Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaCast.cpp |
//===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for cast expressions, including // 1) C-style casts like '(int) x' // 2) C++ functional casts like 'int(x)' // 3) C++ named casts like 'static_cast<int>(x)' // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Initialization.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/Basic/PartialDiagnostic.h" #include "llvm/ADT/SmallVector.h" #include <set> using namespace clang; enum TryCastResult { TC_NotApplicable, ///< The cast method is not applicable. TC_Success, ///< The cast method is appropriate and successful. TC_Failed ///< The cast method is appropriate, but failed. A ///< diagnostic has been emitted. }; enum CastType { CT_Const, ///< const_cast CT_Static, ///< static_cast CT_Reinterpret, ///< reinterpret_cast CT_Dynamic, ///< dynamic_cast CT_CStyle, ///< (Type)expr CT_Functional ///< Type(expr) }; namespace { struct CastOperation { CastOperation(Sema &S, QualType destType, ExprResult src) : Self(S), SrcExpr(src), DestType(destType), ResultType(destType.getNonLValueExprType(S.Context)), ValueKind(Expr::getValueKindForType(destType)), Kind(CK_Dependent), IsARCUnbridgedCast(false) { if (const BuiltinType *placeholder = src.get()->getType()->getAsPlaceholderType()) { PlaceholderKind = placeholder->getKind(); } else { PlaceholderKind = (BuiltinType::Kind) 0; } } Sema &Self; ExprResult SrcExpr; QualType DestType; QualType ResultType; ExprValueKind ValueKind; CastKind Kind; BuiltinType::Kind PlaceholderKind; CXXCastPath BasePath; bool IsARCUnbridgedCast; SourceRange OpRange; SourceRange DestRange; // Top-level semantics-checking routines. void CheckConstCast(); void CheckReinterpretCast(); void CheckStaticCast(); void CheckDynamicCast(); void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization); void CheckCStyleCast(); /// Complete an apparently-successful cast operation that yields /// the given expression. ExprResult complete(CastExpr *castExpr) { // If this is an unbridged cast, wrap the result in an implicit // cast that yields the unbridged-cast placeholder type. if (IsARCUnbridgedCast) { castExpr = ImplicitCastExpr::Create(Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent, castExpr, 0, castExpr->getValueKind()); } return Self.Owned(castExpr); } // Internal convenience methods. /// Try to handle the given placeholder expression kind. Return /// true if the source expression has the appropriate placeholder /// kind. A placeholder can only be claimed once. bool claimPlaceholder(BuiltinType::Kind K) { if (PlaceholderKind != K) return false; PlaceholderKind = (BuiltinType::Kind) 0; return true; } bool isPlaceholder() const { return PlaceholderKind != 0; } bool isPlaceholder(BuiltinType::Kind K) const { return PlaceholderKind == K; } void checkCastAlign() { Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); } void checkObjCARCConversion(Sema::CheckedConversionKind CCK) { assert(Self.getLangOpts().ObjCAutoRefCount); Expr *src = SrcExpr.get(); if (Self.CheckObjCARCConversion(OpRange, DestType, src, CCK) == Sema::ACR_unbridged) IsARCUnbridgedCast = true; SrcExpr = src; } /// Check for and handle non-overload placeholder expressions. void checkNonOverloadPlaceholders() { if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload)) return; SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.take()); if (SrcExpr.isInvalid()) return; PlaceholderKind = (BuiltinType::Kind) 0; } }; } static bool CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, bool CheckCVR, bool CheckObjCLifetime); // The Try functions attempt a specific way of casting. If they succeed, they // return TC_Success. If their way of casting is not appropriate for the given // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic // to emit if no other way succeeds. If their way of casting is appropriate but // fails, they return TC_Failed and *must* set diag; they can set it to 0 if // they emit a specialized diagnostic. // All diagnostics returned by these functions must expect the same three // arguments: // %0: Cast Type (a value from the CastType enumeration) // %1: Source Type // %2: Destination Type static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, CastKind &Kind, CXXCastPath &BasePath, unsigned &msg); static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath); static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath); static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, bool CStyle, const SourceRange &OpRange, QualType OrigSrcType, QualType OrigDestType, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath); static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, QualType DestType,bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath); static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, Sema::CheckedConversionKind CCK, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, bool ListInitialization); static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, Sema::CheckedConversionKind CCK, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath, bool ListInitialization); static TryCastResult TryConstCast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, unsigned &msg); static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. ExprResult Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc) { assert(!D.isInvalidType()); TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType()); if (D.isInvalidType()) return ExprError(); if (getLangOpts().CPlusPlus) { // Check that there are no default arguments (C++ only). CheckExtraCXXDefaultArguments(D); } return BuildCXXNamedCast(OpLoc, Kind, TInfo, move(E), SourceRange(LAngleBracketLoc, RAngleBracketLoc), SourceRange(LParenLoc, RParenLoc)); } ExprResult Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, TypeSourceInfo *DestTInfo, Expr *E, SourceRange AngleBrackets, SourceRange Parens) { ExprResult Ex = Owned(E); QualType DestType = DestTInfo->getType(); // If the type is dependent, we won't do the semantic analysis now. // FIXME: should we check this in a more fine-grained manner? bool TypeDependent = DestType->isDependentType() || Ex.get()->isTypeDependent(); CastOperation