Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h |
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the code that handles AST -> LLVM type lowering. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CODEGENTYPES_H #define CLANG_CODEGEN_CODEGENTYPES_H #include "CGCall.h" #include "clang/AST/GlobalDecl.h" #include "llvm/Module.h" #include "llvm/ADT/DenseMap.h" #include <vector> namespace llvm { class FunctionType; class Module; class TargetData; class Type; class LLVMContext; class StructType; } namespace clang { class ABIInfo; class ASTContext; template <typename> class CanQual; class CXXConstructorDecl; class CXXDestructorDecl; class CXXMethodDecl; class CodeGenOptions; class FieldDecl; class FunctionProtoType; class ObjCInterfaceDecl; class ObjCIvarDecl; class PointerType; class QualType; class RecordDecl; class TagDecl; class TargetInfo; class Type; typedef CanQual<Type> CanQualType; namespace CodeGen { class CGCXXABI; class CGRecordLayout; class CodeGenModule; class RequiredArgs; /// CodeGenTypes - This class organizes the cross-module state that is used /// while lowering AST types to LLVM types. class CodeGenTypes { // Some of this stuff should probably be left on the CGM. ASTContext &Context; const TargetInfo &Target; llvm::Module &TheModule; const llvm::TargetData &TheTargetData; const ABIInfo &TheABIInfo; CGCXXABI &TheCXXABI; const CodeGenOptions &CodeGenOpts; CodeGenModule &CGM; /// The opaque type map for Objective-C interfaces. All direct /// manipulation is done by the runtime interfaces, which are /// responsible for coercing to the appropriate type; these opaque /// types are never refined. llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes; /// CGRecordLayouts - This maps llvm struct type with corresponding /// record layout info. llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts; /// RecordDeclTypes - This contains the LLVM IR type for any converted /// RecordDecl. llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes; /// FunctionInfos - Hold memoized CGFunctionInfo results. llvm::FoldingSet<CGFunctionInfo> FunctionInfos; /// RecordsBeingLaidOut - This set keeps track of records that we're currently /// converting to an IR type. For example, when converting: /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B' /// types will be in this set. llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut; llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed; /// SkippedLayout - True if we didn't layout a function due to a being inside /// a recursive struct conversion, set this to true. bool SkippedLayout; SmallVector<const RecordDecl *, 8> DeferredRecords; private: /// TypeCache - This map keeps cache of llvm::Types /// and maps llvm::Types to corresponding clang::Type. llvm::DenseMap<const Type *, llvm::Type *> TypeCache; public: CodeGenTypes(CodeGenModule &CGM); ~CodeGenTypes(); const llvm::TargetData &getTargetData() const { return TheTargetData; } const TargetInfo &getTarget() const { return Target; } ASTContext &getContext() const { return Context; } const ABIInfo &getABIInfo() const { return TheABIInfo; } const CodeGenOptions &getCodeGenOpts() const { return CodeGenOpts; } CGCXXABI &getCXXABI() const { return TheCXXABI; } llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } /// ConvertType - Convert type T into a llvm::Type. llvm::Type *ConvertType(QualType T); /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from /// ConvertType in that it is used to convert to the memory representation for /// a type. For example, the scalar representation for _Bool is i1, but the /// memory representation is usually i8 or i32, depending on the target. llvm::Type *ConvertTypeForMem(QualType T); /// GetFunctionType - Get the LLVM function type for \arg Info. llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); llvm::FunctionType *GetFunctionType(GlobalDecl GD); /// isFuncTypeConvertible - Utility to check whether a function type can /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag /// type). bool isFuncTypeConvertible(const FunctionType *FT); bool isFuncTypeArgumentConvertible(QualType Ty); /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, /// given a CXXMethodDecl. If the method to has an incomplete return type, /// and/or incomplete argument types, this will return the opaque type. llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); const CGRecordLayout &getCGRecordLayout(const RecordDecl*); /// UpdateCompletedType - When we find the full definition for a TagDecl, /// replace the 'opaque' type we previously made for it if applicable. void UpdateCompletedType(const TagDecl *TD); /// getNullaryFunctionInfo - Get the function info for a void() /// function with standard CC. const CGFunctionInfo &arrangeNullaryFunction(); // The arrangement methods are split into three families: // - those meant to drive the signature and prologue/epilogue // of a function declaration or definition, // - those meant for the computation of the LLVM type for an abstract // appearance of a function, and // - those meant for performing the IR-generation of a call. // They differ mainly in how they deal with optional (i.e. variadic) // arguments, as well as unprototyped functions. // // Key points: // - The CGFunctionInfo for emitting a specific call site must include // entries for the optional arguments. // - The function type used at the call site must reflect the formal // signature of the declaration being called, or else the call will // go awry. // - For the most part, unprototyped functions are called by casting to // a formal signature inferred from the specific argument types used // at the call-site. However, some targets (e.g. x86-64) screw with // this for compatibility reasons. const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD); const CGFunctionInfo &arrangeFunctionDeclaration(QualType ResTy, const FunctionArgList &Args, const FunctionType::ExtInfo &Info, bool isVariadic); const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, QualType receiverType); const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); const CGFunctionInfo &arrangeCXXConstructorDeclaration( const CXXConstructorDecl *D, CXXCtorType Type); const CGFunctionInfo &arrangeCXXDestructor(const CXXDestructorDecl *D, CXXDtorType Type); const CGFunctionInfo &arrangeFunctionCall(const CallArgList &Args, const FunctionType *Ty); const CGFunctionInfo &arrangeFunctionCall(QualType ResTy, const CallArgList &args, const FunctionType::ExtInfo &info, RequiredArgs required); const CGFunctionInfo &arrangeFunctionType(CanQual<FunctionProtoType> Ty); const CGFunctionInfo &arrangeFunctionType(CanQual<FunctionNoProtoType> Ty); const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, const FunctionProtoType *FTP); /// Retrieves the ABI information for the given function signature. /// This is the "core" routine to which all the others defer. /// /// \param argTypes - must all actually be canonical as params const CGFunctionInfo &arrangeFunctionType(CanQualType returnType, ArrayRef<CanQualType> argTypes, const FunctionType::ExtInfo &info, RequiredArgs args); /// \brief Compute a new LLVM record layout object for the given record. CGRecordLayout *ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty); /// addRecordTypeName - Compute a name from the given record decl with an /// optional suffix and name the given LLVM type using it. void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, StringRef suffix); public: // These are internal details of CGT that shouldn't be used externally. /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); /// GetExpandedTypes - Expand the type \arg Ty into the LLVM /// argument types it would be passed as on the provided vector \arg /// ArgTys. See ABIArgInfo::Expand. void GetExpandedTypes(QualType type, SmallVectorImpl<llvm::Type*> &expanded); /// IsZeroInitializable - Return whether a type can be /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. bool isZeroInitializable(QualType T); /// IsZeroInitializable - Return whether a record type can be /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. bool isZeroInitializable(const CXXRecordDecl *RD); bool isRecordLayoutComplete(const Type *Ty) const; bool noRecordsBeingLaidOut() const { return RecordsBeingLaidOut.empty(); } bool isRecordBeingLaidOut(const Type *Ty) const { return RecordsBeingLaidOut.count(Ty); } }; } // end namespace CodeGen } // end namespace clang #endif