Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/Sema.cpp |
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the actions class which performs semantic analysis and // builds an AST out of a parse stream. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/DelayedDiagnostic.h" #include "TargetAttributesSema.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/APFloat.h" #include "clang/Sema/CXXFieldCollector.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/TargetInfo.h" using namespace clang; using namespace sema; FunctionScopeInfo::~FunctionScopeInfo() { } void FunctionScopeInfo::Clear() { HasBranchProtectedScope = false; HasBranchIntoScope = false; HasIndirectGoto = false; SwitchStack.clear(); Returns.clear(); ErrorTrap.reset(); PossiblyUnreachableDiags.clear(); } BlockScopeInfo::~BlockScopeInfo() { } LambdaScopeInfo::~LambdaScopeInfo() { } PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context, const Preprocessor &PP) { PrintingPolicy Policy = Context.getPrintingPolicy(); Policy.Bool = Context.getLangOpts().Bool; if (!Policy.Bool) { if (MacroInfo *BoolMacro = PP.getMacroInfo(&Context.Idents.get("bool"))) { Policy.Bool = BoolMacro->isObjectLike() && BoolMacro->getNumTokens() == 1 && BoolMacro->getReplacementToken(0).is(tok::kw__Bool); } } return Policy; } void Sema::ActOnTranslationUnitScope(Scope *S) { TUScope = S; PushDeclContext(S, Context.getTranslationUnitDecl()); VAListTagName = PP.getIdentifierInfo("__va_list_tag"); } Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter) : TheTargetAttributesSema(0), FPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp), Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()), CollectStats(false), ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0), OriginalLexicalContext(0), PackContext(0), MSStructPragmaOn(false), VisContext(0), ExprNeedsCleanups(false), LateTemplateParser(0), OpaqueParser(0), IdResolver(pp), StdInitializerList(0), CXXTypeInfoDecl(0), MSVCGuidDecl(0), NSNumberDecl(0), NSArrayDecl(0), ArrayWithObjectsMethod(0), NSDictionaryDecl(0), DictionaryWithObjectsMethod(0), GlobalNewDeleteDeclared(false), ObjCShouldCallSuperDealloc(false), ObjCShouldCallSuperFinalize(false), TUKind(TUKind), NumSFINAEErrors(0), InFunctionDeclarator(0), SuppressAccessChecking(false), AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1), CurrentInstantiationScope(0), TyposCorrected(0), AnalysisWarnings(*this) { TUScope = 0; LoadedExternalKnownNamespaces = false; for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I) NSNumberLiteralMethods[I] = 0; if (getLangOpts().ObjC1) NSAPIObj.reset(new NSAPI(Context)); if (getLangOpts().CPlusPlus) FieldCollector.reset(new CXXFieldCollector()); // Tell diagnostics how to render things from the AST library. PP.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context); ExprEvalContexts.push_back( ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0, false, 0, false)); FunctionScopes.push_back(new FunctionScopeInfo(Diags)); } void Sema::Initialize() { // Tell the AST consumer about this Sema object. Consumer.Initialize(Context); // FIXME: Isn't this redundant with the initialization above? if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) SC->InitializeSema(*this); // Tell the external Sema source about this Sema object. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) ExternalSema->InitializeSema(*this); // Initialize predefined 128-bit integer types, if needed. if (PP.getTargetInfo().getPointerWidth(0) >= 64) { // If either of the 128-bit integer types are unavailable to name lookup, // define them now. DeclarationName Int128 = &Context.Idents.get("__int128_t"); if (IdResolver.begin(Int128) == IdResolver.end()) PushOnScopeChains(Context.getInt128Decl(), TUScope); DeclarationName UInt128 = &Context.Idents.get("__uint128_t"); if (IdResolver.begin(UInt128) == IdResolver.end()) PushOnScopeChains(Context.getUInt128Decl(), TUScope); } // Initialize predefined Objective-C types: if (PP.getLangOpts().ObjC1) { // If 'SEL' does not yet refer to any declarations, make it refer to the // predefined 'SEL'. DeclarationName SEL = &Context.Idents.get("SEL"); if (IdResolver.begin(SEL) == IdResolver.end()) PushOnScopeChains(Context.getObjCSelDecl(), TUScope); // If 'id' does not yet refer to any declarations, make it refer to the // predefined 'id'. DeclarationName Id = &Context.Idents.get("id"); if (IdResolver.begin(Id) == IdResolver.end()) PushOnScopeChains(Context.getObjCIdDecl(), TUScope); // Create the built-in typedef for 'Class'. DeclarationName Class = &Context.Idents.get("Class"); if (IdResolver.begin(Class) == IdResolver.end()) PushOnScopeChains(Context.getObjCClassDecl(), TUScope); // Create the built-in forward declaratino for 'Protocol'. DeclarationName Protocol = &Context.Idents.get("Protocol"); if (IdResolver.begin(Protocol) == IdResolver.end()) PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope); } } Sema::~Sema() { if (PackContext) FreePackedContext(); if (VisContext) FreeVisContext(); delete TheTargetAttributesSema; MSStructPragmaOn = false; // Kill all the active scopes. for (unsigned I = 1, E = FunctionScopes.size(); I != E; ++I) delete FunctionScopes[I]; if (FunctionScopes.size() == 1) delete FunctionScopes[0]; // Tell the SemaConsumer to forget about us; we're going out of scope. if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) SC->ForgetSema(); // Detach from the external Sema source. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) ExternalSema->ForgetSema(); } /// makeUnavailableInSystemHeader - There is an error in the current /// context. If we're still in a system header, and we can plausibly /// make the relevant declaration unavailable instead of erroring, do /// so and return true. bool Sema::makeUnavailableInSystemHeader(SourceLocation loc, StringRef msg) { // If we're not in a function, it's an error. FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext); if (!fn) return false; // If we're in template instantiation, it's an error. if (!ActiveTemplateInstantiations.empty()) return false; // If that function's not in a system header, it's an error. if (!Context.getSourceManager().isInSystemHeader(loc)) return false; // If the function is already unavailable, it's not an error. if (fn->hasAttr<UnavailableAttr>()) return true; fn->addAttr(new (Context) UnavailableAttr(loc, Context, msg)); return true; } ASTMutationListener *Sema::getASTMutationListener() const { return getASTConsumer().GetASTMutationListener(); } /// \brief Print out statistics about the semantic analysis. void Sema::PrintStats() const { llvm::errs() << "\n*** Semantic Analysis Stats:\n"; llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n"; BumpAlloc.PrintStats(); AnalysisWarnings.PrintStats(); } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. /// If there is already an implicit cast, merge into the existing one. /// The result is of the given category. ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty, CastKind Kind, ExprValueKind VK, const CXXCastPath *BasePath, CheckedConversionKind CCK) { #ifndef NDEBUG if (VK == VK_RValue && !E->isRValue()) { switch (Kind) { default: assert(0 && "can't implicitly cast lvalue to rvalue with this cast kind"); case CK_LValueToRValue: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_ToVoid: break; } } assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue"); #endif QualType ExprTy = Context.getCanonicalType(E->getType()); QualType TypeTy = Context.getCanonicalType(Ty); if (ExprTy == TypeTy) return Owned(E); if (getLangOpts().ObjCAutoRefCount) CheckObjCARCConversion(SourceRange(), Ty, E, CCK); // If this is a derived-to-base cast to a through a virtual base, we // need a vtable. if (Kind == CK_DerivedToBase && BasePathInvolvesVirtualBase(*BasePath)) { QualType T = E->getType(); if (const PointerType *Pointer = T->getAs<PointerType>()) T = Pointer->getPointeeType(); if (const RecordType *RecordTy = T->getAs<RecordType>()) MarkVTableUsed(E->getLocStart(), cast<CXXRecordDecl>(RecordTy->getDecl())); } if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { ImpCast->setType(Ty); ImpCast->setValueKind(VK); return Owned(E); } } return Owned(ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK)); } /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) { switch (ScalarTy->getScalarTypeKind()) { case Type::STK_Bool: return CK_NoOp; case Type::STK_CPointer: return CK_PointerToBoolean; case Type::STK_BlockPointer: return CK_PointerToBoolean; case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean; case Type::STK_MemberPointer: return CK_MemberPointerToBoolean; case Type::STK_Integral: return CK_IntegralToBoolean; case Type::STK_Floating: return CK_FloatingToBoolean; case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean; case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean; } return CK_Invalid; } /// \brief Used to prune the decls of Sema's UnusedFileScopedDecls vector. static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { if (D->isUsed()) return true; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const FunctionDecl *DeclToCheck; if (FD->hasBody(DeclToCheck)) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = FD->getMostRecentDecl(); if (DeclToCheck != FD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const VarDecl *DeclToCheck = VD->getDefinition(); if (DeclToCheck) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = VD->getMostRecentDecl(); if (DeclToCheck != VD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } return false; } namespace { struct UndefinedInternal { NamedDecl *decl; FullSourceLoc useLoc; UndefinedInternal(NamedDecl *decl, FullSourceLoc useLoc) : decl(decl), useLoc(useLoc) {} }; bool operator<(const UndefinedInternal &l, const UndefinedInternal &r) { return l.useLoc.isBeforeInTranslationUnitThan(r.useLoc); } } /// checkUndefinedInternals - Check for undefined objects with internal linkage. static void checkUndefinedInternals(Sema &S) { if (S.UndefinedInternals.empty()) return; // Collect all the still-undefined entities with internal linkage. SmallVector<UndefinedInternal, 16> undefined; for (llvm::DenseMap<NamedDecl*,SourceLocation>::iterator i = S.UndefinedInternals.begin(), e = S.UndefinedInternals.end(); i != e; ++i) { NamedDecl *decl = i->first; // Ignore attributes that have become invalid. if (decl->isInvalidDecl()) continue; // __attribute__((weakref)) is basically a definition. if (decl->hasAttr<WeakRefAttr>()) continue; if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) { if (fn->isPure() || fn->hasBody()) continue; } else { if (cast<VarDecl>(decl)->hasDefinition() != VarDecl::DeclarationOnly) continue; } // We build a FullSourceLoc so that we can sort with array_pod_sort. FullSourceLoc loc(i->second, S.Context.getSourceManager()); undefined.push_back(UndefinedInternal(decl, loc)); } if (undefined.empty()) return; // Sort (in order of use site) so that we're not (as) dependent on // the iteration order through an llvm::DenseMap. llvm::array_pod_sort(undefined.begin(), undefined.end()); for (SmallVectorImpl<UndefinedInternal>::iterator i = undefined.begin(), e = undefined.end(); i != e; ++i) { NamedDecl *decl = i->decl; S.Diag(decl->getLocation(), diag::warn_undefined_internal) << isa<VarDecl>(decl) << decl; S.Diag(i->useLoc, diag::note_used_here); } } void Sema::LoadExternalWeakUndeclaredIdentifiers() { if (!ExternalSource) return; SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs; ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs); for (unsigned I = 0, N = WeakIDs.size(); I != N; ++I) { llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator Pos = WeakUndeclaredIdentifiers.find(WeakIDs[I].first); if (Pos != WeakUndeclaredIdentifiers.end()) continue; WeakUndeclaredIdentifiers.insert(WeakIDs[I]); } } /// ActOnEndOfTranslationUnit - This is called at the very end of the /// translation unit when EOF is reached and all but the top-level scope is /// popped. void Sema::ActOnEndOfTranslationUnit() { // Only complete translation units define vtables and perform implicit // instantiations. if (TUKind == TU_Complete) { DiagnoseUseOfUnimplementedSelectors(); // If any dynamic classes have their key function defined within // this translation unit, then those vtables are considered "used" and must // be emitted. for (DynamicClassesType::iterator I = DynamicClasses.begin(ExternalSource), E = DynamicClasses.end(); I != E; ++I) { assert(!