Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CGValue.h |
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes implement wrappers around llvm::Value in order to // fully represent the range of values for C L- and R- values. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGVALUE_H #define CLANG_CODEGEN_CGVALUE_H #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Type.h" namespace llvm { class Constant; class Value; } namespace clang { namespace CodeGen { class AggValueSlot; class CGBitFieldInfo; /// RValue - This trivial value class is used to represent the result of an /// expression that is evaluated. It can be one of three things: either a /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the /// address of an aggregate value in memory. class RValue { enum Flavor { Scalar, Complex, Aggregate }; // Stores first value and flavor. llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; // Stores second value and volatility. llvm::PointerIntPair<llvm::Value *, 1, bool> V2; public: bool isScalar() const { return V1.getInt() == Scalar; } bool isComplex() const { return V1.getInt() == Complex; } bool isAggregate() const { return V1.getInt() == Aggregate; } bool isVolatileQualified() const { return V2.getInt(); } /// getScalarVal() - Return the Value* of this scalar value. llvm::Value *getScalarVal() const { assert(isScalar() && "Not a scalar!"); return V1.getPointer(); } /// getComplexVal - Return the real/imag components of this complex value. /// std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { return std::make_pair(V1.getPointer(), V2.getPointer()); } /// getAggregateAddr() - Return the Value* of the address of the aggregate. llvm::Value *getAggregateAddr() const { assert(isAggregate() && "Not an aggregate!"); return V1.getPointer(); } static RValue get(llvm::Value *V) { RValue ER; ER.V1.setPointer(V); ER.V1.setInt(Scalar); ER.V2.setInt(false); return ER; } static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { RValue ER; ER.V1.setPointer(V1); ER.V2.setPointer(V2); ER.V1.setInt(Complex); ER.V2.setInt(false); return ER; } static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { return getComplex(C.first, C.second); } // FIXME: Aggregate rvalues need to retain information about whether they are // volatile or not. Remove default to find all places that probably get this // wrong. static RValue getAggregate(llvm::Value *V, bool Volatile = false) { RValue ER; ER.V1.setPointer(V); ER.V1.setInt(Aggregate); ER.V2.setInt(Volatile); return ER; } }; /// LValue - This represents an lvalue references. Because C/C++ allow /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a /// bitrange. class LValue { enum { Simple, // This is a normal l-value, use getAddress(). VectorElt, // This is a vector element l-value (V[i]), use getVector* BitField, // This is a bitfield l-value, use getBitfield*. ExtVectorElt // This is an extended vector subset, use getExtVectorComp } LVType; llvm::Value *V; union { // Index into a vector subscript: V[i] llvm::Value *VectorIdx; // ExtVector element subset: V.xyx llvm::Constant *VectorElts; // BitField start bit and size const CGBitFieldInfo *BitFieldInfo; }; QualType Type; // 'const' is unused here Qualifiers Quals; // The alignment to use when accessing this lvalue. (For vector elements, // this is the alignment of the whole vector.) unsigned short Alignment; // objective-c's ivar bool Ivar:1; // objective-c's ivar is an array bool ObjIsArray:1; // LValue is non-gc'able for any reason, including being a parameter or local // variable. bool NonGC: 1; // Lvalue is a global reference of an objective-c object bool GlobalObjCRef : 1; // Lvalue is a thread local reference bool ThreadLocalRef : 1; Expr *BaseIvarExp; /// TBAAInfo - TBAA information to attach to dereferences of this LValue. llvm::MDNode *TBAAInfo; private: void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment = CharUnits(), llvm::MDNode *TBAAInfo = 0) { this->Type = Type; this->Quals = Quals; this->Alignment = Alignment.getQuantity(); assert(this->Alignment == Alignment.getQuantity() && "Alignment exceeds allowed max!"); // Initialize Objective-C flags. this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; this->ThreadLocalRef = false; this->BaseIvarExp = 0; this->TBAAInfo = TBAAInfo; } public: bool isSimple() const { return LVType == Simple; } bool isVectorElt() const { return LVType == VectorElt; } bool isBitField() const { return LVType == BitField; } bool isExtVectorElt() const { return LVType == ExtVectorElt; } bool isVolatileQualified() const { return Quals.hasVolatile(); } bool isRestrictQualified() const { return Quals.hasRestrict(); } unsigned getVRQualifiers() const { return Quals.getCVRQualifiers() & ~Qualifiers::Const; } QualType getType() const { return Type; } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } bool isObjCIvar() const { return Ivar; } void setObjCIvar(bool Value) { Ivar = Value; } bool isObjCArray() const { return ObjIsArray; } void setObjCArray(bool Value) { ObjIsArray = Value; } bool isNonGC () const { return NonGC; } void setNonGC(bool Value) { NonGC = Value; } bool isGlobalObjCRef() const { return GlobalObjCRef; } void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } bool isThreadLocalRef() const { return ThreadLocalRef; } void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} bool isObjCWeak() const { return Quals.getObjCGCAttr() == Qualifiers::Weak; } bool isObjCStrong() const { return Quals.getObjCGCAttr() == Qualifiers::Strong; } bool isVolatile() const { return Quals.hasVolatile(); } Expr *getBaseIvarExp() const { return BaseIvarExp; } void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } const Qualifiers &getQuals() const { return Quals; } Qualifiers &getQuals() { return Quals; } unsigned getAddressSpace() const { return