltypeType::desugar() const { if (isSugared()) return getUnderlyingType(); return QualType(this, 0); } DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E) : DecltypeType(E, Context.DependentTy), Context(Context) { } void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, Expr *E) { E->Profile(ID, Context, true); } TagType::TagType(TypeClass TC, const TagDecl *D, QualType can) : Type(TC, can, D->isDependentType(), /*InstantiationDependent=*/D->isDependentType(), /*VariablyModified=*/false, /*ContainsUnexpandedParameterPack=*/false), decl(const_cast<TagDecl*>(D)) {} static TagDecl *getInterestingTagDecl(TagDecl *decl) { for (TagDecl::redecl_iterator I = decl->redecls_begin(), E = decl->redecls_end(); I != E; ++I) { if (I->isCompleteDefinition() || I->isBeingDefined()) return *I; } // If there's no definition (not even in progress), return what we have. return decl; } UnaryTransformType::UnaryTransformType(QualType BaseType, QualType UnderlyingType, UTTKind UKind, QualType CanonicalType) : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(), UnderlyingType->isInstantiationDependentType(), UnderlyingType->isVariablyModifiedType(), BaseType->containsUnexpandedParameterPack()) , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {} TagDecl *TagType::getDecl() const { return getInterestingTagDecl(decl); } bool TagType::isBeingDefined() const { return getDecl()->isBeingDefined(); } CXXRecordDecl *InjectedClassNameType::getDecl() const { return cast<CXXRecordDecl>(getInterestingTagDecl(Decl)); } IdentifierInfo *TemplateTypeParmType::getIdentifier() const { return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier(); } SubstTemplateTypeParmPackType:: SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, QualType Canon, const TemplateArgument &ArgPack) : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true), Replaced(Param), Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size()) { } TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const { return TemplateArgument(Arguments, NumArguments); } void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getReplacedParameter(), getArgumentPack()); } void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID, const TemplateTypeParmType *Replaced, const TemplateArgument &ArgPack) { ID.AddPointer(Replaced); ID.AddInteger(ArgPack.pack_size()); for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(), PEnd = ArgPack.pack_end(); P != PEnd; ++P) ID.AddPointer(P->getAsType().getAsOpaquePtr()); } bool TemplateSpecializationType:: anyDependentTemplateArguments(const TemplateArgumentListInfo &Args, bool &InstantiationDependent) { return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(), InstantiationDependent); } bool TemplateSpecializationType:: anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N, bool &InstantiationDependent) { for (unsigned i = 0; i != N; ++i) { if (Args[i].getArgument().isDependent()) { InstantiationDependent = true; return true; } if (Args[i].getArgument().isInstantiationDependent()) InstantiationDependent = true; } return false; } bool TemplateSpecializationType:: anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N, bool &InstantiationDependent) { for (unsigned i = 0; i != N; ++i) { if (Args[i].isDependent()) { InstantiationDependent = true; return true; } if (Args[i].isInstantiationDependent()) InstantiationDependent = true; } return false; } TemplateSpecializationType:: TemplateSpecializationType(TemplateName T, const TemplateArgument *Args, unsigned NumArgs, QualType Canon, QualType AliasedType) : Type(TemplateSpecialization, Canon.isNull()? QualType(this, 0) : Canon, Canon.isNull()? T.isDependent() : Canon->isDependentType(), Canon.isNull()? T.isDependent() : Canon->isInstantiationDependentType(), false, Canon.isNull()? T.containsUnexpandedParameterPack() : Canon->containsUnexpandedParameterPack()), Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) { assert(!T.getAsDependentTemplateName() && "Use DependentTemplateSpecializationType for dependent template-name"); assert((T.getKind() == TemplateName::Template || T.getKind() == TemplateName::SubstTemplateTemplateParm || T.getKind() == TemplateName::SubstTemplateTemplateParmPack) && "Unexpected template name for