(*I)->isDependentType() && "Should not see dependent types here!"); if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(*I)) { const FunctionDecl *Definition = 0; if (KeyFunction->hasBody(Definition)) MarkVTableUsed(Definition->getLocation(), *I, true); } } // If DefinedUsedVTables ends up marking any virtual member functions it // might lead to more pending template instantiations, which we then need // to instantiate. DefineUsedVTables(); // C++: Perform implicit template instantiations. // // FIXME: When we perform these implicit instantiations, we do not // carefully keep track of the point of instantiation (C++ [temp.point]). // This means that name lookup that occurs within the template // instantiation will always happen at the end of the translation unit, // so it will find some names that should not be found. Although this is // common behavior for C++ compilers, it is technically wrong. In the // future, we either need to be able to filter the results of name lookup // or we need to perform template instantiations earlier. PerformPendingInstantiations(); } // Remove file scoped decls that turned out to be used. UnusedFileScopedDecls.erase(std::remove_if(UnusedFileScopedDecls.begin(0, true), UnusedFileScopedDecls.end(), std::bind1st(std::ptr_fun(ShouldRemoveFromUnused), this)), UnusedFileScopedDecls.end()); if (TUKind == TU_Prefix) { // Translation unit prefixes don't need any of the checking below. TUScope = 0; return; } // Check for #pragma weak identifiers that were never declared // FIXME: This will cause diagnostics to be emitted in a non-determinstic // order! Iterating over a densemap like this is bad. LoadExternalWeakUndeclaredIdentifiers(); for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I = WeakUndeclaredIdentifiers.begin(), E = WeakUndeclaredIdentifiers.end(); I != E; ++I) { if (I->second.getUsed()) continue; Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared) << I->first; } if (TUKind == TU_Module) { // If we are building a module, resolve all of the exported declarations // now. if (Module *CurrentModule = PP.getCurrentModule()) { ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); llvm::SmallVector<Module *, 2> Stack; Stack.push_back(CurrentModule); while (!Stack.empty()) { Module *Mod = Stack.back(); Stack.pop_back(); // Resolve the exported declarations. // FIXME: Actually complain, once we figure out how to teach the // diagnostic client to deal with complains in the module map at this // point. ModMap.resolveExports(Mod, /*Complain=*/false); // Queue the submodules, so their exports will also be resolved. for (Module::submodule_iterator Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end(); Sub != SubEnd; ++Sub) { Stack.push_back(*Sub); } } } // Modules don't need any of the checking below. TUScope = 0; return; } // C99 6.9.2p2: // A declaration of an identifier for an object that has file // scope without an initializer, and without a storage-class // specifier or with the storage-class specifier static, // constitutes a tentative definition. If a translation unit // contains one or more tentative definitions for an identifier, // and the translation unit contains no external definition for // that identifier, then the behavior is exactly as if the // translation unit contains a file scope declaration of that // identifier, with the composite type as of the end of the // translation unit, with an initializer equal to 0. llvm::SmallSet<VarDecl *, 32> Seen; for (TentativeDefinitionsType::iterator T = TentativeDefinitions.begin(ExternalSource), TEnd = TentativeDefinitions.end(); T != TEnd; ++T) { VarDecl *VD = (*T)->getActingDefinition(); // If the tentative definition was completed, getActingDefinition() returns // null. If we've already seen this variable before, insert()'s second // return value is false. if (VD == 0 || VD->isInvalidDecl() || !Seen.insert(VD)) continue; if (const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(VD->getType())) { if (RequireCompleteType(VD->getLocation(), ArrayT->getElementType(), diag::err_tentative_def_incomplete_type_arr)) { VD->setInvalidDecl(); continue; } // Set the length of the array to 1 (C99 6.9.2p5). Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); QualType T = Context.getConstantArrayType(ArrayT->getElementType(), One, ArrayType::Normal, 0); VD->setType(T); } else if (RequireCompleteType(VD->getLocation(), VD->getType(), diag::err_tentative_def_incomplete_type)) VD->setInvalidDecl(); // Notify the consumer that we've completed a tentative definition. if (!VD->isInvalidDecl()) Consumer.CompleteTentativeDefinition(VD); } if (LangOpts.CPlusPlus0x && Diags.getDiagnosticLevel(diag::warn_delegating_ctor_cycle, SourceLocation()) != DiagnosticsEngine::Ignored) CheckDelegatingCtorCycles(); // If there were errors, disable 'unused' warnings since they will mostly be // noise. if (!Diags.hasErrorOccurred()) { // Output warning for unused file scoped decls. for (UnusedFileScopedDeclsType::iterator I = UnusedFileScopedDecls.begin(ExternalSource), E = UnusedFileScopedDecls.end(); I != E; ++I) { if (ShouldRemoveFromUnused(this, *I)) continue; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { const FunctionDecl *DiagD; if (!FD->hasBody(DiagD)) DiagD = FD; if (DiagD->isDeleted()) continue; // Deleted functions are supposed to be unused. if (DiagD->isReferenced()) { if (isa<CXXMethodDecl>(DiagD)) Diag(DiagD->getLocation(), diag::warn_unneeded_member_function) << DiagD->getDeclName(); else Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) << /*function*/0 << DiagD->getDeclName(); } else { Diag(DiagD->getLocation(), isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function : diag::warn_unused_function) << DiagD->getDeclName(); } } else { const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition(); if (!DiagD) DiagD = cast<VarDecl>(*I); if (DiagD->isReferenced()) { Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) << /*variable*/1 << DiagD->getDeclName(); } else { Diag(DiagD->getLocation(), diag::warn_unused_variable) << DiagD->getDeclName(); } } } checkUndefinedInternals(*this); } // Check we've noticed that we're no longer parsing the initializer for every // variable. If we miss cases, then at best we have a performance issue and // at worst a rejects-valid bug. assert(ParsingInitForAutoVars.empty() && "Didn't unmark var as having its initializer parsed"); TUScope = 0; } //===----------------------------------------------------------------------===// // Helper functions. //===----------------------------------------------------------------------===// DeclContext *Sema::getFunctionLevelDeclContext() { DeclContext *DC = CurContext; while (true) { if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC)) { DC = DC->getParent(); } else if (isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call && cast<CXXRecordDecl>(DC->getParent())->isLambda()) { DC = DC->getParent()->getParent(); } else break; } return DC; } /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *Sema::getCurFunctionDecl() { DeclContext *DC = getFunctionLevelDeclContext(); return dyn_cast<FunctionDecl>(DC); } ObjCMethodDecl *Sema::getCurMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); return dyn_cast<ObjCMethodDecl>(DC); } NamedDecl *Sema::getCurFunctionOrMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC)) return cast<NamedDecl>(DC); return 0; } void Sema::EmitCurrentDiagnostic(unsigned DiagID) { // FIXME: It doesn't make sense to me that DiagID is an incoming argument here // and yet we also use the current diag ID on the DiagnosticsEngine. This has // been made more painfully obvious by the refactor that introduced this // function, but it is possible that the incoming argument can be // eliminnated. If it truly cannot be (for example, there is some reentrancy // issue I am not seeing yet), then there should at least be a clarifying // comment somewhere. if (llvm::Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) { switch (DiagnosticIDs::getDiagnosticSFINAEResponse( Diags.getCurrentDiagID())) { case DiagnosticIDs::SFINAE_Report: // We'll report the diagnostic below. break; case DiagnosticIDs::SFINAE_SubstitutionFailure: // Count this failure so that we know that template argument deduction // has failed. ++NumSFINAEErrors; Diags.setLastDiagnosticIgnored(); Diags.Clear(); return; case DiagnosticIDs::SFINAE_AccessControl: { // Per C++ Core Issue 1170, access control is part of SFINAE. // Additionally, the AccessCheckingSFINAE flag can be used to temporarily // make access control a part of SFINAE for the purposes of checking // type traits. if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus0x) break; SourceLocation Loc = Diags.getCurrentDiagLoc(); // Suppress this diagnostic. ++NumSFINAEErrors; Diags.setLastDiagnosticIgnored(); Diags.Clear(); // Now the diagnostic state is clear, produce a C++98 compatibility // warning. Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control); // The last diagnostic which Sema produced was ignored. Suppress any // notes attached to it. Diags.setLastDiagnosticIgnored(); return; } case DiagnosticIDs::SFINAE_Suppress: // Make a copy of this suppressed diagnostic and store it with the // template-deduction information; Diagnostic DiagInfo(&Diags); if (*Info) (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), PartialDiagnostic(DiagInfo,Context.getDiagAllocator())); // Suppress this diagnostic. Diags.setLastDiagnosticIgnored(); Diags.Clear(); return; } } // Set up the context's printing policy based on our current state. Context.setPrintingPolicy(getPrintingPolicy()); // Emit the diagnostic. if (!Diags.EmitCurrentDiagnostic()) return; // If this is not a note, and we're in a template instantiation // that is different from the last template instantiation where // we emitted an error, print a template instantiation // backtrace. if (!DiagnosticIDs::isBuiltinNote(DiagID) && !ActiveTemplateInstantiations.empty() && ActiveTemplateInstantiations.back() != LastTemplateInstantiationErrorContext) { PrintInstantiationStack(); LastTemplateInstantiationErrorContext = ActiveTemplateInstantiations.back(); } } Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) { SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID())); PD.Emit(Builder); return Builder; } /// \brief Looks through the macro-expansion chain for the given /// location, looking for a macro expansion with the given name. /// If one is found, returns true and sets the location to that /// expansion loc. bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) { SourceLocation loc = locref; if (!loc.isMacroID()) return false; // There's no good way right now to look at the intermediate // expansions, so just jump to the expansion location. loc = getSourceManager().getExpansionLoc(loc); // If that's written with the name, stop here. SmallVector<char, 16> buffer; if (getPreprocessor().getSpelling(loc, buffer) == name) { locref = loc; return true; } return false; } /// \brief Determines the active Scope associated with the given declaration /// context. /// /// This routine maps a declaration context to the active Scope object that /// represents that declaration context in the parser. It is typically used /// from "scope-less" code (e.g., template instantiation, lazy creation of /// declarations) that injects a name for name-lookup purposes and, therefore, /// must update the Scope. /// /// \returns The scope corresponding to the given declaraion context, or NULL /// if no such scope is open. Scope *Sema::getScopeForContext(DeclContext *Ctx) { if (!Ctx) return 0; Ctx = Ctx->getPrimaryContext(); for (Scope *S = getCurScope(); S; S = S->getParent()) { // Ignore scopes that cannot have declarations. This is important for // out-of-line definitions of static class members. if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) if (DeclContext *Entity = static_cast<DeclContext *> (S->getEntity())) if (Ctx == Entity->getPrimaryContext()) return S; } return 0; } /// \brief Enter a new function scope void Sema::PushFunctionScope() { if (FunctionScopes.size() == 1) { // Use the "top" function scope rather than having to allocate // memory for a new scope. FunctionScopes.back()->Clear(); FunctionScopes.push_back(FunctionScopes.back()); return; } FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); } void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), BlockScope, Block)); } void