Quals.getAddressSpace(); } CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } // simple lvalue llvm::Value *getAddress() const { assert(isSimple()); return V; } void setAddress(llvm::Value *address) { assert(isSimple()); V = address; } // vector elt lvalue llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } // extended vector elements. llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } llvm::Constant *getExtVectorElts() const { assert(isExtVectorElt()); return VectorElts; } // bitfield lvalue llvm::Value *getBitFieldBaseAddr() const { assert(isBitField()); return V; } const CGBitFieldInfo &getBitFieldInfo() const { assert(isBitField()); return *BitFieldInfo; } static LValue MakeAddr(llvm::Value *address, QualType type, CharUnits alignment, ASTContext &Context, llvm::MDNode *TBAAInfo = 0) { Qualifiers qs = type.getQualifiers(); qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); LValue R; R.LVType = Simple; R.V = address; R.Initialize(type, qs, alignment, TBAAInfo); return R; } static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, QualType type, CharUnits Alignment) { LValue R; R.LVType = VectorElt; R.V = Vec; R.VectorIdx = Idx; R.Initialize(type, type.getQualifiers(), Alignment); return R; } static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, QualType type, CharUnits Alignment) { LValue R; R.LVType = ExtVectorElt; R.V = Vec; R.VectorElts = Elts; R.Initialize(type, type.getQualifiers(), Alignment); return R; } /// \brief Create a new object to represent a bit-field access. /// /// \param BaseValue - The base address of the structure containing the /// bit-field. /// \param Info - The information describing how to perform the bit-field /// access. static LValue MakeBitfield(llvm::Value *BaseValue, const CGBitFieldInfo &Info, QualType type) { LValue R; R.LVType = BitField; R.V = BaseValue; R.BitFieldInfo = &Info; R.Initialize(type, type.getQualifiers()); return R; } RValue asAggregateRValue() const { // FIMXE: Alignment return RValue::getAggregate(getAddress(), isVolatileQualified()); } }; /// An aggregate value slot. class AggValueSlot { /// The address. llvm::Value *Addr; // Qualifiers Qualifiers Quals; unsigned short Alignment; /// DestructedFlag - This is set to true if some external code is /// responsible for setting up a destructor for the slot. Otherwise /// the code which constructs it should push the appropriate cleanup. bool DestructedFlag : 1; /// ObjCGCFlag - This is set to true if writing to the memory in the /// slot might require calling an appropriate Objective-C GC /// barrier. The exact interaction here is unnecessarily mysterious. bool ObjCGCFlag : 1; /// ZeroedFlag - This is set to true if the memory in the slot is /// known to be zero before the assignment into it. This means that /// zero fields don't need to be set. bool ZeroedFlag : 1; /// AliasedFlag - This is set to true if the slot might be aliased /// and it's not undefined behavior to access it through such an /// alias. Note that it's always undefined behavior to access a C++ /// object that's under construction through an alias derived from /// outside the construction process. /// /// This flag controls whether calls that produce the aggregate /// value may be evaluated directly into the slot, or whether they /// must be evaluated into an unaliased temporary and then memcpy'ed /// over. Since it's invalid in general to memcpy a non-POD C++ /// object, it's important that this flag never be set when /// evaluating an expression which constructs such an object. bool AliasedFlag : 1; public: enum IsAliased_t { IsNotAliased, IsAliased }; enum IsDestructed_t { IsNotDestructed, IsDestructed }; enum IsZeroed_t { IsNotZeroed, IsZeroed }; enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; /// ignored - Returns an aggregate value slot indicating that the /// aggregate value is being ignored. static AggValueSlot ignored() { return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed, DoesNotNeedGCBarriers, IsNotAliased); } /// forAddr - Make a slot for an aggregate value. /// /// \param quals - The qualifiers that dictate how the slot should /// be initialied. Only 'volatile' and the Objective-C lifetime /// qualifiers matter. /// /// \param isDestructed - true if something else is responsible /// for calling destructors on this object /// \param needsGC - true if the slot is potentially located /// somewhere that ObjC GC calls should be emitted for static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed = IsNotZeroed) { AggValueSlot AV; AV.Addr = addr; AV.Alignment = align.getQuantity(); AV.Quals = quals; AV.DestructedFlag = isDestructed; AV.ObjCGCFlag = needsGC; AV.ZeroedFlag = isZeroed; AV.AliasedFlag = isAliased; return AV; } static AggValueSlot forLValue(LValue LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed = IsNotZeroed) { return forAddr(LV.getAddress(), LV.getAlignment(), LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); } IsDestructed_t isExternallyDestructed() const { return IsDestructed_t(DestructedFlag); } void setExternallyDestructed(bool destructed = true) { DestructedFlag = destructed; } Qualifiers getQualifiers() const { return Quals; } bool isVolatile() const { return Quals.hasVolatile(); } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } NeedsGCBarriers_t requiresGCollection() const { return NeedsGCBarriers_t(ObjCGCFlag); } llvm::Value *getAddr() const { return Addr; } bool isIgnored() const { return Addr == 0; } CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } IsAliased_t isPotentiallyAliased() const { return IsAliased_t(AliasedFlag); } // FIXME: Alignment? RValue asRValue() const { return RValue::getAggregate(getAddr(), isVolatile()); } void setZeroed(bool V = true) { ZeroedFlag = V; } IsZeroed_t isZeroed() const { return IsZeroed_t(ZeroedFlag); } }; } // end namespace CodeGen } // end namespace clang #endif