Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayout.h |
//===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGRECORDLAYOUT_H #define CLANG_CODEGEN_CGRECORDLAYOUT_H #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/Basic/LLVM.h" #include "llvm/ADT/DenseMap.h" #include "llvm/DerivedTypes.h" namespace llvm { class StructType; } namespace clang { namespace CodeGen { /// \brief Helper object for describing how to generate the code for access to a /// bit-field. /// /// This structure is intended to describe the "policy" of how the bit-field /// should be accessed, which may be target, language, or ABI dependent. class CGBitFieldInfo { public: /// Descriptor for a single component of a bit-field access. The entire /// bit-field is constituted of a bitwise OR of all of the individual /// components. /// /// Each component describes an accessed value, which is how the component /// should be transferred to/from memory, and a target placement, which is how /// that component fits into the constituted bit-field. The pseudo-IR for a /// load is: /// /// %0 = gep %base, 0, FieldIndex /// %1 = gep (i8*) %0, FieldByteOffset /// %2 = (i(AccessWidth) *) %1 /// %3 = load %2, align AccessAlignment /// %4 = shr %3, FieldBitStart /// /// and the composed bit-field is formed as the boolean OR of all accesses, /// masked to TargetBitWidth bits and shifted to TargetBitOffset. struct AccessInfo { /// Offset of the field to load in the LLVM structure, if any. unsigned FieldIndex; /// Byte offset from the field address, if any. This should generally be /// unused as the cleanest IR comes from having a well-constructed LLVM type /// with proper GEP instructions, but sometimes its use is required, for /// example if an access is intended to straddle an LLVM field boundary. CharUnits FieldByteOffset; /// Bit offset in the accessed value to use. The width is implied by \see /// TargetBitWidth. unsigned FieldBitStart; /// Bit width of the memory access to perform. unsigned AccessWidth; /// The alignment of the memory access, or 0 if the default alignment should /// be used. // // FIXME: Remove use of 0 to encode default, instead have IRgen do the right // thing when it generates the code, if avoiding align directives is // desired. CharUnits AccessAlignment; /// Offset for the target value. unsigned TargetBitOffset; /// Number of bits in the access that are destined for the bit-field. unsigned TargetBitWidth; }; private: /// The components to use to access the bit-field. We may need up to three /// separate components to support up to i64 bit-field access (4 + 2 + 1 byte /// accesses). // // FIXME: De-hardcode this, just allocate following the struct. AccessInfo Components[3]; /// The total size of the bit-field, in bits. unsigned Size; /// The number of access components to use. unsigned NumComponents; /// Whether the bit-field is signed. bool IsSigned : 1; public: CGBitFieldInfo(unsigned Size, unsigned NumComponents, AccessInfo *_Components, bool IsSigned) : Size(Size), NumComponents(NumComponents), IsSigned(IsSigned) { assert(NumComponents <= 3 && "invalid number of components!"); for (unsigned i = 0; i != NumComponents; ++i) Components[i] = _Components[i]; // Check some invariants. unsigned AccessedSize = 0; for (unsigned i = 0, e = getNumComponents(); i != e; ++i) { const AccessInfo &AI = getComponent(i); AccessedSize += AI.TargetBitWidth; // We shouldn't try to load 0 bits. assert(AI.TargetBitWidth > 0); // We can't load more bits than we accessed. assert(AI.FieldBitStart + AI.TargetBitWidth <= AI.AccessWidth); // We shouldn't put any bits outside the result size. assert(AI.TargetBitWidth + AI.TargetBitOffset <= Size); } // Check that the total number of target bits matches the total bit-field // size. assert(AccessedSize == Size && "Total size does not match accessed size!"); } public: /// \brief Check whether this bit-field access is (i.e., should be sign /// extended on loads). bool isSigned() const { return IsSigned; } /// \brief Get the size of the bit-field, in bits. unsigned getSize() const { return Size; } /// @name Component Access /// @{ unsigned getNumComponents() const { return NumComponents; } const AccessInfo &getComponent(unsigned Index) const { assert(Index < getNumComponents() && "Invalid access!"); return Components[Index]; } /// @} void print(raw_ostream &OS) const; void dump() const; /// \brief Given a bit-field decl, build an appropriate helper object for /// accessing that field (which is expected to have the given offset and /// size). static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, const FieldDecl *FD, uint64_t FieldOffset, uint64_t FieldSize); /// \brief Given a bit-field decl, build an appropriate helper object for /// accessing that field (which is expected to have the given offset and /// size). The field decl should be known to be contained within a type of at /// least the given size and with the given alignment. static CGBitFieldInfo MakeInfo(CodeGenTypes &Types, const FieldDecl *FD, uint64_t FieldOffset, uint64_t FieldSize, uint64_t ContainingTypeSizeInBits, unsigned ContainingTypeAlign); }; /// CGRecordLayout - This class handles struct and union layout info while /// lowering AST types to LLVM types. /// /// These layout objects are only created on demand as IR generation requires. class CGRecordLayout { friend class CodeGenTypes; CGRecordLayout(const CGRecordLayout&); // DO NOT IMPLEMENT void operator=(const CGRecordLayout&); // DO NOT IMPLEMENT private: /// The LLVM type corresponding to this record layout; used when /// laying it out as a complete object. llvm::StructType *CompleteObjectType; /// The LLVM type for the non-virtual part of this record layout; /// used when laying it out as a base subobject. llvm::StructType *BaseSubobjectType; /// Map from (non-bit-field) struct field to the corresponding llvm struct /// type field no. This info is populated by record builder. llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo; /// Map from (bit-field) struct field to the corresponding llvm struct type /// field no. This info is populated by record builder. llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single // map for both virtual and non virtual bases. llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; /// Map from virtual bases to their field index in the complete object. llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases; /// False if any direct or indirect subobject of this class, when /// considered as a complete object, requires a non-zero bitpattern /// when zero-initialized. bool IsZeroInitializable : 1; /// False if any direct or indirect subobject of this class, when /// considered as a base subobject, requires a non-zero bitpattern /// when zero-initialized. bool IsZeroInitializableAsBase : 1; public: CGRecordLayout(llvm::StructType *CompleteObjectType, llvm::StructType *BaseSubobjectType, bool IsZeroInitializable, bool IsZeroInitializableAsBase) : CompleteObjectType(CompleteObjectType), BaseSubobjectType(BaseSubobjectType), IsZeroInitializable(IsZeroInitializable), IsZeroInitializableAsBase(IsZeroInitializableAsBase) {} /// \brief Return the "complete object" LLVM type associated with /// this record. llvm::StructType *getLLVMType() const { return CompleteObjectType; } /// \brief Return the "base subobject" LLVM type associated with /// this record. llvm::StructType *getBaseSubobjectLLVMType() const { return BaseSubobjectType; } /// \brief Check whether this struct can be C++ zero-initialized /// with a zeroinitializer. bool isZeroInitializable() const { return IsZeroInitializable; } /// \brief Check whether this struct can be C++ zero-initialized /// with a zeroinitializer when considered as a base subobject. bool isZeroInitializableAsBase() const { return IsZeroInitializableAsBase; } /// \brief Return llvm::StructType element number that corresponds to the /// field FD. unsigned getLLVMFieldNo(const FieldDecl *FD) const { assert(!FD->isBitField() && "Invalid call for bit-field decl!"); assert(FieldInfo.count(FD) && "Invalid field for record!"); return FieldInfo.lookup(FD); } unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const { assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!"); return NonVirtualBases.lookup(RD); } /// \brief Return the LLVM field index corresponding to the given /// virtual base. Only valid when operating on the complete object. unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const { assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!"); return CompleteObjectVirtualBases.lookup(base); } /// \brief Return the BitFieldInfo that corresponds to the field FD. const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const { assert(FD->isBitField() && "Invalid call for non bit-field decl!"); llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator it = BitFields.find(FD); assert(it != BitFields.end() && "Unable to find bitfield info"); return it->second; } void print(raw_ostream &OS) const; void dump() const; }; } // end namespace CodeGen } // end namespace clang #endif