TemplateSpecializationType"); bool InstantiationDependent; (void)InstantiationDependent; assert((!Canon.isNull() || T.isDependent() || anyDependentTemplateArguments(Args, NumArgs, InstantiationDependent)) && "No canonical type for non-dependent class template specialization"); TemplateArgument *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1); for (unsigned Arg = 0; Arg < NumArgs; ++Arg) { // Update dependent and variably-modified bits. // If the canonical type exists and is non-dependent, the template // specialization type can be non-dependent even if one of the type // arguments is. Given: // template<typename T> using U = int; // U<T> is always non-dependent, irrespective of the type T. if (Canon.isNull() && Args[Arg].isDependent()) setDependent(); else if (Args[Arg].isInstantiationDependent()) setInstantiationDependent(); if (Args[Arg].getKind() == TemplateArgument::Type && Args[Arg].getAsType()->isVariablyModifiedType()) setVariablyModified(); if (Canon.isNull() && Args[Arg].containsUnexpandedParameterPack()) setContainsUnexpandedParameterPack(); new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]); } // Store the aliased type if this is a type alias template specialization. if (TypeAlias) { TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1); *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType; } } void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, TemplateName T, const TemplateArgument *Args, unsigned NumArgs, const ASTContext &Context) { T.Profile(ID); for (unsigned Idx = 0; Idx < NumArgs; ++Idx) Args[Idx].Profile(ID, Context); } QualType QualifierCollector::apply(const ASTContext &Context, QualType QT) const { if (!hasNonFastQualifiers()) return QT.withFastQualifiers(getFastQualifiers()); return Context.getQualifiedType(QT, *this); } QualType QualifierCollector::apply(const ASTContext &Context, const Type *T) const { if (!hasNonFastQualifiers()) return QualType(T, getFastQualifiers()); return Context.getQualifiedType(T, *this); } void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, ObjCProtocolDecl * const *Protocols, unsigned NumProtocols) { ID.AddPointer(BaseType.getAsOpaquePtr()); for (unsigned i = 0; i != NumProtocols; i++) ID.AddPointer(Protocols[i]); } void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, getBaseType(), qual_begin(), getNumProtocols()); } namespace { /// \brief The cached properties of a type. class CachedProperties { NamedDecl::LinkageInfo LV; bool local; public: CachedProperties(NamedDecl::LinkageInfo LV, bool local) : LV(LV), local(local) {} Linkage getLinkage() const { return LV.linkage(); } Visibility getVisibility() const { return LV.visibility(); } bool isVisibilityExplicit() const { return LV.visibilityExplicit(); } bool hasLocalOrUnnamedType() const { return local; } friend CachedProperties merge(CachedProperties L, CachedProperties R) { NamedDecl::LinkageInfo MergedLV = L.LV; MergedLV.merge(R.LV); return CachedProperties(MergedLV, L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType()); } }; } static CachedProperties computeCachedProperties(const Type *T); namespace clang { /// The type-property cache. This is templated so as to be /// instantiated at an internal type to prevent unnecessary symbol /// leakage. template <class Private> class TypePropertyCache { public: static CachedProperties get(QualType T) { return get(T.getTypePtr()); } static CachedProperties get(const Type *T) { ensure(T); NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(), T->TypeBits.getVisibility(), T->TypeBits.isVisibilityExplicit()); return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType()); } static void ensure(const Type *T) { // If the cache is valid, we're okay. if (T->TypeBits.isCacheValid()) return; // If this type is non-canonical, ask its canonical type for the // relevant information. if (!T->isCanonicalUnqualified()) { const Type *CT = T->getCanonicalTypeInternal().getTypePtr(); ensure(CT); T->TypeBits.CacheValidAndVisibility = CT->TypeBits.CacheValidAndVisibility; T->TypeBits.CachedExplicitVisibility = CT->TypeBits.CachedExplicitVisibility; T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage; T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed; return; } // Compute the cached