Op(*this, DestType, E); Op.OpRange = SourceRange(OpLoc, Parens.getEnd()); Op.DestRange = AngleBrackets; switch (Kind) { default: llvm_unreachable("Unknown C++ cast!"); case tok::kw_const_cast: if (!TypeDependent) { Op.CheckConstCast(); if (Op.SrcExpr.isInvalid()) return ExprError(); } return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType, Op.ValueKind, Op.SrcExpr.take(), DestTInfo, OpLoc, Parens.getEnd())); case tok::kw_dynamic_cast: { if (!TypeDependent) { Op.CheckDynamicCast(); if (Op.SrcExpr.isInvalid()) return ExprError(); } return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.take(), &Op.BasePath, DestTInfo, OpLoc, Parens.getEnd())); } case tok::kw_reinterpret_cast: { if (!TypeDependent) { Op.CheckReinterpretCast(); if (Op.SrcExpr.isInvalid()) return ExprError(); } return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.take(), 0, DestTInfo, OpLoc, Parens.getEnd())); } case tok::kw_static_cast: { if (!TypeDependent) { Op.CheckStaticCast(); if (Op.SrcExpr.isInvalid()) return ExprError(); } return Op.complete(CXXStaticCastExpr::Create(Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.take(), &Op.BasePath, DestTInfo, OpLoc, Parens.getEnd())); } } } /// Try to diagnose a failed overloaded cast. Returns true if /// diagnostics were emitted. static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, SourceRange range, Expr *src, QualType destType, bool listInitialization) { switch (CT) { // These cast kinds don't consider user-defined conversions. case CT_Const: case CT_Reinterpret: case CT_Dynamic: return false; // These do. case CT_Static: case CT_CStyle: case CT_Functional: break; } QualType srcType = src->getType(); if (!destType->isRecordType() && !srcType->isRecordType()) return false; InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); InitializationKind initKind = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), range, listInitialization) : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range, listInitialization) : InitializationKind::CreateCast(/*type range?*/ range); InitializationSequence sequence(S, entity, initKind, &src, 1); assert(sequence.Failed() && "initialization succeeded on second try?"); switch (sequence.getFailureKind()) { default: return false; case InitializationSequence::FK_ConstructorOverloadFailed: case InitializationSequence::FK_UserConversionOverloadFailed: break; } OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); unsigned msg = 0; OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; switch (sequence.getFailedOverloadResult()) { case OR_Success: llvm_unreachable("successful failed overload"); case OR_No_Viable_Function: if (candidates.empty()) msg = diag::err_ovl_no_conversion_in_cast; else msg = diag::err_ovl_no_viable_conversion_in_cast; howManyCandidates = OCD_AllCandidates; break; case OR_Ambiguous: msg = diag::err_ovl_ambiguous_conversion_in_cast; howManyCandidates = OCD_ViableCandidates; break; case OR_Deleted: msg = diag::err_ovl_deleted_conversion_in_cast; howManyCandidates = OCD_ViableCandidates; break; } S.Diag(range.getBegin(), msg) << CT << srcType << destType << range << src->getSourceRange(); candidates.NoteCandidates(S, howManyCandidates, src); return true; } /// Diagnose a failed cast. static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, SourceRange opRange, Expr *src, QualType destType, bool listInitialization) { if (src->getType() == S.Context.BoundMemberTy) { (void) S.CheckPlaceholderExpr(src); // will always fail return; } if (msg == diag::err_bad_cxx_cast_generic && tryDiagnoseOverloadedCast(S, castType, opRange, src, destType, listInitialization)) return; S.Diag(opRange.getBegin(), msg) << castType << src->getType() << destType << opRange << src->getSourceRange(); } /// UnwrapDissimilarPointerTypes - Like Sema::UnwrapSimilarPointerTypes, /// this removes one level of indirection from both types, provided that they're /// the same kind of pointer (plain or to-member). Unlike the Sema function, /// this one doesn't care if the two pointers-to-member don't point into the /// same class. This is because CastsAwayConstness doesn't care. static bool UnwrapDissimilarPointerTypes(QualType& T1, QualType& T2) { const PointerType *T1PtrType = T1->getAs<PointerType>(), *T2PtrType = T2->getAs<PointerType>(); if (T1PtrType && T2PtrType) { T1 = T1PtrType->getPointeeType(); T2 = T2PtrType->getPointeeType(); return true; } const ObjCObjectPointerType *T1ObjCPtrType = T1->getAs<ObjCObjectPointerType>(), *T2ObjCPtrType = T2->getAs<ObjCObjectPointerType>(); if (T1ObjCPtrType) { if (T2ObjCPtrType) { T1 = T1ObjCPtrType->getPointeeType(); T2 = T2ObjCPtrType->getPointeeType(); return true; } else if (T2PtrType) { T1 = T1ObjCPtrType->getPointeeType(); T2 = T2PtrType->getPointeeType(); return true; } } else if (T2ObjCPtrType) { if (T1PtrType) { T2 = T2ObjCPtrType->getPointeeType(); T1 = T1PtrType->getPointeeType(); return true; } } const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), *T2MPType = T2->getAs<MemberPointerType>(); if (T1MPType && T2MPType) { T1 = T1MPType->getPointeeType(); T2 = T2MPType->getPointeeType(); return true; } const BlockPointerType *T1BPType = T1->getAs<BlockPointerType>(), *T2BPType = T2->getAs<BlockPointerType>(); if (T1BPType && T2BPType) { T1 = T1BPType->getPointeeType(); T2 = T2BPType->getPointeeType(); return true; } return false; } /// CastsAwayConstness - Check if the pointer conversion from SrcType to /// DestType casts away constness as defined in C++ 5.2.11p8ff. This is used by /// the cast checkers. Both arguments must denote pointer (possibly to member) /// types. /// /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. /// /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. static bool CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, bool CheckCVR, bool CheckObjCLifetime) { // If the only checking we care about is for Objective-C lifetime qualifiers, // and we're not in ARC mode, there's nothing to check. if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjCAutoRefCount) return false; // Casting away constness is defined in C++ 5.2.11p8 with reference to // C++ 4.4. We