Sema::PushLambdaScope(CXXRecordDecl *Lambda, CXXMethodDecl *CallOperator) { FunctionScopes.push_back(new LambdaScopeInfo(getDiagnostics(), Lambda, CallOperator)); } void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP, const Decl *D, const BlockExpr *blkExpr) { FunctionScopeInfo *Scope = FunctionScopes.pop_back_val(); assert(!FunctionScopes.empty() && "mismatched push/pop!"); // Issue any analysis-based warnings. if (WP && D) AnalysisWarnings.IssueWarnings(*WP, Scope, D, blkExpr); else { for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator i = Scope->PossiblyUnreachableDiags.begin(), e = Scope->PossiblyUnreachableDiags.end(); i != e; ++i) { const sema::PossiblyUnreachableDiag &D = *i; Diag(D.Loc, D.PD); } } if (FunctionScopes.back() != Scope) { delete Scope; } } void Sema::PushCompoundScope() { getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo()); } void Sema::PopCompoundScope() { FunctionScopeInfo *CurFunction = getCurFunction(); assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop"); CurFunction->CompoundScopes.pop_back(); } /// \brief Determine whether any errors occurred within this function/method/ /// block. bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const { return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred(); } BlockScopeInfo *Sema::getCurBlock() { if (FunctionScopes.empty()) return 0; return dyn_cast<BlockScopeInfo>(FunctionScopes.back()); } LambdaScopeInfo *Sema::getCurLambda() { if (FunctionScopes.empty()) return 0; return dyn_cast<LambdaScopeInfo>(FunctionScopes.back()); } // Pin this vtable to this file. ExternalSemaSource::~ExternalSemaSource() {} void ExternalSemaSource::ReadMethodPool(Selector Sel) { } void ExternalSemaSource::ReadKnownNamespaces( SmallVectorImpl<NamespaceDecl *> &Namespaces) { } void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { SourceLocation Loc = this->Loc; if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); if (Loc.isValid()) { Loc.print(OS, S.getSourceManager()); OS << ": "; } OS << Message; if (TheDecl && isa<NamedDecl>(TheDecl)) { std::string Name = cast<NamedDecl>(TheDecl)->getNameAsString(); if (!Name.empty()) OS << " '" << Name << '\''; } OS << '\n'; } /// \brief Figure out if an expression could be turned into a call. /// /// Use this when trying to recover from an error where the programmer may have /// written just the name of a function instead of actually calling it. /// /// \param E - The expression to examine. /// \param ZeroArgCallReturnTy - If the expression can be turned into a call /// with no arguments, this parameter is set to the type returned by such a /// call; otherwise, it is set to an empty QualType. /// \param OverloadSet - If the expression is an overloaded function /// name, this parameter is populated with the decls of the various overloads. bool Sema::isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &OverloadSet) { ZeroArgCallReturnTy = QualType(); OverloadSet.clear(); if (E.getType() == Context.OverloadTy) { OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E)); const OverloadExpr *Overloads = FR.Expression; for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { OverloadSet.addDecl(*it); // Check whether the function is a non-template which takes no // arguments. if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) { if (OverloadDecl->getMinRequiredArguments() == 0) ZeroArgCallReturnTy = OverloadDecl->getResultType(); } } // Ignore overloads that are pointer-to-member constants. if (FR.HasFormOfMemberPointer) return false; return true; } if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) { if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) { if (Fun->getMinRequiredArguments() == 0) ZeroArgCallReturnTy = Fun->getResultType(); return true; } } // We don't have an expression that's convenient to get a FunctionDecl from, // but we can at least check if the type is "function of 0 arguments". QualType ExprTy = E.getType(); const FunctionType *FunTy = NULL; QualType PointeeTy = ExprTy->getPointeeType(); if (!PointeeTy.isNull()) FunTy = PointeeTy->getAs<FunctionType>(); if (!FunTy) FunTy = ExprTy->getAs<FunctionType>(); if (!FunTy && ExprTy == Context.BoundMemberTy) { // Look for the bound-member type. If it's still overloaded, give up, // although we probably should have fallen into the OverloadExpr case above // if we actually have an overloaded bound member. QualType BoundMemberTy = Expr::findBoundMemberType(&E); if (!BoundMemberTy.isNull()) FunTy = BoundMemberTy->castAs<FunctionType>(); } if (const FunctionProtoType *FPT = dyn_cast_or_null<FunctionProtoType>(FunTy)) { if (FPT->getNumArgs() == 0) ZeroArgCallReturnTy = FunTy->getResultType(); return true; } return false; } /// \brief Give notes for a set of overloads. /// /// A companion to isExprCallable. In cases when the name that the programmer /// wrote was an overloaded function, we may be able to make some guesses about /// plausible overloads based on their return types; such guesses can be handed /// off to this method to be emitted as notes. /// /// \param Overloads - The overloads to note. /// \param FinalNoteLoc - If we've suppressed printing some overloads due to /// -fshow-overloads=best, this is the location to attach to the note about too /// many candidates. Typically this will be the location of the original /// ill-formed expression. static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, const SourceLocation FinalNoteLoc) { int ShownOverloads = 0; int SuppressedOverloads = 0; for (UnresolvedSetImpl::iterator It = Overloads.begin(), DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { // FIXME: Magic number for max shown overloads stolen from // OverloadCandidateSet::NoteCandidates. if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == DiagnosticsEngine::Ovl_Best) { ++SuppressedOverloads; continue; } NamedDecl *Fn = (*It)->getUnderlyingDecl(); S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); ++ShownOverloads; } if (SuppressedOverloads) S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) << SuppressedOverloads; } static void notePlausibleOverloads(Sema &S, SourceLocation Loc, const UnresolvedSetImpl &Overloads, bool (*IsPlausibleResult)(QualType)) { if (!IsPlausibleResult) return noteOverloads(S, Overloads, Loc); UnresolvedSet<2> PlausibleOverloads; for (OverloadExpr::decls_iterator It = Overloads.begin(), DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It); QualType OverloadResultTy = OverloadDecl->getResultType(); if (IsPlausibleResult(OverloadResultTy)) PlausibleOverloads.addDecl(It.getDecl()); } noteOverloads(S, PlausibleOverloads, Loc); } /// Determine whether the given expression can be called by just /// putting parentheses after it. Notably, expressions with unary /// operators can't be because the unary operator will start parsing /// outside the call. static bool IsCallableWithAppend(Expr *E) { E = E->IgnoreImplicit(); return (!isa<CStyleCastExpr>(E) && !isa<UnaryOperator>(E) && !isa<BinaryOperator>(E) && !isa<CXXOperatorCallExpr>(E)); } bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain, bool (*IsPlausibleResult)(QualType)) { SourceLocation Loc = E.get()->getExprLoc(); SourceRange Range = E.get()->getSourceRange(); QualType ZeroArgCallTy; UnresolvedSet<4> Overloads; if (isExprCallable(*E.get(), ZeroArgCallTy, Overloads) && !ZeroArgCallTy.isNull() && (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) { // At this point, we know E is potentially callable with 0 // arguments and that it returns something of a reasonable type, // so we can emit a fixit and carry on pretending that E was // actually a CallExpr. SourceLocation ParenInsertionLoc = PP.getLocForEndOfToken(Range.getEnd()); Diag(Loc, PD) << /*zero-arg*/ 1 << Range << (IsCallableWithAppend(E.get()) ? FixItHint::CreateInsertion(ParenInsertionLoc, "()") : FixItHint()); notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); // FIXME: Try this before emitting the fixit, and suppress diagnostics // while doing so. E = ActOnCallExpr(0, E.take(), ParenInsertionLoc, MultiExprArg(*this, 0, 0), ParenInsertionLoc.getLocWithOffset(1)); return true; } if (!ForceComplain) return false; Diag(Loc, PD) << /*not zero-arg*/ 0 << Range; notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); E = ExprError(); return true; }