Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp |
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the per-module state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CGDebugInfo.h" #include "CodeGenFunction.h" #include "CodeGenTBAA.h" #include "CGCall.h" #include "CGCUDARuntime.h" #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGOpenCLRuntime.h" #include "TargetInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/ConvertUTF.h" #include "llvm/CallingConv.h" #include "llvm/Module.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/Triple.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" using namespace clang; using namespace CodeGen; static const char AnnotationSection[] = "llvm.metadata"; static CGCXXABI &createCXXABI(CodeGenModule &CGM) { switch (CGM.getContext().getTargetInfo().getCXXABI()) { case CXXABI_ARM: return *CreateARMCXXABI(CGM); case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); } llvm_unreachable("invalid C++ ABI kind"); } CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, llvm::Module &M, const llvm::TargetData &TD, DiagnosticsEngine &diags) : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), ABI(createCXXABI(*this)), Types(*this), TBAA(0), VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), ConstantStringClassRef(0), NSConstantStringType(0), VMContext(M.getContext()), NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0) { // Initialize the type cache. llvm::LLVMContext &LLVMContext = M.getContext(); VoidTy = llvm::Type::getVoidTy(LLVMContext); Int8Ty = llvm::Type::getInt8Ty(LLVMContext); Int16Ty = llvm::Type::getInt16Ty(LLVMContext); Int32Ty = llvm::Type::getInt32Ty(LLVMContext); Int64Ty = llvm::Type::getInt64Ty(LLVMContext); FloatTy = llvm::Type::getFloatTy(LLVMContext); DoubleTy = llvm::Type::getDoubleTy(LLVMContext); PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); PointerAlignInBytes = C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); Int8PtrTy = Int8Ty->getPointerTo(0); Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); if (LangOpts.ObjC1) createObjCRuntime(); if (LangOpts.OpenCL) createOpenCLRuntime(); if (LangOpts.CUDA) createCUDARuntime(); // Enable TBAA unless it's suppressed. if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(), ABI.getMangleContext()); // If debug info or coverage generation is enabled, create the CGDebugInfo // object. if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) DebugInfo = new CGDebugInfo(*this); Block.GlobalUniqueCount = 0; if (C.getLangOpts().ObjCAutoRefCount) ARCData = new ARCEntrypoints(); RRData = new RREntrypoints(); } CodeGenModule::~CodeGenModule() { delete ObjCRuntime; delete OpenCLRuntime; delete CUDARuntime; delete TheTargetCodeGenInfo; delete &ABI; delete TBAA; delete DebugInfo; delete ARCData; delete RRData; } void CodeGenModule::createObjCRuntime() { if (!LangOpts.NeXTRuntime) ObjCRuntime = CreateGNUObjCRuntime(*this); else ObjCRuntime = CreateMacObjCRuntime(*this); } void CodeGenModule::createOpenCLRuntime() { OpenCLRuntime = new CGOpenCLRuntime(*this); } void CodeGenModule::createCUDARuntime() { CUDARuntime = CreateNVCUDARuntime(*this); } void CodeGenModule::Release() { EmitDeferred(); EmitCXXGlobalInitFunc(); EmitCXXGlobalDtorFunc(); if (ObjCRuntime) if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) AddGlobalCtor(ObjCInitFunction); EmitCtorList(GlobalCtors, "llvm.global_ctors"); EmitCtorList(GlobalDtors, "llvm.global_dtors"); EmitGlobalAnnotations(); EmitLLVMUsed(); SimplifyPersonality(); if (getCodeGenOpts().EmitDeclMetadata) EmitDeclMetadata(); if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) EmitCoverageFile(); if (DebugInfo) DebugInfo->finalize(); } void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { // Make sure that this type is translated. Types.UpdateCompletedType(TD); } llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { if (!TBAA) return 0; return TBAA->getTBAAInfo(QTy); } llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { if (!TBAA) return 0; return TBAA->getTBAAInfoForVTablePtr(); } void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, llvm::MDNode *TBAAInfo) { Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); } bool CodeGenModule::isTargetDarwin() const { return getContext().getTargetInfo().getTriple().isOSDarwin(); } void CodeGenModule::Error(SourceLocation loc, StringRef error) { unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); getDiags().Report(Context.getFullLoc(loc), diagID); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, bool OmitOnError) { if (OmitOnError && getDiags().hasErrorOccurred()) return; unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) << Msg << S->getSourceRange(); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified decl yet. void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, bool OmitOnError) { if (OmitOnError && getDiags().hasErrorOccurred()) return; unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; } llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { return llvm::ConstantInt::get(SizeTy, size.getQuantity()); } void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, const NamedDecl *D) const { // Internal definitions always have default visibility. if (GV->hasLocalLinkage()) { GV->setVisibility(llvm::GlobalValue::DefaultVisibility); return; } // Set visibility for definitions. NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) GV->setVisibility(GetLLVMVisibility(LV.visibility())); } /// Set the symbol visibility of type information (vtable and RTTI) /// associated with the given type. void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, const CXXRecordDecl *RD, TypeVisibilityKind TVK) const { setGlobalVisibility(GV, RD); if (!CodeGenOpts.HiddenWeakVTables) return; // We never want to drop the visibility for RTTI names. if (TVK == TVK_ForRTTIName) return; // We want to drop the visibility to hidden for weak type symbols. // This isn't possible if there might be unresolved references // elsewhere that rely on this symbol being visible. // This should be kept roughly in sync with setThunkVisibility // in CGVTables.cpp. // Preconditions. if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) return; // Don't override an explicit visibility attribute. if (RD->getExplicitVisibility()) return; switch (RD->getTemplateSpecializationKind()) { // We have to disable the optimization if this is an EI definition // because there might be EI declarations in other shared objects. case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitInstantiationDeclaration: return; // Every use of a non-template class's type information has to emit it. case TSK_Undeclared: break; // In theory, implicit instantiations can ignore the possibility of // an explicit instantiation declaration because there necessarily // must be an EI definition somewhere with default visibility. In // practice, it's possible to have an explicit instantiation for // an arbitrary template class, and linkers aren't necessarily able // to deal with mixed-visibility symbols. case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: if (!CodeGenOpts.HiddenWeakTemplateVTables) return; break; } // If there's a key function, there may be translation units // that don't have the key function's definition. But ignore // this if we're emitting RTTI under -fno-rtti. if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { if (Context.getKeyFunction(RD)) return; } // Otherwise, drop the visibility to hidden. GV->setVisibility(llvm::GlobalValue::HiddenVisibility); GV->setUnnamedAddr(true); } StringRef CodeGenModule::getMangledName(GlobalDecl GD) { const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; if (!Str.empty()) return Str; if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { IdentifierInfo *II = ND->getIdentifier(); assert(II && "Attempt to mangle unnamed decl."); Str = II->getName(); return Str; } SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) getCXXABI().getMangleContext().mangleBlock(BD, Out); else getCXXABI().getMangleContext().mangleName(ND, Out); // Allocate space for the mangled name. Out.flush(); size_t Length = Buffer.size(); char *Name = MangledNamesAllocator.Allocate<char>(Length); std::copy(Buffer.begin(), Buffer.end(), Name); Str = StringRef(Name, Length); return Str; } void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, const BlockDecl *BD) { MangleContext &MangleCtx = getCXXABI().getMangleContext(); const Decl *D = GD.getDecl(); llvm::raw_svector_ostream Out(Buffer.getBuffer()); if (D == 0) MangleCtx.mangleGlobalBlock(BD, Out); else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); else MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); } llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { return getModule().getNamedValue(Name); } /// AddGlobalCtor - Add a function to the list that will be called before /// main() runs. void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { // FIXME: Type coercion of void()* types. GlobalCtors.push_back(std::make_pair(Ctor, Priority)); } /// AddGlobalDtor - Add a function to the list that will be called /// when the module is unloaded. void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { // FIXME: Type coercion of void()* types. GlobalDtors.push_back(std::make_pair(Dtor, Priority)); } void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { // Ctor function type is void()*. llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); // Get the type of a ctor entry, { i32, void ()* }. llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); // Construct the constructor and destructor