piggyback on Sema::IsQualificationConversion for this, since // the rules are non-trivial. So first we construct Tcv *...cv* as described // in C++ 5.2.11p8. assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && "Source type is not pointer or pointer to member."); assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && "Destination type is not pointer or pointer to member."); QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), UnwrappedDestType = Self.Context.getCanonicalType(DestType); SmallVector<Qualifiers, 8> cv1, cv2; // Find the qualifiers. We only care about cvr-qualifiers for the // purpose of this check, because other qualifiers (address spaces, // Objective-C GC, etc.) are part of the type's identity. while (UnwrapDissimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) { // Determine the relevant qualifiers at this level. Qualifiers SrcQuals, DestQuals; Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); Qualifiers RetainedSrcQuals, RetainedDestQuals; if (CheckCVR) { RetainedSrcQuals.setCVRQualifiers(SrcQuals.getCVRQualifiers()); RetainedDestQuals.setCVRQualifiers(DestQuals.getCVRQualifiers()); } if (CheckObjCLifetime && !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) return true; cv1.push_back(RetainedSrcQuals); cv2.push_back(RetainedDestQuals); } if (cv1.empty()) return false; // Construct void pointers with those qualifiers (in reverse order of // unwrapping, of course). QualType SrcConstruct = Self.Context.VoidTy; QualType DestConstruct = Self.Context.VoidTy; ASTContext &Context = Self.Context; for (SmallVector<Qualifiers, 8>::reverse_iterator i1 = cv1.rbegin(), i2 = cv2.rbegin(); i1 != cv1.rend(); ++i1, ++i2) { SrcConstruct = Context.getPointerType(Context.getQualifiedType(SrcConstruct, *i1)); DestConstruct = Context.getPointerType(Context.getQualifiedType(DestConstruct, *i2)); } // Test if they're compatible. bool ObjCLifetimeConversion; return SrcConstruct != DestConstruct && !Self.IsQualificationConversion(SrcConstruct, DestConstruct, false, ObjCLifetimeConversion); } /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- /// checked downcasts in class hierarchies. void CastOperation::CheckDynamicCast() { if (ValueKind == VK_RValue) SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); else if (isPlaceholder()) SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.take()); if (SrcExpr.isInvalid()) // if conversion failed, don't report another error return; QualType OrigSrcType = SrcExpr.get()->getType(); QualType DestType = Self.Context.getCanonicalType(this->DestType); // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, // or "pointer to cv void". QualType DestPointee; const PointerType *DestPointer = DestType->getAs<PointerType>(); const ReferenceType *DestReference = 0; if (DestPointer) { DestPointee = DestPointer->getPointeeType(); } else if ((DestReference = DestType->getAs<ReferenceType>())) { DestPointee = DestReference->getPointeeType(); } else { Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) << this->DestType << DestRange; return; } const RecordType *DestRecord = DestPointee->getAs<RecordType>(); if (DestPointee->isVoidType()) { assert(DestPointer && "Reference to void is not possible"); } else if (DestRecord) { if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, Self.PDiag(diag::err_bad_dynamic_cast_incomplete) << DestRange)) return; } else { Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) << DestPointee.getUnqualifiedType() << DestRange; return; } // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to // complete class type, [...]. If T is an lvalue reference type, v shall be // an lvalue of a complete class type, [...]. If T is an rvalue reference // type, v shall be an expression having a complete class type, [...] QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); QualType SrcPointee; if (DestPointer) { if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { SrcPointee = SrcPointer->getPointeeType(); } else { Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) << OrigSrcType << SrcExpr.get()->getSourceRange(); return; } } else if (DestReference->isLValueReferenceType()) { if (!SrcExpr.get()->isLValue()) { Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) << CT_Dynamic << OrigSrcType << this->DestType << OpRange; } SrcPointee = SrcType; } else { SrcPointee = SrcType; } const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); if (SrcRecord) { if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, Self.PDiag(diag::err_bad_dynamic_cast_incomplete) << SrcExpr.get()->getSourceRange())) return; } else { Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); return; } assert((DestPointer || DestReference) && "Bad destination non-ptr/ref slipped through."); assert((DestRecord || DestPointee->isVoidType()) && "Bad destination pointee slipped through."); assert(SrcRecord && "Bad source pointee slipped through."); // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) << CT_Dynamic << OrigSrcType << this->DestType << OpRange; return; } // C++ 5.2.7p3: If the type of v is the same as the required result type, // [except for cv]. if (DestRecord == SrcRecord) { Kind = CK_NoOp; return; } // C++ 5.2.7p5 // Upcasts are resolved statically. if (DestRecord && Self.IsDerivedFrom(SrcPointee, DestPointee)) { if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, OpRange.getBegin(), OpRange, &BasePath)) return; Kind = CK_DerivedToBase; // If we are casting to or through a virtual base class, we need a // vtable. if (Self.BasePathInvolvesVirtualBase(BasePath)) Self.MarkVTableUsed(OpRange.getBegin(), cast<CXXRecordDecl>(SrcRecord->getDecl())); return; } // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); assert(SrcDecl && "Definition missing"); if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); } Self.MarkVTableUsed(OpRange.getBegin(), cast<CXXRecordDecl>(SrcRecord->getDecl())); // Done. Everything else is run-time checks. Kind = CK_Dynamic; } /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. /// Refer to C++ 5.2.11 for details. const_cast is typically used in code /// like this: /// const char *str = "literal"; /// legacy_function(const_cast\<char*\>(str)); void