config root man

Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CGValue.h

//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes implement wrappers around llvm::Value in order to
// fully represent the range of values for C L- and R- values.
//
//===----------------------------------------------------------------------===//

#ifndef CLANG_CODEGEN_CGVALUE_H
#define CLANG_CODEGEN_CGVALUE_H

#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Type.h"

namespace llvm {
  class Constant;
  class Value;
}

namespace clang {
namespace CodeGen {
  class AggValueSlot;
  class CGBitFieldInfo;

/// RValue - This trivial value class is used to represent the result of an
/// expression that is evaluated.  It can be one of three things: either a
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
  enum Flavor { Scalar, Complex, Aggregate };

  // Stores first value and flavor.
  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
  // Stores second value and volatility.
  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;

public:
  bool isScalar() const { return V1.getInt() == Scalar; }
  bool isComplex() const { return V1.getInt() == Complex; }
  bool isAggregate() const { return V1.getInt() == Aggregate; }

  bool isVolatileQualified() const { return V2.getInt(); }

  /// getScalarVal() - Return the Value* of this scalar value.
  llvm::Value *getScalarVal() const {
    assert(isScalar() && "Not a scalar!");
    return V1.getPointer();
  }

  /// getComplexVal - Return the real/imag components of this complex value.
  ///
  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
    return std::make_pair(V1.getPointer(), V2.getPointer());
  }

  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
  llvm::Value *getAggregateAddr() const {
    assert(isAggregate() && "Not an aggregate!");
    return V1.getPointer();
  }

  static RValue get(llvm::Value *V) {
    RValue ER;
    ER.V1.setPointer(V);
    ER.V1.setInt(Scalar);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
    RValue ER;
    ER.V1.setPointer(V1);
    ER.V2.setPointer(V2);
    ER.V1.setInt(Complex);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
    return getComplex(C.first, C.second);
  }
  // FIXME: Aggregate rvalues need to retain information about whether they are
  // volatile or not.  Remove default to find all places that probably get this
  // wrong.
  static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
    RValue ER;
    ER.V1.setPointer(V);
    ER.V1.setInt(Aggregate);
    ER.V2.setInt(Volatile);
    return ER;
  }
};


/// LValue - This represents an lvalue references.  Because C/C++ allow
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
/// bitrange.
class LValue {
  enum {
    Simple,       // This is a normal l-value, use getAddress().
    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
    BitField,     // This is a bitfield l-value, use getBitfield*.
    ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
  } LVType;

  llvm::Value *V;

  union {
    // Index into a vector subscript: V[i]
    llvm::Value *VectorIdx;

    // ExtVector element subset: V.xyx
    llvm::Constant *VectorElts;

    // BitField start bit and size
    const CGBitFieldInfo *BitFieldInfo;
  };

  QualType Type;

  // 'const' is unused here
  Qualifiers Quals;

  // The alignment to use when accessing this lvalue.  (For vector elements,
  // this is the alignment of the whole vector.)
  unsigned short Alignment;

  // objective-c's ivar
  bool Ivar:1;
  
  // objective-c's ivar is an array
  bool ObjIsArray:1;

  // LValue is non-gc'able for any reason, including being a parameter or local
  // variable.
  bool NonGC: 1;

  // Lvalue is a global reference of an objective-c object
  bool GlobalObjCRef : 1;
  
  // Lvalue is a thread local reference
  bool ThreadLocalRef : 1;

  Expr *BaseIvarExp;

  /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
  llvm::MDNode *TBAAInfo;

private:
  void Initialize(QualType Type, Qualifiers Quals,
                  CharUnits Alignment = CharUnits(),
                  llvm::MDNode *TBAAInfo = 0) {
    this->Type = Type;
    this->Quals = Quals;
    this->Alignment = Alignment.getQuantity();
    assert(this->Alignment == Alignment.getQuantity() &&
           "Alignment exceeds allowed max!");