arrays. SmallVector<llvm::Constant*, 8> Ctors; for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { llvm::Constant *S[] = { llvm::ConstantInt::get(Int32Ty, I->second, false), llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) }; Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); } if (!Ctors.empty()) { llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); new llvm::GlobalVariable(TheModule, AT, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(AT, Ctors), GlobalName); } } llvm::GlobalValue::LinkageTypes CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); if (Linkage == GVA_Internal) return llvm::Function::InternalLinkage; if (D->hasAttr<DLLExportAttr>()) return llvm::Function::DLLExportLinkage; if (D->hasAttr<WeakAttr>()) return llvm::Function::WeakAnyLinkage; // In C99 mode, 'inline' functions are guaranteed to have a strong // definition somewhere else, so we can use available_externally linkage. if (Linkage == GVA_C99Inline) return llvm::Function::AvailableExternallyLinkage; // Note that Apple's kernel linker doesn't support symbol // coalescing, so we need to avoid linkonce and weak linkages there. // Normally, this means we just map to internal, but for explicit // instantiations we'll map to external. // In C++, the compiler has to emit a definition in every translation unit // that references the function. We should use linkonce_odr because // a) if all references in this translation unit are optimized away, we // don't need to codegen it. b) if the function persists, it needs to be // merged with other definitions. c) C++ has the ODR, so we know the // definition is dependable. if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage : llvm::Function::InternalLinkage; // An explicit instantiation of a template has weak linkage, since // explicit instantiations can occur in multiple translation units // and must all be equivalent. However, we are not allowed to // throw away these explicit instantiations. if (Linkage == GVA_ExplicitTemplateInstantiation) return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage : llvm::Function::ExternalLinkage; // Otherwise, we have strong external linkage. assert(Linkage == GVA_StrongExternal); return llvm::Function::ExternalLinkage; } /// SetFunctionDefinitionAttributes - Set attributes for a global. /// /// FIXME: This is currently only done for aliases and functions, but not for /// variables (these details are set in EmitGlobalVarDefinition for variables). void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, llvm::GlobalValue *GV) { SetCommonAttributes(D, GV); } void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, const CGFunctionInfo &Info, llvm::Function *F) { unsigned CallingConv; AttributeListType AttributeList; ConstructAttributeList(Info, D, AttributeList, CallingConv); F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), AttributeList.size())); F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); } /// Determines whether the language options require us to model /// unwind exceptions. We treat -fexceptions as mandating this /// except under the fragile ObjC ABI with only ObjC exceptions /// enabled. This means, for example, that C with -fexceptions /// enables this. static bool hasUnwindExceptions(const LangOptions &LangOpts) { // If exceptions are completely disabled, obviously this is false. if (!LangOpts.Exceptions) return false; // If C++ exceptions are enabled, this is true. if (LangOpts.CXXExceptions) return true; // If ObjC exceptions are enabled, this depends on the ABI. if (LangOpts.ObjCExceptions) { if (!LangOpts.ObjCNonFragileABI) return false; } return true; } void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, llvm::Function *F) { if (CodeGenOpts.UnwindTables) F->setHasUWTable(); if (!hasUnwindExceptions(LangOpts)) F->addFnAttr(llvm::Attribute::NoUnwind); if (D->hasAttr<NakedAttr>()) { // Naked implies noinline: we should not be inlining such functions. F->addFnAttr(llvm::Attribute::Naked); F->addFnAttr(llvm::Attribute::NoInline); } if (D->hasAttr<NoInlineAttr>()) F->addFnAttr(llvm::Attribute::NoInline); // (noinline wins over always_inline, and we can't specify both in IR) if (D->hasAttr<AlwaysInlineAttr>() && !F->hasFnAttr(llvm::Attribute::NoInline)) F->addFnAttr(llvm::Attribute::AlwaysInline); if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) F->setUnnamedAddr(true); if (LangOpts.getStackProtector() == LangOptions::SSPOn) F->addFnAttr(llvm::Attribute::StackProtect); else if (LangOpts.getStackProtector() == LangOptions::SSPReq) F->addFnAttr(llvm::Attribute::StackProtectReq); if (LangOpts.AddressSanitizer) { // When AddressSanitizer is enabled, set AddressSafety attribute // unless __attribute__((no_address_safety_analysis)) is used. if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) F->addFnAttr(llvm::Attribute::AddressSafety); } unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); if (alignment) F->setAlignment(alignment); // C++ ABI requires 2-byte alignment for member functions. if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) F->setAlignment(2); } void CodeGenModule::SetCommonAttributes(const Decl *D, llvm::GlobalValue *GV) { if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) setGlobalVisibility(GV, ND); else GV->setVisibility(llvm::GlobalValue::DefaultVisibility); if (D->hasAttr<UsedAttr>()) AddUsedGlobal(GV); if (const SectionAttr *SA = D->getAttr<SectionAttr>()) GV->setSection(SA->getName()); getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); } void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, llvm::Function *F, const CGFunctionInfo &FI) { SetLLVMFunctionAttributes(D, FI, F); SetLLVMFunctionAttributesForDefinition(D, F); F->setLinkage(llvm::Function::InternalLinkage); SetCommonAttributes(D, F); } void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, bool IsIncompleteFunction) { if (unsigned IID = F->getIntrinsicID()) { // If this is an intrinsic function, set the function's attributes // to the intrinsic's attributes. F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); return; } const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); if (!IsIncompleteFunction) SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); // Only a few attributes are set on declarations; these may later be // overridden by a definition. if (FD->hasAttr<DLLImportAttr>()) { F->setLinkage(llvm::Function::DLLImportLinkage); } else if (FD->hasAttr<WeakAttr>() || FD->isWeakImported()) { // "extern_weak" is overloaded in LLVM; we probably should have // separate linkage types for this. F->setLinkage(llvm::Function::ExternalWeakLinkage); } else { F->setLinkage(llvm::Function::ExternalLinkage); NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { F->setVisibility(GetLLVMVisibility(LV.visibility())); } } if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) F->setSection(SA->getName()); } void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { assert(!GV->isDeclaration() && "Only globals with definition can force usage."); LLVMUsed.push_back(GV); } void CodeGenModule::EmitLLVMUsed() { // Don't create llvm.used if there is no need. if (LLVMUsed.empty()) return; // Convert LLVMUsed to what ConstantArray needs. SmallVector<llvm::Constant*, 8> UsedArray; UsedArray.resize(LLVMUsed.size()); for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { UsedArray[i] = llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), Int8PtrTy); } if (UsedArray.empty()) return; llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, UsedArray), "llvm.used"); GV->setSection("llvm.metadata"); } void CodeGenModule::EmitDeferred() { // Emit code for any potentially referenced deferred decls. Since a // previously unused static decl may become used during the generation of code // for a static function, iterate until no changes are made. while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { if (!DeferredVTables.empty()) { const CXXRecordDecl *RD = DeferredVTables.back(); DeferredVTables.pop_back(); getVTables().GenerateClassData(getVTableLinkage(RD), RD); continue; } GlobalDecl D = DeferredDeclsToEmit.back(); DeferredDeclsToEmit.pop_back(); // Check to see if we've already emitted this. This is necessary // for a couple of reasons: first, decls can end up in the // deferred-decls queue multiple times, and second, decls can end // up with definitions in unusual ways (e.g. by an extern inline // function acquiring a strong function redefinition). Just // ignore these cases. // // TODO: That said, looking this up multiple times is very wasteful. StringRef Name = getMangledName(D); llvm::GlobalValue *CGRef = GetGlobalValue(Name); assert(CGRef && "Deferred decl wasn't referenced?"); if (!CGRef->isDeclaration()) continue; // GlobalAlias::isDeclaration() defers to the aliasee, but for our // purposes an alias counts as a definition. if (isa<llvm::GlobalAlias>(CGRef)) continue; // Otherwise, emit the definition and move on to the next one. EmitGlobalDefinition(D); } } void CodeGenModule::EmitGlobalAnnotations() { if (Annotations.empty()) return; // Create a new global variable for the ConstantStruct in the Module. llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( Annotations[0]->getType(), Annotations.size()), Annotations); llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, "llvm.global.annotations"); gv->setSection(AnnotationSection); } llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); if (i != AnnotationStrings.end()) return i->second; // Not found yet, create a new global. llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, ".str"); gv->setSection(AnnotationSection); gv->setUnnamedAddr(true); AnnotationStrings[Str] = gv; return gv; } llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { SourceManager &SM = getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc); if (PLoc.isValid()) return EmitAnnotationString(PLoc.getFilename()); return EmitAnnotationString(SM.getBufferName(Loc)); } llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { SourceManager &SM = getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(L); unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : SM.getExpansionLineNumber(L); return llvm::ConstantInt::get(Int32Ty, LineNo); } llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, const AnnotateAttr *AA, SourceLocation L) { // Get the globals for file name, annotation, and the line number. llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), *UnitGV = EmitAnnotationUnit(L), *LineNoCst = EmitAnnotationLineNo(L); // Create the ConstantStruct for the global annotation. llvm::Constant *Fields[4] = { llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), LineNoCst }; return llvm::ConstantStruct::getAnon(Fields); } void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, llvm::GlobalValue *GV) { assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); // Get the struct elements for these annotations. for (specific_attr_iterator<AnnotateAttr> ai = D->specific_attr_begin<AnnotateAttr>(), ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); } bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { // Never defer when EmitAllDecls is specified. if (LangOpts.EmitAllDecls) return false; return !getContext().DeclMustBeEmitted(Global); } llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { const AliasAttr *AA = VD->getAttr<AliasAttr>(); assert(AA && "No alias?"); llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); // See if there is already something with the target's name in the module. llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); llvm::Constant *Aliasee; if (isa<llvm::FunctionType>(DeclTy)) Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), /*ForVTable=*/false); else Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), llvm::PointerType::getUnqual(DeclTy), 0); if (!Entry) { llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); F->setLinkage(llvm::Function::ExternalWeakLinkage); WeakRefReferences.insert(F); } return Aliasee; } void CodeGenModule::EmitGlobal(GlobalDecl GD) { const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); // Weak references don't produce any output by themselves. if (Global->hasAttr<WeakRefAttr>()) return; // If this is an alias definition (which otherwise looks like a declaration) // emit it now. if (Global->hasAttr<AliasAttr>()) return EmitAliasDefinition(GD); // If this is CUDA, be selective about which declarations we emit. if (LangOpts.CUDA) { if (CodeGenOpts.CUDAIsDevice) { if (!Global->hasAttr<CUDADeviceAttr>() && !Global->hasAttr<CUDAGlobalAttr>() && !Global->hasAttr<CUDAConstantAttr>() && !Global->hasAttr<CUDASharedAttr>()) return; } else { if (!Global->hasAttr<CUDAHostAttr>() && ( Global->hasAttr<CUDADeviceAttr>() || Global->hasAttr<CUDAConstantAttr>() || Global->hasAttr<CUDASharedAttr>())) return; } } // Ignore declarations, they will be emitted on their first use. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { // Forward declarations are emitted lazily on first use. if (!FD->doesThisDeclarationHaveABody()) { if (!FD->doesDeclarationForceExternallyVisibleDefinition()) return; const FunctionDecl *InlineDefinition = 0; FD->getBody(InlineDefinition); StringRef MangledName = getMangledName(GD); DeferredDecls.erase(MangledName); EmitGlobalDefinition(InlineDefinition); return; } } else { const VarDecl *VD = cast<VarDecl>(Global); assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); if (VD->isThisDeclarationADefinition() != VarDecl::Definition) return; } // Defer code generation when possible if this is a static definition, inline // function etc. These we only want to emit if they are used. if (!MayDeferGeneration(Global)) { // Emit the definition if it can't be deferred. EmitGlobalDefinition(GD); return; } // If we're deferring emission of a C++ variable with an // initializer, remember the order in which it appeared in the file. if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && cast<VarDecl>(Global)->hasInit()) { DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); CXXGlobalInits.push_back(0); } // If the value has already been used, add it directly to the // DeferredDeclsToEmit list. StringRef MangledName = getMangledName(GD); if (GetGlobalValue(MangledName)) DeferredDeclsToEmit.push_back(GD); else { // Otherwise, remember that we saw a deferred decl with this name. The // first use of the mangled name will cause it to move into // DeferredDeclsToEmit. DeferredDecls[MangledName] = GD; } } namespace { struct FunctionIsDirectlyRecursive : public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { const StringRef Name; const Builtin::Context &BI; bool Result; FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : Name(N), BI(C), Result(false) { } typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; bool TraverseCallExpr(CallExpr *E) { const FunctionDecl *FD = E->getDirectCallee(); if (!FD) return true; AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); if (Attr && Name == Attr->getLabel()) { Result = true; return false; } unsigned BuiltinID = FD->getBuiltinID(); if (!BuiltinID) return true; StringRef BuiltinName = BI.GetName(BuiltinID); if (BuiltinName.startswith("__builtin_") && Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { Result = true; return false; } return true; } }; } // isTriviallyRecursive - Check if this function calls another // decl that, because of the asm attribute or the other decl being a builtin, // ends up pointing to itself. bool CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { StringRef Name; if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { // asm labels are a special kind of mangling we have to support. AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); if (!Attr) return false; Name = Attr->getLabel(); } else { Name = FD->getName(); } FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); return Walker.Result; } bool CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) return true; if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) return false; // PR9614. Avoid cases where the source code is lying to us. An available // externally function should have an equivalent function somewhere else, // but a function that calls itself is clearly not equivalent to the real // implementation. // This happens in glibc's btowc and in some configure checks. return !isTriviallyRecursive(F); } void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), Context.getSourceManager(), "Generating code for declaration"); if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { // At -O0, don't generate IR for functions with available_externally // linkage. if (!shouldEmitFunction(Function)) return; if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { // Make sure to emit the definition(s) before we emit the thunks. // This is necessary for the generation of certain thunks. if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) EmitCXXConstructor(CD, GD.getCtorType()); else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) EmitCXXDestructor(DD, GD.getDtorType()); else EmitGlobalFunctionDefinition(GD); if (Method->isVirtual()) getVTables().EmitThunks(GD); return; } return EmitGlobalFunctionDefinition(GD); } if (const VarDecl *VD = dyn_cast<VarDecl>(D)) return EmitGlobalVarDefinition(VD); llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); } /// GetOrCreateLLVMFunction - If the specified mangled name is not in the /// module, create and return an llvm Function with the specified type. If there /// is something in the module with the specified name, return it potentially /// bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the function when it is first created. llvm::Constant * CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, llvm::Type *Ty, GlobalDecl D, bool ForVTable, llvm::Attributes ExtraAttrs) { // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry) { if (WeakRefReferences.count(Entry)) { const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); if (FD && !FD->hasAttr<WeakAttr>()) Entry->setLinkage(llvm::Function::ExternalLinkage); WeakRefReferences.erase(Entry); } if (Entry->getType()->getElementType() == Ty) return Entry; // Make sure the result is of the correct type. return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); } // This function doesn't have a complete type (for example, the return // type is an incomplete struct). Use a fake type instead, and make // sure not to try to set attributes. bool IsIncompleteFunction = false; llvm::FunctionType *FTy; if (isa<llvm::FunctionType>(Ty)) { FTy = cast<llvm::FunctionType>(Ty); } else { FTy = llvm::FunctionType::get(VoidTy, false); IsIncompleteFunction = true; } llvm::Function *F = llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, MangledName, &getModule()); assert(F->getName() == MangledName && "name was uniqued!"); if (D.getDecl()) SetFunctionAttributes(D, F, IsIncompleteFunction); if (ExtraAttrs != llvm::Attribute::None) F->addFnAttr(ExtraAttrs); // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the DeferredDeclsToEmit // list, and remove it from DeferredDecls (since we don't need it anymore). DeferredDeclsToEmit.push_back(DDI->second); DeferredDecls.erase(DDI); // Otherwise, there