CastOperation::CheckConstCast() { if (ValueKind == VK_RValue) SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); else if (isPlaceholder()) SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.take()); if (SrcExpr.isInvalid()) // if conversion failed, don't report another error return; unsigned msg = diag::err_bad_cxx_cast_generic; if (TryConstCast(Self, SrcExpr.get(), DestType, /*CStyle*/false, msg) != TC_Success && msg != 0) Self.Diag(OpRange.getBegin(), msg) << CT_Const << SrcExpr.get()->getType() << DestType << OpRange; } /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is /// valid. /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code /// like this: /// char *bytes = reinterpret_cast\<char*\>(int_ptr); void CastOperation::CheckReinterpretCast() { if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload)) SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); else checkNonOverloadPlaceholders(); if (SrcExpr.isInvalid()) // if conversion failed, don't report another error return; unsigned msg = diag::err_bad_cxx_cast_generic; TryCastResult tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/false, OpRange, msg, Kind); if (tcr != TC_Success && msg != 0) { if (SrcExpr.isInvalid()) // if conversion failed, don't report another error return; if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { //FIXME: &f<int>; is overloaded and resolvable Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) << OverloadExpr::find(SrcExpr.get()).Expression->getName() << DestType << OpRange; Self.NoteAllOverloadCandidates(SrcExpr.get()); } else { diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), DestType, /*listInitialization=*/false); } } else if (tcr == TC_Success && Self.getLangOpts().ObjCAutoRefCount) { checkObjCARCConversion(Sema::CCK_OtherCast); } } /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making /// implicit conversions explicit and getting rid of data loss warnings. void CastOperation::CheckStaticCast() { if (isPlaceholder()) { checkNonOverloadPlaceholders(); if (SrcExpr.isInvalid()) return; } // This test is outside everything else because it's the only case where // a non-lvalue-reference target type does not lead to decay. // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". if (DestType->isVoidType()) { Kind = CK_ToVoid; if (claimPlaceholder(BuiltinType::Overload)) { Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr, false, // Decay Function to ptr true, // Complain OpRange, DestType, diag::err_bad_static_cast_overload); if (SrcExpr.isInvalid()) return; } SrcExpr = Self.IgnoredValueConversions(SrcExpr.take()); return; } if (ValueKind == VK_RValue && !DestType->isRecordType() && !isPlaceholder(BuiltinType::Overload)) { SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); if (SrcExpr.isInvalid()) // if conversion failed, don't report another error return; } unsigned msg = diag::err_bad_cxx_cast_generic; TryCastResult tcr = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, Kind, BasePath, /*ListInitialization=*/false); if (tcr != TC_Success && msg != 0) { if (SrcExpr.isInvalid()) return; if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) << oe->getName() << DestType << OpRange << oe->getQualifierLoc().getSourceRange(); Self.NoteAllOverloadCandidates(SrcExpr.get()); } else { diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType, /*listInitialization=*/false); } } else if (tcr == TC_Success) { if (Kind == CK_BitCast) checkCastAlign(); if (Self.getLangOpts().ObjCAutoRefCount) checkObjCARCConversion(Sema::CCK_OtherCast); } else if (Kind == CK_BitCast) { checkCastAlign(); } } /// TryStaticCast - Check if a static cast can be performed, and do so if /// possible. If @p CStyle, ignore access restrictions on hierarchy casting /// and casting away constness. static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, Sema::CheckedConversionKind CCK, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath, bool ListInitialization) { // Determine whether we have the semantics of a C-style cast. bool CStyle = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); // The order the tests is not entirely arbitrary. There is one conversion // that can be handled in two different ways. Given: // struct A {}; // struct B : public A { // B(); B(const A&); // }; // const A &a = B(); // the cast static_cast<const B&>(a) could be seen as either a static // reference downcast, or an explicit invocation of the user-defined // conversion using B's conversion constructor. // DR 427 specifies that the downcast is to be applied here. // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". // Done outside this function. TryCastResult tcr; // C++ 5.2.9p5, reference downcast. // See the function for details. // DR 427 specifies that this is to be applied before paragraph 2. tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, OpRange, msg, Kind, BasePath); if (tcr != TC_NotApplicable) return tcr; // C++0x [expr.static.cast]p3: // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 // T2" if "cv2 T2" is reference-compatible with "cv1 T1". tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, BasePath, msg); if (tcr != TC_NotApplicable) return tcr; // C++ 5.2.9p2: An expression e can be explicitly converted to a type T // [...] if the declaration "T t(e);" is well-formed, [...]. tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, ListInitialization); if (SrcExpr.isInvalid()) return TC_Failed; if (tcr != TC_NotApplicable) return tcr; // C++ 5.2.9p6: May apply the reverse of any standard conversion, except // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean // conversions, subject to further restrictions. // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal // of qualification conversions impossible. // In the CStyle case, the earlier attempt to const_cast should have taken // care of reverse qualification conversions. QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly // converted to an integral type. [...] A value of a scoped enumeration type // can also be explicitly converted to a floating-point type [...]