    // Initialize Objective-C flags.
    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
    this->ThreadLocalRef = false;
    this->BaseIvarExp = 0;
    this->TBAAInfo = TBAAInfo;
  }

public:
  bool isSimple() const { return LVType == Simple; }
  bool isVectorElt() const { return LVType == VectorElt; }
  bool isBitField() const { return LVType == BitField; }
  bool isExtVectorElt() const { return LVType == ExtVectorElt; }

  bool isVolatileQualified() const { return Quals.hasVolatile(); }
  bool isRestrictQualified() const { return Quals.hasRestrict(); }
  unsigned getVRQualifiers() const {
    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
  }

  QualType getType() const { return Type; }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  bool isObjCIvar() const { return Ivar; }
  void setObjCIvar(bool Value) { Ivar = Value; }

  bool isObjCArray() const { return ObjIsArray; }
  void setObjCArray(bool Value) { ObjIsArray = Value; }

  bool isNonGC () const { return NonGC; }
  void setNonGC(bool Value) { NonGC = Value; }

  bool isGlobalObjCRef() const { return GlobalObjCRef; }
  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }

  bool isThreadLocalRef() const { return ThreadLocalRef; }
  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}

  bool isObjCWeak() const {
    return Quals.getObjCGCAttr() == Qualifiers::Weak;
  }
  bool isObjCStrong() const {
    return Quals.getObjCGCAttr() == Qualifiers::Strong;
  }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }
  
  Expr *getBaseIvarExp() const { return BaseIvarExp; }
  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }

  llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
  void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }

  const Qualifiers &getQuals() const { return Quals; }
  Qualifiers &getQuals() { return Quals; }

  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }

  CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
  void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }

  // simple lvalue
  llvm::Value *getAddress() const { assert(isSimple()); return V; }
  void setAddress(llvm::Value *address) {
    assert(isSimple());
    V = address;
  }

  // vector elt lvalue
  llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
  llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }

  // extended vector elements.
  llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
  llvm::Constant *getExtVectorElts() const {
    assert(isExtVectorElt());
    return VectorElts;
  }

  // bitfield lvalue
  llvm::Value *getBitFieldBaseAddr() const {
    assert(isBitField());
    return V;
  }
  const CGBitFieldInfo &getBitFieldInfo() const {
    assert(isBitField());
    return *BitFieldInfo;
  }

  static LValue MakeAddr(llvm::Value *address, QualType type,
                         CharUnits alignment, ASTContext &Context,
                         llvm::MDNode *TBAAInfo = 0) {
    Qualifiers qs = type.getQualifiers();
    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));

    LValue R;
    R.LVType = Simple;
    R.V = address;
    R.Initialize(type, qs, alignment, TBAAInfo);
    return R;
  }

  static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
                              QualType type, CharUnits Alignment) {
    LValue R;
    R.LVType = VectorElt;
    R.V = Vec;
    R.VectorIdx = Idx;
    R.Initialize(type, type.getQualifiers(), Alignment);
    return R;
  }

  static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
                                 QualType type, CharUnits Alignment) {
    LValue R;
    R.LVType = ExtVectorElt;
    R.V = Vec;
    R.VectorElts = Elts;
    R.Initialize(type, type.getQualifiers(), Alignment);
    return R;
  }

  /// \brief Create a new object to represent a bit-field access.
  ///
  /// \param BaseValue - The base address of the structure containing the
  /// bit-field.
  /// \param Info - The information describing how to perform the bit-field
  /// access.
  static LValue MakeBitfield(llvm::Value *BaseValue,
                             const CGBitFieldInfo &Info,
                             QualType type) {
    LValue R;
    R.LVType = BitField;
    R.V = BaseValue;
    R.BitFieldInfo = &Info;
    R.Initialize(type, type.getQualifiers());
    return R;
  }

  RValue asAggregateRValue() const {
    // FIMXE: Alignment
    return RValue::getAggregate(getAddress(), isVolatileQualified());
  }
};

/// An aggregate value slot.
class AggValueSlot {
  /// The address.
  llvm::Value *Addr;

  // Qualifiers
  Qualifiers Quals;

  unsigned short Alignment;

  /// DestructedFlag - This is set to true if some external code is
  /// responsible for setting up a destructor for the slot.  Otherwise
  /// the code which constructs it should push the appropriate cleanup.
  bool DestructedFlag : 1;