are cases we have to worry about where we're // using a declaration for which we must emit a definition but where // we might not find a top-level definition: // - member functions defined inline in their classes // - friend functions defined inline in some class // - special member functions with implicit definitions // If we ever change our AST traversal to walk into class methods, // this will be unnecessary. // // We also don't emit a definition for a function if it's going to be an entry // in a vtable, unless it's already marked as used. } else if (getLangOpts().CPlusPlus && D.getDecl()) { // Look for a declaration that's lexically in a record. const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); do { if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { if (FD->isImplicit() && !ForVTable) { assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); break; } else if (FD->doesThisDeclarationHaveABody()) { DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); break; } } FD = FD->getPreviousDecl(); } while (FD); } // Make sure the result is of the requested type. if (!IsIncompleteFunction) { assert(F->getType()->getElementType() == Ty); return F; } llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); return llvm::ConstantExpr::getBitCast(F, PTy); } /// GetAddrOfFunction - Return the address of the given function. If Ty is /// non-null, then this function will use the specified type if it has to /// create it (this occurs when we see a definition of the function). llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable) { // If there was no specific requested type, just convert it now. if (!Ty) Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); StringRef MangledName = getMangledName(GD); return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); } /// CreateRuntimeFunction - Create a new runtime function with the specified /// type and name. llvm::Constant * CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, llvm::Attributes ExtraAttrs) { return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, ExtraAttrs); } /// isTypeConstant - Determine whether an object of this type can be emitted /// as a constant. /// /// If ExcludeCtor is true, the duration when the object's constructor runs /// will not be considered. The caller will need to verify that the object is /// not written to during its construction. bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { if (!Ty.isConstant(Context) && !Ty->isReferenceType()) return false; if (Context.getLangOpts().CPlusPlus) { if (const CXXRecordDecl *Record = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) return ExcludeCtor && !Record->hasMutableFields() && Record->hasTrivialDestructor(); } return true; } /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, /// create and return an llvm GlobalVariable with the specified type. If there /// is something in the module with the specified name, return it potentially /// bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the global when it is first created. llvm::Constant * CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::PointerType *Ty, const VarDecl *D, bool UnnamedAddr) { // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry) { if (WeakRefReferences.count(Entry)) { if (D && !D->hasAttr<WeakAttr>()) Entry->setLinkage(llvm::Function::ExternalLinkage); WeakRefReferences.erase(Entry); } if (UnnamedAddr) Entry->setUnnamedAddr(true); if (Entry->getType() == Ty) return Entry; // Make sure the result is of the correct type. return llvm::ConstantExpr::getBitCast(Entry, Ty); } // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the DeferredDeclsToEmit // list, and remove it from DeferredDecls (since we don't need it anymore). DeferredDeclsToEmit.push_back(DDI->second); DeferredDecls.erase(DDI); } llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, llvm::GlobalValue::ExternalLinkage, 0, MangledName, 0, false, Ty->getAddressSpace()); // Handle things which are present even on external declarations. if (D) { // FIXME: This code is overly simple and should be merged with other global // handling. GV->setConstant(isTypeConstant(D->getType(), false)); // Set linkage and visibility in case we never see a definition. NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); if (LV.linkage() != ExternalLinkage) { // Don't set internal linkage on declarations. } else { if (D->hasAttr<DLLImportAttr>()) GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); // Set visibility on a declaration only if it's explicit. if (LV.visibilityExplicit()) GV->setVisibility(GetLLVMVisibility(LV.visibility())); } GV->setThreadLocal(D->isThreadSpecified()); } return GV; } llvm::GlobalVariable * CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage) { llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); llvm::GlobalVariable *OldGV = 0; if (GV) { // Check if the variable has the right type. if (GV->getType()->getElementType() == Ty) return GV; // Because C++ name mangling, the only way we can end up with an already // existing global with the same name is if it has been declared extern "C". assert(GV->isDeclaration() && "Declaration has wrong type!"); OldGV = GV; } // Create a new variable. GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, Linkage, 0, Name); if (OldGV) { // Replace occurrences of the old variable if needed. GV->takeName(OldGV); if (!OldGV->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtrForOldDecl); } OldGV->eraseFromParent(); } return GV; } /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the /// given global variable. If Ty is non-null and if the global doesn't exist, /// then it will be created with the specified type instead of whatever the /// normal requested type would be. llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, llvm::Type *Ty) { assert(D->hasGlobalStorage() && "Not a global variable"); QualType ASTTy = D->getType(); if (Ty == 0) Ty = getTypes().ConvertTypeForMem(ASTTy); llvm::PointerType *PTy = llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); StringRef MangledName = getMangledName(D); return GetOrCreateLLVMGlobal(MangledName, PTy, D); } /// CreateRuntimeVariable - Create a new runtime global variable with the /// specified type and name. llvm::Constant * CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, StringRef Name) { return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, true); } void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { assert(!D->getInit() && "Cannot emit definite definitions here!"); if (MayDeferGeneration(D)) { // If we have not seen a reference to this variable yet, place it // into the deferred declarations table to be emitted if needed // later. StringRef MangledName = getMangledName(D); if (!GetGlobalValue(MangledName)) { DeferredDecls[MangledName] = D; return; } } // The tentative definition is the only definition. EmitGlobalVarDefinition(D); } void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { if (DefinitionRequired) getVTables().GenerateClassData(getVTableLinkage(Class), Class); } llvm::GlobalVariable::LinkageTypes CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { if (RD->getLinkage() != ExternalLinkage) return llvm::GlobalVariable::InternalLinkage; if (const CXXMethodDecl *KeyFunction = RD->getASTContext().getKeyFunction(RD)) { // If this class has a key function, use that to determine the linkage of // the vtable. const FunctionDecl *Def = 0; if (KeyFunction->hasBody(Def)) KeyFunction = cast<CXXMethodDecl>(Def); switch (KeyFunction->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: // When compiling with optimizations turned on, we emit all vtables, // even if the key function is not defined in the current translation // unit. If this is the case, use available_externally linkage. if (!Def && CodeGenOpts.OptimizationLevel) return llvm::GlobalVariable::AvailableExternallyLinkage; if (KeyFunction->isInlined()) return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; return llvm::GlobalVariable::ExternalLinkage; case TSK_ImplicitInstantiation: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDefinition: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::WeakODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDeclaration: // FIXME: Use available_externally linkage. However, this currently // breaks LLVM's build due to undefined symbols. // return llvm::GlobalVariable::AvailableExternallyLinkage; return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; } } if (Context.getLangOpts().AppleKext) return llvm::Function::InternalLinkage; switch (RD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: // FIXME: Use available_externally linkage. However, this currently // breaks LLVM's build due to undefined symbols. // return llvm::GlobalVariable::AvailableExternallyLinkage; case TSK_ExplicitInstantiationDeclaration: return llvm::GlobalVariable::LinkOnceODRLinkage; case TSK_ExplicitInstantiationDefinition: return llvm::GlobalVariable::WeakODRLinkage; } llvm_unreachable("Invalid TemplateSpecializationKind!"); } CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { return Context.toCharUnitsFromBits( TheTargetData.getTypeStoreSizeInBits(Ty)); } llvm::Constant * CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, const Expr *rawInit) { ArrayRef<ExprWithCleanups::CleanupObject> cleanups; if (const ExprWithCleanups *withCleanups = dyn_cast<ExprWithCleanups>(rawInit)) { cleanups = withCleanups->getObjects(); rawInit = withCleanups->getSubExpr(); } const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); if (!init || !init->initializesStdInitializerList() || init->getNumInits() == 0) return 0; ASTContext &ctx = getContext(); unsigned numInits = init->getNumInits(); // FIXME: This check is here because we would otherwise silently miscompile // nested global std::initializer_lists. Better would be to have a real // implementation. for (unsigned i = 0; i < numInits; ++i) { const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); if (inner && inner->initializesStdInitializerList()) { ErrorUnsupported(inner, "nested global std::initializer_list"); return 0; } } // Synthesize a fake VarDecl for the array and initialize that. QualType elementType = init->getInit(0)->getType(); llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); QualType arrayType = ctx.getConstantArrayType(elementType, numElements, ArrayType::Normal, 0); IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( arrayType, D->getLocation()); VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( D->getDeclContext()), D->getLocStart(), D->getLocation(), name, arrayType, sourceInfo, SC_Static, SC_Static); // Now clone the InitListExpr to initialize the array instead. // Incredible hack: we want to use the existing InitListExpr here, so we need // to tell it that it no longer initializes a std::initializer_list. Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), const_cast<InitListExpr*>(init)->getInits(), init->getNumInits(), init->getRBraceLoc()); arrayInit->setType(arrayType); if (!cleanups.empty()) arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); backingArray->setInit(arrayInit); // Emit the definition of the array. EmitGlobalVarDefinition(backingArray); // Inspect the initializer list to validate it and determine its type. // FIXME: doing this every time is probably inefficient; caching would be nice RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); RecordDecl::field_iterator field = record->field_begin(); if (field == record->field_end()) { ErrorUnsupported(D, "weird std::initializer_list"); return 0; } QualType elementPtr = ctx.getPointerType(elementType.withConst()); // Start pointer. if (!ctx.hasSameType(field->getType(), elementPtr)) { ErrorUnsupported(D, "weird std::initializer_list"); return 0; } ++field; if (field == record->field_end()) { ErrorUnsupported(D, "weird std::initializer_list"); return 0; } bool isStartEnd = false; if (ctx.hasSameType(field->getType(), elementPtr)) { // End pointer. isStartEnd = true; } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { ErrorUnsupported(D, "weird std::initializer_list"); return 0; } // Now build an APValue representing the std::initializer_list. APValue initListValue(APValue::UninitStruct(), 0, 2); APValue &startField = initListValue.getStructField(0); APValue::LValuePathEntry startOffsetPathEntry; startOffsetPathEntry.ArrayIndex = 0; startField = APValue(APValue::LValueBase(backingArray), CharUnits::fromQuantity(0), llvm::makeArrayRef(startOffsetPathEntry), /*IsOnePastTheEnd=*/false, 0); if (isStartEnd) { APValue &endField = initListValue.getStructField(1); APValue::LValuePathEntry endOffsetPathEntry; endOffsetPathEntry.ArrayIndex = numInits; endField = APValue(APValue::LValueBase(backingArray), ctx.getTypeSizeInChars(elementType) * numInits, llvm::makeArrayRef(endOffsetPathEntry), /*IsOnePastTheEnd=*/true, 0); } else { APValue &sizeField = initListValue.getStructField(1); sizeField = APValue(llvm::APSInt(numElements)); } // Emit the constant for the initializer_list. llvm::Constant *llvmInit = EmitConstantValueForMemory(initListValue, D->getType()); assert(llvmInit && "failed to initialize as constant"); return llvmInit; } void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { llvm::Constant *Init = 0; QualType ASTTy = D->getType(); CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); bool NeedsGlobalCtor = false; bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); const VarDecl *InitDecl; const Expr *InitExpr = D->getAnyInitializer(InitDecl); if (!InitExpr) { // This is a tentative definition; tentative definitions are // implicitly initialized with { 0 }. // // Note that tentative definitions are only emitted at the end of // a translation unit, so they should never have incomplete // type. In addition, EmitTentativeDefinition makes sure that we // never attempt to emit a tentative definition if a real one // exists. A use may still exists, however, so we still may need // to do a RAUW. assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); Init = EmitNullConstant(D->getType()); } else { // If this is a std::initializer_list, emit the special initializer. Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); // An empty init list will perform zero-initialization, which happens // to be exactly what we want. // FIXME: It does so in a global constructor, which is *not* what we // want. if (!Init) Init = EmitConstantInit(*InitDecl); if (!Init) { QualType T = InitExpr->getType(); if (D->getType()->isReferenceType()) T = D->getType(); if (getLangOpts().CPlusPlus) { Init = EmitNullConstant(T); NeedsGlobalCtor = true; } else { ErrorUnsupported(D, "static initializer"); Init = llvm::UndefValue::get(getTypes().ConvertType(T)); } } else { // We don't need an initializer, so remove the entry for the delayed // initializer position (just in case this entry was delayed) if we // also don't need to register a destructor. if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) DelayedCXXInitPosition.erase(D); } } llvm::Type* InitType = Init->getType(); llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast || // all zero index gep. CE->getOpcode() == llvm::Instruction::GetElementPtr); Entry = CE->getOperand(0); } // Entry is now either a Function or GlobalVariable. llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); // We have a definition after a declaration with the wrong type. // We must make a new GlobalVariable* and update everything that used OldGV // (a declaration or tentative definition) with the new GlobalVariable* // (which will be a definition). // // This happens if there is a prototype for a global (e.g. // "extern int x[];") and then a definition of a different type (e.g. // "int x[10];"). This also happens when an initializer has a different type // from the type of the global (this happens with unions). if (GV == 0 || GV->getType()->getElementType() != InitType || GV->getType()->getAddressSpace() != getContext().getTargetAddressSpace(ASTTy)) { // Move the old entry aside so that we'll create a new one. Entry->setName(StringRef()); // Make a new global with the correct type, this is now guaranteed to work. GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); // Replace all uses of the old global with the new global llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(GV, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); // Erase the old global, since it is no longer used. cast<llvm::GlobalValue>(Entry)->eraseFromParent(); } if (D->hasAttr<AnnotateAttr>()) AddGlobalAnnotations(D, GV); GV->setInitializer(Init); // If it is safe to mark the global 'constant', do so now. GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && isTypeConstant(D->getType(), true)); GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); // Set the llvm linkage type as appropriate. llvm::GlobalValue::LinkageTypes Linkage = GetLLVMLinkageVarDefinition(D, GV); GV->setLinkage(Linkage); if (Linkage == llvm::GlobalVariable::CommonLinkage) // common vars aren't constant even if declared const. GV->setConstant(false); SetCommonAttributes(D, GV); // Emit the initializer function if necessary. if (NeedsGlobalCtor || NeedsGlobalDtor) EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); // Emit global variable debug information. if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitGlobalVariable(GV, D); } llvm::GlobalValue::LinkageTypes CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, llvm::GlobalVariable *GV) { GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); if (Linkage == GVA_Internal) return llvm::Function::InternalLinkage; else if (D->hasAttr<DLLImportAttr>()) return llvm::Function::DLLImportLinkage; else if (D->hasAttr<DLLExportAttr>()) return llvm::Function::DLLExportLinkage; else if (D->hasAttr<WeakAttr>()) { if (GV->isConstant()) return llvm::GlobalVariable::WeakODRLinkage; else return llvm::GlobalVariable::WeakAnyLinkage; } else if (Linkage == GVA_TemplateInstantiation || Linkage == GVA_ExplicitTemplateInstantiation) return llvm::GlobalVariable::WeakODRLinkage; else if (!getLangOpts().CPlusPlus && ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || D->getAttr<CommonAttr>()) && !D->hasExternalStorage() && !D->getInit() && !