. if (const EnumType *Enum = SrcType->getAs<EnumType>()) { if (Enum->getDecl()->isScoped()) { if (DestType->isBooleanType()) { Kind = CK_IntegralToBoolean; return TC_Success; } else if (DestType->isIntegralType(Self.Context)) { Kind = CK_IntegralCast; return TC_Success; } else if (DestType->isRealFloatingType()) { Kind = CK_IntegralToFloating; return TC_Success; } } } // Reverse integral promotion/conversion. All such conversions are themselves // again integral promotions or conversions and are thus already handled by // p2 (TryDirectInitialization above). // (Note: any data loss warnings should be suppressed.) // The exception is the reverse of enum->integer, i.e. integer->enum (and // enum->enum). See also C++ 5.2.9p7. // The same goes for reverse floating point promotion/conversion and // floating-integral conversions. Again, only floating->enum is relevant. if (DestType->isEnumeralType()) { if (SrcType->isIntegralOrEnumerationType()) { Kind = CK_IntegralCast; return TC_Success; } else if (SrcType->isRealFloatingType()) { Kind = CK_FloatingToIntegral; return TC_Success; } } // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, Kind, BasePath); if (tcr != TC_NotApplicable) return tcr; // Reverse member pointer conversion. C++ 4.11 specifies member pointer // conversion. C++ 5.2.9p9 has additional information. // DR54's access restrictions apply here also. tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, OpRange, msg, Kind, BasePath); if (tcr != TC_NotApplicable) return tcr; // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to // void*. C++ 5.2.9p10 specifies additional restrictions, which really is // just the usual constness stuff. if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { QualType SrcPointee = SrcPointer->getPointeeType(); if (SrcPointee->isVoidType()) { if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { QualType DestPointee = DestPointer->getPointeeType(); if (DestPointee->isIncompleteOrObjectType()) { // This is definitely the intended conversion, but it might fail due // to a qualifier violation. Note that we permit Objective-C lifetime // and GC qualifier mismatches here. if (!CStyle) { Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); DestPointeeQuals.removeObjCGCAttr(); DestPointeeQuals.removeObjCLifetime(); SrcPointeeQuals.removeObjCGCAttr(); SrcPointeeQuals.removeObjCLifetime(); if (DestPointeeQuals != SrcPointeeQuals && !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { msg = diag::err_bad_cxx_cast_qualifiers_away; return TC_Failed; } } Kind = CK_BitCast; return TC_Success; } } else if (DestType->isObjCObjectPointerType()) { // allow both c-style cast and static_cast of objective-c pointers as // they are pervasive. Kind = CK_CPointerToObjCPointerCast; return TC_Success; } else if (CStyle && DestType->isBlockPointerType()) { // allow c-style cast of void * to block pointers. Kind = CK_AnyPointerToBlockPointerCast; return TC_Success; } } } // Allow arbitray objective-c pointer conversion with static casts. if (SrcType->isObjCObjectPointerType() && DestType->isObjCObjectPointerType()) { Kind = CK_BitCast; return TC_Success; } // We tried everything. Everything! Nothing works! :-( return TC_NotApplicable; } /// Tests whether a conversion according to N2844 is valid. TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, CastKind &Kind, CXXCastPath &BasePath, unsigned &msg) { // C++0x [expr.static.cast]p3: // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); if (!R) return TC_NotApplicable; if (!SrcExpr->isGLValue()) return TC_NotApplicable; // Because we try the reference downcast before this function, from now on // this is the only cast possibility, so we issue an error if we fail now. // FIXME: Should allow casting away constness if CStyle. bool DerivedToBase; bool ObjCConversion; bool ObjCLifetimeConversion; QualType FromType = SrcExpr->getType(); QualType ToType = R->getPointeeType(); if (CStyle) { FromType = FromType.getUnqualifiedType(); ToType = ToType.getUnqualifiedType(); } if (Self.CompareReferenceRelationship(SrcExpr->getLocStart(), ToType, FromType, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) < Sema::Ref_Compatible_With_Added_Qualification) { msg = diag::err_bad_lvalue_to_rvalue_cast; return TC_Failed; } if (DerivedToBase) { Kind = CK_DerivedToBase; CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); if (!Self.IsDerivedFrom(SrcExpr->getType(), R->getPointeeType(), Paths)) return TC_NotApplicable; Self.BuildBasePathArray(Paths, BasePath); } else Kind = CK_NoOp; return TC_Success; } /// Tests whether a conversion according to C++ 5.2.9p5 is valid. TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath) { // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be // cast to type "reference to cv2 D", where D is a class derived from B, // if a valid standard conversion from "pointer to D" to "pointer to B" // exists, cv2 >= cv1, and B is not a virtual base class of D. // In addition, DR54 clarifies that the base must be accessible in the // current context. Although the wording of DR54 only applies to the pointer // variant of this rule, the intent is clearly for it to apply to the this // conversion as well. const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); if (!DestReference) { return TC_NotApplicable; } bool RValueRef = DestReference->isRValueReferenceType(); if (!RValueRef && !SrcExpr->isLValue()) { // We know the left side is an lvalue reference, so we can suggest a reason. msg = diag::err_bad_cxx_cast_rvalue; return TC_NotApplicable; } QualType DestPointee = DestReference->getPointeeType(); return TryStaticDowncast(Self, Self.Context.getCanonicalType(SrcExpr->getType()), Self.Context.getCanonicalType(DestPointee), CStyle, OpRange, SrcExpr->getType(), DestType, msg, Kind, BasePath); } /// Tests whether a conversion according to C++ 5.2.9p8 is valid. TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath) { // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class // type, can be converted to an rvalue of type "pointer to cv2 D", where D // is a class derived from B, if a valid standard conversion from "pointer // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base // class of D. // In addition, DR54 clarifies