properties and then set the cache. CachedProperties Result = computeCachedProperties(T); T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U; T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit(); assert(T->TypeBits.isCacheValid() && T->TypeBits.getVisibility() == Result.getVisibility()); T->TypeBits.CachedLinkage = Result.getLinkage(); T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType(); } }; } // Instantiate the friend template at a private class. In a // reasonable implementation, these symbols will be internal. // It is terrible that this is the best way to accomplish this. namespace { class Private {}; } typedef TypePropertyCache<Private> Cache; static CachedProperties computeCachedProperties(const Type *T) { switch (T->getTypeClass()) { #define TYPE(Class,Base) #define NON_CANONICAL_TYPE(Class,Base) case Type::Class: #include "clang/AST/TypeNodes.def" llvm_unreachable("didn't expect a non-canonical type here"); #define TYPE(Class,Base) #define DEPENDENT_TYPE(Class,Base) case Type::Class: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class: #include "clang/AST/TypeNodes.def" // Treat instantiation-dependent types as external. assert(T->isInstantiationDependentType()); return CachedProperties(NamedDecl::LinkageInfo(), false); case Type::Builtin: // C++ [basic.link]p8: // A type is said to have linkage if and only if: // - it is a fundamental type (3.9.1); or return CachedProperties(NamedDecl::LinkageInfo(), false); case Type::Record: case Type::Enum: { const TagDecl *Tag = cast<TagType>(T)->getDecl(); // C++ [basic.link]p8: // - it is a class or enumeration type that is named (or has a name // for linkage purposes (7.1.3)) and the name has linkage; or // - it is a specialization of a class template (14); or NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility(); bool IsLocalOrUnnamed = Tag->getDeclContext()->isFunctionOrMethod() || (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl()); return CachedProperties(LV, IsLocalOrUnnamed); } // C++ [basic.link]p8: // - it is a compound type (3.9.2) other than a class or enumeration, // compounded exclusively from types that have linkage; or case Type::Complex: return Cache::get(cast<ComplexType>(T)->getElementType()); case Type::Pointer: return Cache::get(cast<PointerType>(T)->getPointeeType()); case Type::BlockPointer: return Cache::get(cast<BlockPointerType>(T)->getPointeeType()); case Type::LValueReference: case Type::RValueReference: return Cache::get(cast<ReferenceType>(T)->getPointeeType()); case Type::MemberPointer: { const MemberPointerType *MPT = cast<MemberPointerType>(T); return merge(Cache::get(MPT->getClass()), Cache::get(MPT->getPointeeType())); } case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: return Cache::get(cast<ArrayType>(T)->getElementType()); case Type::Vector: case Type::ExtVector: return Cache::get(cast<VectorType>(T)->getElementType()); case Type::FunctionNoProto: return Cache::get(cast<FunctionType>(T)->getResultType()); case Type::FunctionProto: { const FunctionProtoType *FPT = cast<FunctionProtoType>(T); CachedProperties result = Cache::get(FPT->getResultType()); for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(), ae = FPT->arg_type_end(); ai != ae; ++ai) result = merge(result, Cache::get(*ai)); return result; } case Type::ObjCInterface: { NamedDecl::LinkageInfo LV = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility(); return CachedProperties(LV, false); } case Type::ObjCObject: return Cache::get(cast<ObjCObjectType>(T)->getBaseType()); case Type::ObjCObjectPointer: return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType()); case Type::Atomic: return Cache::get(cast<AtomicType>(T)->getValueType()); } llvm_unreachable("unhandled type class"); } /// \brief Determine the linkage of this type. Linkage Type::getLinkage() const { Cache::ensure(this); return TypeBits.getLinkage(); } /// \brief Determine the linkage of this type. Visibility Type::getVisibility() const { Cache::ensure(this); return TypeBits.getVisibility(); } bool Type::isVisibilityExplicit() const { Cache::ensure(this); return TypeBits.isVisibilityExplicit(); } bool Type::hasUnnamedOrLocalType() const { Cache::ensure(this); return