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && !D->getAttr<WeakImportAttr>()) { // Thread local vars aren't considered common linkage. return llvm::GlobalVariable::CommonLinkage; } return llvm::GlobalVariable::ExternalLinkage; } /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we /// implement a function with no prototype, e.g. "int foo() {}". If there are /// existing call uses of the old function in the module, this adjusts them to /// call the new function directly. /// /// This is not just a cleanup: the always_inline pass requires direct calls to /// functions to be able to inline them. If there is a bitcast in the way, it /// won't inline them. Instcombine normally deletes these calls, but it isn't /// run at -O0. static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, llvm::Function *NewFn) { // If we're redefining a global as a function, don't transform it. llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); if (OldFn == 0) return; llvm::Type *NewRetTy = NewFn->getReturnType(); SmallVector<llvm::Value*, 4> ArgList; for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); UI != E; ) { // TODO: Do invokes ever occur in C code? If so, we should handle them too. llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) llvm::CallSite CS(CI); if (!CI || !CS.isCallee(I)) continue; // If the return types don't match exactly, and if the call isn't dead, then // we can't transform this call. if (CI->getType() != NewRetTy && !CI->use_empty()) continue; // Get the attribute list. llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; llvm::AttrListPtr AttrList = CI->getAttributes(); // Get any return attributes. llvm::Attributes RAttrs = AttrList.getRetAttributes(); // Add the return attributes. if (RAttrs) AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); // If the function was passed too few arguments, don't transform. If extra // arguments were passed, we silently drop them. If any of the types // mismatch, we don't transform. unsigned ArgNo = 0; bool DontTransform = false; for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { if (CS.arg_size() == ArgNo || CS.getArgument(ArgNo)->getType() != AI->getType()) { DontTransform = true; break; } // Add any parameter attributes. if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); } if (DontTransform) continue; if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); // Okay, we can transform this. Create the new call instruction and copy // over the required information. ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); ArgList.clear(); if (!NewCall->getType()->isVoidTy()) NewCall->takeName(CI); NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), AttrVec.end())); NewCall->setCallingConv(CI->getCallingConv()); // Finally, remove the old call, replacing any uses with the new one. if (!CI->use_empty()) CI->replaceAllUsesWith(NewCall); // Copy debug location attached to CI. if (!CI->getDebugLoc().isUnknown()) NewCall->setDebugLoc(CI->getDebugLoc()); CI->eraseFromParent(); } } void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); // If we have a definition, this might be a deferred decl. If the // instantiation is explicit, make sure we emit it at the end. if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) GetAddrOfGlobalVar(VD); } void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); // Compute the function info and LLVM type. const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); // Get or create the prototype for the function. llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast); Entry = CE->getOperand(0); } if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); // If the types mismatch then we have to rewrite the definition. assert(OldFn->isDeclaration() && "Shouldn't replace non-declaration"); // F is the Function* for the one with the wrong type, we must make a new // Function* and update everything that used F (a declaration) with the new // Function* (which will be a definition). // // This happens if there is a prototype for a function // (e.g. "int f()") and then a definition of a different type // (e.g. "int f(int x)"). Move the old function aside so that it // doesn't interfere with GetAddrOfFunction. OldFn->setName(StringRef()); llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); // If this is an implementation of a function without a prototype, try to // replace any existing uses of the function (which may be calls) with uses // of the new function if (D->getType()->isFunctionNoProtoType()) { ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); OldFn->removeDeadConstantUsers(); } // Replace uses of F with the Function we will endow with a body. if (!Entry->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); } // Ok, delete the old function now, which is dead. OldFn->eraseFromParent(); Entry = NewFn; } // We need to set linkage and visibility on the function before // generating code for it because various parts of IR generation // want to propagate this information down (e.g. to local static // declarations). llvm::Function *Fn = cast<llvm::Function>(Entry); setFunctionLinkage(D, Fn); // FIXME: this is redundant with part of SetFunctionDefinitionAttributes setGlobalVisibility(Fn, D); CodeGenFunction(*this).GenerateCode(D, Fn, FI); SetFunctionDefinitionAttributes(D, Fn); SetLLVMFunctionAttributesForDefinition(D, Fn); if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) AddGlobalCtor(Fn, CA->getPriority()); if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) AddGlobalDtor(Fn, DA->getPriority()); if (D->hasAttr<AnnotateAttr>()) AddGlobalAnnotations(D, Fn); } void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); const AliasAttr *AA = D->getAttr<AliasAttr>(); assert(AA && "Not an alias?"); StringRef MangledName = getMangledName(GD); // If there is a definition in the module, then it wins over the alias. // This is dubious, but allow it to be safe. Just ignore the alias. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry && !Entry->isDeclaration()) return; llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); // Create a reference to the named value. This ensures that it is emitted // if a deferred decl. llvm::Constant *Aliasee; if (isa<llvm::FunctionType>(DeclTy)) Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), /*ForVTable=*/false); else Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), llvm::PointerType::getUnqual(DeclTy), 0); // Create the new alias itself, but don't set a name yet. llvm::GlobalValue *GA = new llvm::GlobalAlias(Aliasee->getType(), llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); if (Entry) { assert(Entry->isDeclaration()); // If there is a declaration in the module, then we had an extern followed // by the alias, as in: // extern int test6(); // ... // int test6() __attribute__((alias("test7"))); // // Remove it and replace uses of it with the alias. GA->takeName(Entry); Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, Entry->getType())); Entry->eraseFromParent(); } else { GA->setName(MangledName); } // Set attributes which are particular to an alias; this is a // specialization of the attributes which may be set on a global // variable/function. if (D->hasAttr<DLLExportAttr>()) { if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { // The dllexport attribute is ignored for undefined symbols. if (FD->hasBody()) GA->setLinkage(llvm::Function::DLLExportLinkage); } else { GA->setLinkage(llvm::Function::DLLExportLinkage); } } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || D->isWeakImported()) { GA->setLinkage(llvm::Function::WeakAnyLinkage); } SetCommonAttributes(D, GA); } llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, ArrayRef<llvm::Type*> Tys) { return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, Tys); } static llvm::StringMapEntry<llvm::Constant*> & GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, const StringLiteral *Literal, bool TargetIsLSB, bool &IsUTF16, unsigned &StringLength) { StringRef String = Literal->getString(); unsigned NumBytes = String.size(); // Check for simple case. if (!Literal->containsNonAsciiOrNull()) { StringLength = NumBytes; return Map.GetOrCreateValue(String); } // Otherwise, convert the UTF8 literals into a string of shorts. IsUTF16 = true; SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. const UTF8 *FromPtr = (UTF8 *)String.data(); UTF16 *ToPtr = &ToBuf[0]; (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, ToPtr + NumBytes, strictConversion); // ConvertUTF8toUTF16 returns the length in ToPtr. StringLength = ToPtr - &ToBuf[0]; // Add an explicit null. *ToPtr = 0; return Map. GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), (StringLength + 1) * 2)); } static llvm::StringMapEntry<llvm::Constant*> & GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, const StringLiteral *Literal, unsigned &StringLength) { StringRef String = Literal->getString(); StringLength = String.size(); return Map.GetOrCreateValue(String); } llvm::Constant * CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { unsigned StringLength = 0; bool isUTF16 = false; llvm::StringMapEntry<llvm::Constant*> &Entry = GetConstantCFStringEntry(CFConstantStringMap, Literal, getTargetData().isLittleEndian(), isUTF16, StringLength); if (llvm::Constant *C = Entry.getValue()) return C; llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; // If we don't already have it, get __CFConstantStringClassReference. if (!CFConstantStringClassRef) { llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Ty = llvm::ArrayType::get(Ty, 0); llvm::Constant *GV = CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); // Decay array -> ptr CFConstantStringClassRef = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); } QualType CFTy = getContext().getCFConstantStringType(); llvm::StructType *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); llvm::Constant *Fields[4]; // Class pointer. Fields[0] = CFConstantStringClassRef; // Flags. llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : llvm::ConstantInt::get(Ty, 0x07C8); // String pointer. llvm::Constant *C = 0; if (isUTF16) { ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), Entry.getKey().size() / 2); C = llvm::ConstantDataArray::get(VMContext, Arr); } else { C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); } llvm::GlobalValue::LinkageTypes Linkage; if (isUTF16) // FIXME: why do utf strings get "_" labels instead of "L" labels? Linkage = llvm::GlobalValue::InternalLinkage; else // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error // when using private linkage. It is not clear if this is a bug in ld // or a reasonable new restriction. Linkage = llvm::GlobalValue::LinkerPrivateLinkage; // Note: -fwritable-strings doesn't make the backing store strings of // CFStrings writable. (See <rdar://problem/10657500>) llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, Linkage, C, ".str"); GV->setUnnamedAddr(true); if (isUTF16) { CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); GV->setAlignment(Align.getQuantity()); } else { CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); GV->setAlignment(Align.getQuantity()); } // String. Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); if (isUTF16) // Cast the UTF16 string to the correct type. Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); // String length. Ty = getTypes().ConvertType(getContext().LongTy); Fields[3] = llvm::ConstantInt::get(Ty, StringLength); // The struct. C = llvm::ConstantStruct::get(STy, Fields); GV = new llvm::GlobalVariable(getModule(), C->getType(), true, llvm::GlobalVariable::PrivateLinkage, C, "_unnamed_cfstring_"); if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) GV->setSection(Sect); Entry.setValue(GV); return GV; } static RecordDecl * CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC, IdentifierInfo *Id) { SourceLocation Loc; if (Ctx.getLangOpts().CPlusPlus) return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); else return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); } llvm::Constant * CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { unsigned StringLength = 0; llvm::StringMapEntry<llvm::Constant*> &Entry = GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); if (llvm::Constant *C = Entry.getValue()) return C; llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; // If we don't already have it, get _NSConstantStringClassReference. if (!ConstantStringClassRef) { std::string StringClass(getLangOpts().ObjCConstantStringClass); llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); llvm::Constant *GV; if (LangOpts.ObjCNonFragileABI) { std::string str = StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" : "OBJC_CLASS_$_" + StringClass; GV = getObjCRuntime().GetClassGlobal(str); // Make sure the result is of the correct type. llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); ConstantStringClassRef = llvm::ConstantExpr::getBitCast(GV, PTy); } else { std::string str = StringClass.empty() ? "_NSConstantStringClassReference" : "_" + StringClass + "ClassReference"; llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); GV = CreateRuntimeVariable(PTy, str); // Decay array -> ptr ConstantStringClassRef = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); } } if (!NSConstantStringType) { // Construct the type for a constant NSString. RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, Context.getTranslationUnitDecl(), &Context.Idents.get("__builtin_NSString")); D->startDefinition(); QualType FieldTypes[3]; // const int *isa; FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); // const char *str; FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); // unsigned int length; FieldTypes[2] = Context.UnsignedIntTy; // Create fields for (unsigned i = 0; i < 3; ++i) { FieldDecl *Field = FieldDecl::Create(Context, D, SourceLocation(), SourceLocation(), 0, FieldTypes[i], /*TInfo=*/0, /*BitWidth=*/0, /*Mutable=*/false, /*HasInit=*/false); Field->setAccess(AS_public); D->addDecl(Field); } D->completeDefinition(); QualType NSTy = Context.getTagDeclType(D); NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); } llvm::Constant *Fields[3]; // Class pointer. Fields[0] = ConstantStringClassRef; // String pointer. llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); llvm::GlobalValue::LinkageTypes Linkage; bool isConstant; Linkage = llvm::GlobalValue::PrivateLinkage; isConstant = !LangOpts.WritableStrings; llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, ".str"); GV->setUnnamedAddr(true); CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); GV->setAlignment(Align.getQuantity()); Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); // String length. llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); Fields[2] = llvm::ConstantInt::get(Ty, StringLength); // The struct. C = llvm::ConstantStruct::get(NSConstantStringType, Fields); GV = new llvm::GlobalVariable(getModule(), C->getType(), true, llvm::GlobalVariable::PrivateLinkage, C, "_unnamed_nsstring_"); // FIXME. Fix section. if (const char *Sect = LangOpts.ObjCNonFragileABI ? getContext().getTargetInfo().getNSStringNonFragileABISection() : getContext().getTargetInfo().getNSStringSection()) GV->setSection(Sect); Entry.setValue(GV); return GV; } QualType CodeGenModule::getObjCFastEnumerationStateType() { if (ObjCFastEnumerationStateType.isNull()) { RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, Context.getTranslationUnitDecl(), &Context.Idents.get("__objcFastEnumerationState")); D->startDefinition(); QualType FieldTypes[] = { Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), Context.getPointerType(Context.UnsignedLongTy), Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), ArrayType::Normal, 0) }; for (size_t i = 0; i < 4; ++i) { FieldDecl *Field = FieldDecl::Create(Context, D, SourceLocation(), SourceLocation(), 0, FieldTypes[i], /*TInfo=*/0, /*BitWidth=*/0, /*Mutable=*/false, /*HasInit=*/false); Field->setAccess(AS_public); D->addDecl(Field); } D->completeDefinition(); ObjCFastEnumerationStateType = Context.getTagDeclType(D); } return ObjCFastEnumerationStateType; } llvm::Constant * CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { assert(!E->getType()->isPointerType() && "Strings are always arrays"); // Don't emit it as the address of the string, emit the string data itself // as an inline array. if (E->getCharByteWidth() == 1) { SmallString<64> Str(E->getString()); // Resize the string to the right size, which is indicated by its type. const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); Str.resize(CAT->getSize().getZExtValue()); return llvm::ConstantDataArray::getString(VMContext, Str, false); } llvm::ArrayType *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Wide strings have either 2-byte or 4-byte elements. if (ElemTy->getPrimitiveSizeInBits() == 16) { SmallVector<uint16_t, 32> Elements; Elements.reserve(NumElements); for(unsigned i = 0, e = E->getLength(); i != e; ++i) Elements.push_back(E->getCodeUnit(i)); Elements.resize(NumElements); return llvm::ConstantDataArray::get(VMContext, Elements); } assert(ElemTy->getPrimitiveSizeInBits() == 32); SmallVector<uint32_t, 32> Elements; Elements.reserve(NumElements); for(unsigned i = 0, e = E->getLength(); i != e; ++i) Elements.push_back(E->getCodeUnit(i)); Elements.resize(NumElements); return llvm::ConstantDataArray::get(VMContext, Elements); } /// GetAddrOfConstantStringFromLiteral - Return a pointer to a /// constant array for the given string literal. llvm::Constant * CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { CharUnits Align = getContext().getTypeAlignInChars(S->getType()); if (S->isAscii() || S->isUTF8()) { SmallString<64> Str(S->getString()); // Resize the string to the right size, which is indicated by its type. const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); Str.resize(CAT->getSize().getZExtValue()); return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); } // FIXME: the following does not memoize wide strings. llvm::Constant *C = GetConstantArrayFromStringLiteral(S); llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(),C->getType(), !LangOpts.WritableStrings, llvm::GlobalValue::PrivateLinkage, C,".str"); GV->setAlignment(Align.getQuantity()); GV->setUnnamedAddr(true); return GV; } /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant /// array for the given ObjCEncodeExpr node. llvm::Constant * CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { std::string Str; getContext().getObjCEncodingForType(E->getEncodedType(), Str); return GetAddrOfConstantCString(Str); } /// GenerateWritableString -- Creates storage for a string literal. static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, bool constant, CodeGenModule &CGM, const char *GlobalName, unsigned Alignment) { // Create Constant for this string literal. Don't add a '\0'. llvm::Constant *C = llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); // Create a global variable for this string llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, llvm::GlobalValue::PrivateLinkage, C, GlobalName); GV->setAlignment(Alignment); GV->setUnnamedAddr(true); return GV; } /// GetAddrOfConstantString - Returns a pointer to a character array /// containing the literal. This contents are exactly that of the /// given string, i.e. it will not be null terminated automatically; /// see GetAddrOfConstantCString. Note that whether the result is /// actually a pointer to an LLVM constant depends on /// Feature.WriteableStrings. /// /// The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, const char *GlobalName, unsigned Alignment) { // Get the default prefix if a name wasn't specified. if (!GlobalName) GlobalName = ".str"; // Don't share any string literals if strings aren't constant. if (LangOpts.WritableStrings) return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = ConstantStringMap.GetOrCreateValue(Str); if (llvm::GlobalVariable *GV = Entry.getValue()) { if (Alignment > GV->getAlignment()) { GV->setAlignment(Alignment); } return GV; } // Create a global variable for this. llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); Entry.setValue(GV); return