  /// ObjCGCFlag - This is set to true if writing to the memory in the
  /// slot might require calling an appropriate Objective-C GC
  /// barrier.  The exact interaction here is unnecessarily mysterious.
  bool ObjCGCFlag : 1;
  
  /// ZeroedFlag - This is set to true if the memory in the slot is
  /// known to be zero before the assignment into it.  This means that
  /// zero fields don't need to be set.
  bool ZeroedFlag : 1;

  /// AliasedFlag - This is set to true if the slot might be aliased
  /// and it's not undefined behavior to access it through such an
  /// alias.  Note that it's always undefined behavior to access a C++
  /// object that's under construction through an alias derived from
  /// outside the construction process.
  ///
  /// This flag controls whether calls that produce the aggregate
  /// value may be evaluated directly into the slot, or whether they
  /// must be evaluated into an unaliased temporary and then memcpy'ed
  /// over.  Since it's invalid in general to memcpy a non-POD C++
  /// object, it's important that this flag never be set when
  /// evaluating an expression which constructs such an object.
  bool AliasedFlag : 1;

public:
  enum IsAliased_t { IsNotAliased, IsAliased };
  enum IsDestructed_t { IsNotDestructed, IsDestructed };
  enum IsZeroed_t { IsNotZeroed, IsZeroed };
  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };

  /// ignored - Returns an aggregate value slot indicating that the
  /// aggregate value is being ignored.
  static AggValueSlot ignored() {
    return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed,
                   DoesNotNeedGCBarriers, IsNotAliased);
  }

  /// forAddr - Make a slot for an aggregate value.
  ///
  /// \param quals - The qualifiers that dictate how the slot should
  /// be initialied. Only 'volatile' and the Objective-C lifetime
  /// qualifiers matter.
  ///
  /// \param isDestructed - true if something else is responsible
  ///   for calling destructors on this object
  /// \param needsGC - true if the slot is potentially located
  ///   somewhere that ObjC GC calls should be emitted for
  static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
                              Qualifiers quals,
                              IsDestructed_t isDestructed,
                              NeedsGCBarriers_t needsGC,
                              IsAliased_t isAliased,
                              IsZeroed_t isZeroed = IsNotZeroed) {
    AggValueSlot AV;
    AV.Addr = addr;
    AV.Alignment = align.getQuantity();
    AV.Quals = quals;
    AV.DestructedFlag = isDestructed;
    AV.ObjCGCFlag = needsGC;
    AV.ZeroedFlag = isZeroed;
    AV.AliasedFlag = isAliased;
    return AV;
  }

  static AggValueSlot forLValue(LValue LV, IsDestructed_t isDestructed,
                                NeedsGCBarriers_t needsGC,
                                IsAliased_t isAliased,
                                IsZeroed_t isZeroed = IsNotZeroed) {
    return forAddr(LV.getAddress(), LV.getAlignment(),
                   LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
  }

  IsDestructed_t isExternallyDestructed() const {
    return IsDestructed_t(DestructedFlag);
  }
  void setExternallyDestructed(bool destructed = true) {
    DestructedFlag = destructed;
  }

  Qualifiers getQualifiers() const { return Quals; }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  NeedsGCBarriers_t requiresGCollection() const {
    return NeedsGCBarriers_t(ObjCGCFlag);
  }
  
  llvm::Value *getAddr() const {
    return Addr;
  }

  bool isIgnored() const {
    return Addr == 0;
  }

  CharUnits getAlignment() const {
    return CharUnits::fromQuantity(Alignment);
  }

  IsAliased_t isPotentiallyAliased() const {
    return IsAliased_t(AliasedFlag);
  }

  // FIXME: Alignment?
  RValue asRValue() const {
    return RValue::getAggregate(getAddr(), isVolatile());
  }

  void setZeroed(bool V = true) { ZeroedFlag = V; }
  IsZeroed_t isZeroed() const {
    return IsZeroed_t(ZeroedFlag);
  }
};

}  // end namespace CodeGen
}  // end namespace clang

#endif

Man Man