TypeBits.hasLocalOrUnnamedType(); } std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const { Cache::ensure(this); return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility()); } void Type::ClearLinkageCache() { TypeBits.CacheValidAndVisibility = 0; if (QualType(this, 0) != CanonicalType) CanonicalType->TypeBits.CacheValidAndVisibility = 0; } Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const { if (isObjCARCImplicitlyUnretainedType()) return Qualifiers::OCL_ExplicitNone; return Qualifiers::OCL_Strong; } bool Type::isObjCARCImplicitlyUnretainedType() const { assert(isObjCLifetimeType() && "cannot query implicit lifetime for non-inferrable type"); const Type *canon = getCanonicalTypeInternal().getTypePtr(); // Walk down to the base type. We don't care about qualifiers for this. while (const ArrayType *array = dyn_cast<ArrayType>(canon)) canon = array->getElementType().getTypePtr(); if (const ObjCObjectPointerType *opt = dyn_cast<ObjCObjectPointerType>(canon)) { // Class and Class<Protocol> don't require retension. if (opt->getObjectType()->isObjCClass()) return true; } return false; } bool Type::isObjCNSObjectType() const { if (const TypedefType *typedefType = dyn_cast<TypedefType>(this)) return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>(); return false; } bool Type::isObjCRetainableType() const { return isObjCObjectPointerType() || isBlockPointerType() || isObjCNSObjectType(); } bool Type::isObjCIndirectLifetimeType() const { if (isObjCLifetimeType()) return true; if (const PointerType *OPT = getAs<PointerType>()) return OPT->getPointeeType()->isObjCIndirectLifetimeType(); if (const ReferenceType *Ref = getAs<ReferenceType>()) return Ref->getPointeeType()->isObjCIndirectLifetimeType(); if (const MemberPointerType *MemPtr = getAs<MemberPointerType>()) return MemPtr->getPointeeType()->isObjCIndirectLifetimeType(); return false; } /// Returns true if objects of this type have lifetime semantics under /// ARC. bool Type::isObjCLifetimeType() const { const Type *type = this; while (const ArrayType *array = type->getAsArrayTypeUnsafe()) type = array->getElementType().getTypePtr(); return type->isObjCRetainableType(); } /// \brief Determine whether the given type T is a "bridgable" Objective-C type, /// which is either an Objective-C object pointer type or an bool Type::isObjCARCBridgableType() const { return isObjCObjectPointerType() || isBlockPointerType(); } /// \brief Determine whether the given type T is a "bridgeable" C type. bool Type::isCARCBridgableType() const { const PointerType *Pointer = getAs<PointerType>(); if (!Pointer) return false; QualType Pointee = Pointer->getPointeeType(); return Pointee->isVoidType() || Pointee->isRecordType(); } bool Type::hasSizedVLAType() const { if (!isVariablyModifiedType()) return false; if (const PointerType *ptr = getAs<PointerType>()) return ptr->getPointeeType()->hasSizedVLAType(); if (const ReferenceType *ref = getAs<ReferenceType>()) return ref->getPointeeType()->hasSizedVLAType(); if (const ArrayType *arr = getAsArrayTypeUnsafe()) { if (isa<VariableArrayType>(arr) && cast<VariableArrayType>(arr)->getSizeExpr()) return true; return arr->getElementType()->hasSizedVLAType(); } return false; } QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) { switch (type.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: break; case Qualifiers::OCL_Strong: return DK_objc_strong_lifetime; case Qualifiers::OCL_Weak: return DK_objc_weak_lifetime; } /// Currently, the only destruction kind we recognize is C++ objects /// with non-trivial destructors. const CXXRecordDecl *record = type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); if (record && record->hasDefinition() && !record->hasTrivialDestructor()) return DK_cxx_destructor; return DK_none; } bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const { switch (getObjCLifetime()) { case Qualifiers::OCL_None: break; case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Autoreleasing: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: return !Context.getLangOpts().ObjCAutoRefCount; } if (const CXXRecordDecl *Record = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) return Copying ? Record->hasTrivialCopyAssignment() : Record->hasTrivialMoveAssignment(); return true; }