GV; } /// GetAddrOfConstantCString - Returns a pointer to a character /// array containing the literal and a terminating '\0' /// character. The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, const char *GlobalName, unsigned Alignment) { StringRef StrWithNull(Str.c_str(), Str.size() + 1); return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); } /// EmitObjCPropertyImplementations - Emit information for synthesized /// properties for an implementation. void CodeGenModule::EmitObjCPropertyImplementations(const ObjCImplementationDecl *D) { for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; // Dynamic is just for type-checking. if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { ObjCPropertyDecl *PD = PID->getPropertyDecl(); // Determine which methods need to be implemented, some may have // been overridden. Note that ::isSynthesized is not the method // we want, that just indicates if the decl came from a // property. What we want to know is if the method is defined in // this implementation. if (!D->getInstanceMethod(PD->getGetterName())) CodeGenFunction(*this).GenerateObjCGetter( const_cast<ObjCImplementationDecl *>(D), PID); if (!PD->isReadOnly() && !D->getInstanceMethod(PD->getSetterName())) CodeGenFunction(*this).GenerateObjCSetter( const_cast<ObjCImplementationDecl *>(D), PID); } } } static bool needsDestructMethod(ObjCImplementationDecl *impl) { const ObjCInterfaceDecl *iface = impl->getClassInterface(); for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); ivar; ivar = ivar->getNextIvar()) if (ivar->getType().isDestructedType()) return true; return false; } /// EmitObjCIvarInitializations - Emit information for ivar initialization /// for an implementation. void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { // We might need a .cxx_destruct even if we don't have any ivar initializers. if (needsDestructMethod(D)) { IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); Selector cxxSelector = getContext().Selectors.getSelector(0, &II); ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), cxxSelector, getContext().VoidTy, 0, D, /*isInstance=*/true, /*isVariadic=*/false, /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required); D->addInstanceMethod(DTORMethod); CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); D->setHasCXXStructors(true); } // If the implementation doesn't have any ivar initializers, we don't need // a .cxx_construct. if (D->getNumIvarInitializers() == 0) return; IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); Selector cxxSelector = getContext().Selectors.getSelector(0, &II); // The constructor returns 'self'. ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), cxxSelector, getContext().getObjCIdType(), 0, D, /*isInstance=*/true, /*isVariadic=*/false, /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required); D->addInstanceMethod(CTORMethod); CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); D->setHasCXXStructors(true); } /// EmitNamespace - Emit all declarations in a namespace. void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); I != E; ++I) EmitTopLevelDecl(*I); } // EmitLinkageSpec - Emit all declarations in a linkage spec. void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { if (LSD->getLanguage() != LinkageSpecDecl::lang_c && LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { ErrorUnsupported(LSD, "linkage spec"); return; } for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); I != E; ++I) EmitTopLevelDecl(*I); } /// EmitTopLevelDecl - Emit code for a single top level declaration. void CodeGenModule::EmitTopLevelDecl(Decl *D) { // If an error has occurred, stop code generation, but continue // parsing and semantic analysis (to ensure all warnings and errors // are emitted). if (Diags.hasErrorOccurred()) return; // Ignore dependent declarations. if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) return; switch (D->getKind()) { case Decl::CXXConversion: case Decl::CXXMethod: case Decl::Function: // Skip function templates if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || cast<FunctionDecl>(D)->isLateTemplateParsed()) return; EmitGlobal(cast<FunctionDecl>(D)); break; case Decl::Var: EmitGlobal(cast<VarDecl>(D)); break; // Indirect fields from global anonymous structs and unions can be // ignored; only the actual variable requires IR gen support. case Decl::IndirectField: break; // C++ Decls case Decl::Namespace: EmitNamespace(cast<NamespaceDecl>(D)); break; // No code generation needed. case Decl::UsingShadow: case Decl::Using: case Decl::UsingDirective: case Decl::ClassTemplate: case Decl::FunctionTemplate: case Decl::TypeAliasTemplate: case Decl::NamespaceAlias: case Decl::Block: case Decl::Import: break; case Decl::CXXConstructor: // Skip function templates if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || cast<FunctionDecl>(D)->isLateTemplateParsed()) return; EmitCXXConstructors(cast<CXXConstructorDecl>(D)); break; case Decl::CXXDestructor: if (cast<FunctionDecl>(D)->isLateTemplateParsed()) return; EmitCXXDestructors(cast<CXXDestructorDecl>(D)); break; case Decl::StaticAssert: // Nothing to do. break; // Objective-C Decls // Forward declarations, no (immediate) code generation. case Decl::ObjCInterface: break; case Decl::ObjCCategory: { ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); if (CD->IsClassExtension() && CD->hasSynthBitfield()) Context.ResetObjCLayout(CD->getClassInterface()); break; } case Decl::ObjCProtocol: { ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); if (Proto->isThisDeclarationADefinition()) ObjCRuntime->GenerateProtocol(Proto); break; } case Decl::ObjCCategoryImpl: // Categories have properties but don't support synthesize so we // can ignore them here. ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); break; case Decl::ObjCImplementation: { ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) Context.ResetObjCLayout(OMD->getClassInterface()); EmitObjCPropertyImplementations(OMD); EmitObjCIvarInitializations(OMD); ObjCRuntime->GenerateClass(OMD); // Emit global variable debug information. if (CGDebugInfo *DI = getModuleDebugInfo()) DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), OMD->getLocation()); break; } case Decl::ObjCMethod: { ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); // If this is not a prototype, emit the body. if (OMD->getBody()) CodeGenFunction(*this).GenerateObjCMethod(OMD); break; } case Decl::ObjCCompatibleAlias: ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); break; case Decl::LinkageSpec: EmitLinkageSpec(cast<LinkageSpecDecl>(D)); break; case Decl::FileScopeAsm: { FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); StringRef AsmString = AD->getAsmString()->getString(); const std::string &S = getModule().getModuleInlineAsm(); if (S.empty()) getModule().setModuleInlineAsm(AsmString); else if (*--S.end() == '\n') getModule().setModuleInlineAsm(S + AsmString.str()); else getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); break; } default: // Make sure we handled everything we should, every other kind is a // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind // function. Need to recode Decl::Kind to do that easily. assert(isa<TypeDecl>(D) && "Unsupported decl kind"); } } /// Turns the given pointer into a constant. static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, const void *Ptr) { uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); llvm::Type *i64 = llvm::Type::getInt64Ty(Context); return llvm::ConstantInt::get(i64, PtrInt); } static void EmitGlobalDeclMetadata(CodeGenModule &CGM, llvm::NamedMDNode *&GlobalMetadata, GlobalDecl D, llvm::GlobalValue *Addr) { if (!GlobalMetadata) GlobalMetadata = CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); // TODO: should we report variant information for ctors/dtors? llvm::Value *Ops[] = { Addr, GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) }; GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); } /// Emits metadata nodes associating all the global values in the /// current module with the Decls they came from. This is useful for /// projects using IR gen as a subroutine. /// /// Since there's currently no way to associate an MDNode directly /// with an llvm::GlobalValue, we create a global named metadata /// with the name 'clang.global.decl.ptrs'. void CodeGenModule::EmitDeclMetadata() { llvm::NamedMDNode *GlobalMetadata = 0; // StaticLocalDeclMap for (llvm::DenseMap<GlobalDecl,StringRef>::iterator I = MangledDeclNames.begin(), E = MangledDeclNames.end(); I != E; ++I) { llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); } } /// Emits metadata nodes for all the local variables in the current /// function. void CodeGenFunction::EmitDeclMetadata() { if (LocalDeclMap.empty()) return; llvm::LLVMContext &Context = getLLVMContext(); // Find the unique metadata ID for this name. unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); llvm::NamedMDNode *GlobalMetadata = 0; for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { const Decl *D = I->first; llvm::Value *Addr = I->second; if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); } } } void CodeGenModule::EmitCoverageFile() { if (!getCodeGenOpts().CoverageFile.empty()) { if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); llvm::LLVMContext &Ctx = TheModule.getContext(); llvm::MDString *CoverageFile = llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { llvm::MDNode *CU = CUNode->getOperand(i); llvm::Value *node[] = { CoverageFile, CU }; llvm::MDNode *N = llvm::MDNode::get(Ctx, node); GCov->addOperand(N); } } } }