that the base must be accessible in the // current context. const PointerType *DestPointer = DestType->getAs<PointerType>(); if (!DestPointer) { return TC_NotApplicable; } const PointerType *SrcPointer = SrcType->getAs<PointerType>(); if (!SrcPointer) { msg = diag::err_bad_static_cast_pointer_nonpointer; return TC_NotApplicable; } return TryStaticDowncast(Self, Self.Context.getCanonicalType(SrcPointer->getPointeeType()), Self.Context.getCanonicalType(DestPointer->getPointeeType()), CStyle, OpRange, SrcType, DestType, msg, Kind, BasePath); } /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to /// DestType is possible and allowed. TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, bool CStyle, const SourceRange &OpRange, QualType OrigSrcType, QualType OrigDestType, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath) { // We can only work with complete types. But don't complain if it doesn't work if (Self.RequireCompleteType(OpRange.getBegin(), SrcType, Self.PDiag(0)) || Self.RequireCompleteType(OpRange.getBegin(), DestType, Self.PDiag(0))) return TC_NotApplicable; // Downcast can only happen in class hierarchies, so we need classes. if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { return TC_NotApplicable; } CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); if (!Self.IsDerivedFrom(DestType, SrcType, Paths)) { return TC_NotApplicable; } // Target type does derive from source type. Now we're serious. If an error // appears now, it's not ignored. // This may not be entirely in line with the standard. Take for example: // struct A {}; // struct B : virtual A { // B(A&); // }; // // void f() // { // (void)static_cast<const B&>(*((A*)0)); // } // As far as the standard is concerned, p5 does not apply (A is virtual), so // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. // However, both GCC and Comeau reject this example, and accepting it would // mean more complex code if we're to preserve the nice error message. // FIXME: Being 100% compliant here would be nice to have. // Must preserve cv, as always, unless we're in C-style mode. if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { msg = diag::err_bad_cxx_cast_qualifiers_away; return TC_Failed; } if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { // This code is analoguous to that in CheckDerivedToBaseConversion, except // that it builds the paths in reverse order. // To sum up: record all paths to the base and build a nice string from // them. Use it to spice up the error message. if (!Paths.isRecordingPaths()) { Paths.clear(); Paths.setRecordingPaths(true); Self.IsDerivedFrom(DestType, SrcType, Paths); } std::string PathDisplayStr; std::set<unsigned> DisplayedPaths; for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end(); PI != PE; ++PI) { if (DisplayedPaths.insert(PI->back().SubobjectNumber).second) { // We haven't displayed a path to this particular base // class subobject yet. PathDisplayStr += "\n "; for (CXXBasePath::const_reverse_iterator EI = PI->rbegin(), EE = PI->rend(); EI != EE; ++EI) PathDisplayStr += EI->Base->getType().getAsString() + " -> "; PathDisplayStr += QualType(DestType).getAsString(); } } Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) << QualType(SrcType).getUnqualifiedType() << QualType(DestType).getUnqualifiedType() << PathDisplayStr << OpRange; msg = 0; return TC_Failed; } if (Paths.getDetectedVirtual() != 0) { QualType VirtualBase(Paths.getDetectedVirtual(), 0); Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) << OrigSrcType << OrigDestType << VirtualBase << OpRange; msg = 0; return TC_Failed; } if (!CStyle) { switch (Self.CheckBaseClassAccess(OpRange.getBegin(), SrcType, DestType, Paths.front(), diag::err_downcast_from_inaccessible_base)) { case Sema::AR_accessible: case Sema::AR_delayed: // be optimistic case Sema::AR_dependent: // be optimistic break; case Sema::AR_inaccessible: msg = 0; return TC_Failed; } } Self.BuildBasePathArray(Paths, BasePath); Kind = CK_BaseToDerived; return TC_Success; } /// TryStaticMemberPointerUpcast - Tests whether a conversion according to /// C++ 5.2.9p9 is valid: /// /// An rvalue of type "pointer to member of D of type cv1 T" can be /// converted to an rvalue of type "pointer to member of B of type cv2 T", /// where B is a base class of D [...]. /// TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, CXXCastPath &BasePath) { const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); if (!DestMemPtr) return TC_NotApplicable; bool WasOverloadedFunction = false; DeclAccessPair FoundOverload; if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { if (FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, FoundOverload)) { CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); SrcType = Self.Context.getMemberPointerType(Fn->getType(), Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); WasOverloadedFunction = true; } } const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); if (!SrcMemPtr) { msg = diag::err_bad_static_cast_member_pointer_nonmp; return TC_NotApplicable; } // T == T, modulo cv if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), DestMemPtr->getPointeeType())) return TC_NotApplicable; // B base of D QualType SrcClass(SrcMemPtr->getClass(), 0); QualType DestClass(DestMemPtr->getClass(), 0); CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); if (!Self.IsDerivedFrom(SrcClass, DestClass, Paths)) { return TC_NotApplicable; } // B is a base of D. But is it an allowed base? If not, it's a hard error. if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = Self.IsDerivedFrom(SrcClass, DestClass, Paths); assert(StillOkay); (void)StillOkay; std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; msg = 0; return TC_Failed; } if (const RecordType *VBase = Paths.getDetectedVirtual()) { Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) << SrcClass << DestClass << QualType(VBase, 0) << OpRange; msg = 0; return TC_Failed; } if (!CStyle) { switch (Self.CheckBaseClassAccess(OpRange.getBegin(), DestClass, SrcClass, Paths.front(), diag::err_upcast_to_inaccessible_base)) { case Sema::AR_accessible: case Sema::AR_delayed: case Sema::AR_dependent: // Optimistically assume that the delayed and dependent cases // will work out. break; case Sema::AR_inaccessible: msg = 0; return TC_Failed; } } if (WasOverloadedFunction) { // Resolve the address of the overloaded function again, this time // allowing complaints if something goes wrong. FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, true, FoundOverload); if (!Fn) { msg = 0; return TC_Failed; } SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); if (!SrcExpr.isUsable()) { msg = 0; return TC_Failed; } } Self.BuildBasePathArray(Paths, BasePath); Kind = CK_DerivedToBaseMemberPointer; return TC_Success; } /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 /// is valid: /// /// An expression e can be explicitly converted to a type T using a /// @c static_cast if the declaration "T t(e);" is well-formed [...]. TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, Sema::CheckedConversionKind CCK, const SourceRange &OpRange, unsigned &msg, CastKind &Kind, bool ListInitialization) { if (DestType->isRecordType()) { if (Self.RequireCompleteType(OpRange.getBegin(), DestType, diag::err_bad_dynamic_cast_incomplete)) { msg = 0; return TC_Failed; } } InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); InitializationKind InitKind = (CCK == Sema::CCK_CStyleCast) ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange, ListInitialization) : (CCK == Sema::CCK_FunctionalCast) ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization) : InitializationKind::CreateCast(OpRange); Expr *SrcExprRaw = SrcExpr.get(); InitializationSequence InitSeq(Self, Entity, InitKind, &SrcExprRaw, 1); // At this point of CheckStaticCast, if the destination is a reference, // or the expression is an overload expression this has to work. // There is no other way that works. // On the other hand, if we're checking a C-style cast, we've still got // the reinterpret_cast way. bool CStyle = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) return TC_NotApplicable; ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, MultiExprArg(Self, &SrcExprRaw, 1)); if (Result.isInvalid()) { msg = 0; return TC_Failed; } if (InitSeq.isConstructorInitialization()) Kind = CK_ConstructorConversion; else Kind = CK_NoOp; SrcExpr = move(Result); return TC_Success; } /// TryConstCast - See if a const_cast from source to destination is allowed, /// and perform it if it is. static TryCastResult TryConstCast(Sema &Self, Expr *SrcExpr, QualType DestType, bool CStyle, unsigned &msg) { DestType = Self.Context.getCanonicalType(DestType); QualType SrcType = SrcExpr->getType(); if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { if (DestTypeTmp->isLValueReferenceType() && !SrcExpr->isLValue()) { // Cannot const_cast non-lvalue to lvalue reference type. But if this // is C-style, static_cast might find a way, so we simply suggest a // message and tell the parent to keep searching. msg = diag::err_bad_cxx_cast_rvalue; return TC_NotApplicable; } // C++ 5.2.11p4: An lvalue of type T1 can be [cast] to an lvalue of type T2 // [...] if a pointer to T1 can be [cast] to the type pointer to T2. DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Self.Context.getPointerType(SrcType); } // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] // the rules for const_cast are the same as those used for pointers. if (!DestType->isPointerType() && !DestType->isMemberPointerType() && !DestType->isObjCObjectPointerType()) { // Cannot cast to non-pointer, non-reference type. Note that, if DestType // was a reference type, we converted it to a pointer above. // The status of rvalue references isn't entirely clear, but it looks like // conversion to them is simply invalid. // C++ 5.2.11p3: For two pointer types [...] if (!CStyle) msg = diag::err_bad_const_cast_dest; return TC_NotApplicable; } if (DestType->isFunctionPointerType() || DestType->isMemberFunctionPointerType()) { // Cannot cast direct function pointers. // C++ 5.2.11p2: [...] where T is any object type or the void type [...] // T is the ultimate pointee of source and target type. if (!CStyle) msg = diag::err_bad_const_cast_dest; return TC_NotApplicable; } SrcType = Self.Context.getCanonicalType(SrcType); // Unwrap the pointers. Ignore qualifiers. Terminate early if the types are // completely equal. // C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers // in multi-level pointers may change, but the level count must be the same, // as must be the final pointee type. while (SrcType != DestType && Self.Context.UnwrapSimilarPointerTypes(SrcType, DestType)) { Qualifiers SrcQuals, DestQuals; SrcType = Self.Context.getUnqualifiedArrayType(SrcType, SrcQuals); DestType = Self.Context.getUnqualifiedArrayType(DestType, DestQuals); // const_cast is permitted to strip cvr-qualifiers, only. Make sure that // the other qualifiers (e.g., address spaces) are identical. SrcQuals.removeCVRQualifiers(); DestQuals.removeCVRQualifiers(); if (SrcQuals != DestQuals) return TC_NotApplicable; } // Since we're dealing in canonical types, the remainder must be the same. if (SrcType != DestType) return TC_NotApplicable; return TC_Success; } // Checks for undefined behavior in reinterpret_cast. // The cases that is checked for is: // *reinterpret_cast<T*>(&a) // reinterpret_cast<T&>(a) // where accessing 'a' as type 'T' will result in undefined behavior. void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, bool IsDereference, SourceRange Range) { unsigned DiagID = IsDereference ? diag::warn_pointer_indirection_from_incompatible_type : diag::warn_undefined_reinterpret_cast; if (Diags.getDiagnosticLevel(DiagID, Range.getBegin()) == DiagnosticsEngine::Ignored) { return; } QualType SrcTy, DestTy; if (IsDereference) { if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { return; } SrcTy = SrcType->getPointeeType(); DestTy = DestType->getPointeeType(); } else { if (!DestType->getAs<ReferenceType>()) { return; } SrcTy = SrcType; DestTy = DestType->getPointeeType(); } // Cast is compatible if the types are the same. if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { return; } // or one of the types is a char or void type if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { return; } // or one of the types is a tag type. if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { return; } // FIXME: Scoped enums? if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { return; } } Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; } static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, bool CStyle, const SourceRange &OpRange, unsigned &msg, CastKind &Kind) { bool IsLValueCast = false; DestType = Self.Context.getCanonicalType(DestType); QualType SrcType = SrcExpr.get()->getType(); // Is the source an overloaded name? (i.e. &foo) // If so, reinterpret_cast can not help us here (13.4, p1, bullet 5) ... if (SrcType == Self.Context.OverloadTy) { // ... unless foo<int> resolves to an lvalue unambiguously. // TODO: what if this fails because of DiagnoseUseOfDecl or something // like it? ExprResult SingleFunctionExpr = SrcExpr; if (Self.ResolveAndFixSingleFunctionTemplateSpecialization( SingleFunctionExpr, Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr ) && SingleFunctionExpr.isUsable()) { SrcExpr = move(SingleFunctionExpr); SrcType = SrcExpr.get()->getType(); } else { return TC_NotApplicable; } } if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { bool LValue = DestTypeTmp->isLValueReferenceType(); if (LValue && !SrcExpr.get()->isLValue()) { // Cannot cast non-lvalue to lvalue reference type. See the similar // comment in const_cast. msg = diag::err_bad_cxx_cast_rvalue; return TC_NotApplicable; } if (!CStyle) { Self.CheckCompatibleReinterpretCast(SrcType, DestType, /*isDereference=*/false, OpRange); } // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the // same effect as the conversion *reinterpret_cast<T*>(&x) with the // built-in & and * operators. const char *inappropriate = 0; switch (SrcExpr.get()->getObjectKind()) { case OK_Ordinary: break; case OK_BitField: inappropriate = "bit-field"; break; case OK_VectorComponent: inappropriate = "vector element"; break; case OK_ObjCProperty: inappropriate = "property expression"; break; case OK_ObjCSubscript: inappropriate = "container subscripting expression"; break; } if (inappropriate) { Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) << inappropriate << DestType << OpRange << SrcExpr.get()->getSourceRange(); msg = 0; SrcExpr = ExprError(); return TC_NotApplicable; } // This code does this transformation for the checked types. DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Self.Context.getPointerType(SrcType); IsLValueCast = true; } // Canonicalize source for comparison. SrcType = Self.Context.getCanonicalType(SrcType); const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), *SrcMemPtr = SrcType->getAs<MemberPointerType>(); if (DestMemPtr && SrcMemPtr) { // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" // can be explicitly converted to an rvalue of type "pointer to member // of Y of type T2" if T1 and T2 are both function types or both object // types. if (DestMemPtr->getPointeeType()->isFunctionType() != SrcMemPtr->getPointeeType()->isFunctionType()) return TC_NotApplicable; // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away // constness. // A reinterpret_cast followed by a const_cast can, though, so in C-style, // we accept it. if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, /*CheckObjCLifetime=*/CStyle)) { msg = diag::err_bad_cxx_cast_qualifiers_away; return TC_Failed; } // Don't allow casting between member pointers of different sizes. if (Self.Context.getTypeSize(DestMemPtr) != Self.Context.getTypeSize(SrcMemPtr)) { msg = diag::err_bad_cxx_cast_member_pointer_size; return TC_Failed; } // A valid member pointer cast. assert(!IsLValueCast); Kind = CK_ReinterpretMemberPointer; return TC_Success; } // See below for the enumeral issue. if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral // type large enough to hold it. A value of std::nullptr_t can be // converted to an integral type; the conversion has the same meaning // and validity as a conversion of (void*)0 to the integral type. if (Self.Context.getTypeSize(SrcType) > Self.Context.getTypeSize(DestType)) { msg = diag::err_bad_reinterpret_cast_small_int; return TC_Failed; } Kind = CK_PointerToIntegral; return TC_Success; } bool destIsVector = DestType->isVectorType(); bool srcIsVector = SrcType->isVectorType(); if (srcIsVector || destIsVector) { // FIXME: Should this also apply to floating point types? bool srcIsScalar = SrcType->isIntegralType(Self.Context); bool destIsScalar = DestType->isIntegralType(Self.Context); // Check if this is a cast between a vector and something else. if (!(srcIsScalar && destIsVector) && !(srcIsVector && destIsScalar) && !(srcIsVector && destIsVector)) return TC_NotApplicable; // If both types have the same size, we can successfully cast. if (Self.Context.getTypeSize(SrcType) == Self.Context.getTypeSize(DestType)) { Kind = CK_BitCast; return TC_Success; } if (destIsScalar) msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; else if (srcIsScalar) msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; else msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; return TC_Failed; } if (SrcType == DestType) { // C++ 5.2.10p2 has a note that mentions that, subject to all other // restrictions, a cast to the same type is allowed so long as it does not // cast away constness. In C++98, the intent was not entirely clear here, // since all other paragraphs explicitly forbid casts to the same type. // C++11 clarifies this case with p2. // // The only allowed types are: integral, enumeration, pointer, or // pointer-to-member types. We also won't restrict Obj-C pointers either. Kind = CK_NoOp; TryCastResult Result = TC_NotApplicable; if (SrcType->isIntegralOrEnumerationType() || SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) { Result = TC_Success; } return Result; } bool destIsPtr = DestType->isAnyPointerType() || DestType->isBlockPointerType(); bool srcIsPtr = SrcType->isAnyPointerType() || SrcType->isBlockPointerType(); if (!destIsPtr && !srcIsPtr) { // Except for std::nullptr_t->integer and lvalue->reference, which are // handled above, at least one of the two arguments must be a pointer. return TC_NotApplicable; } if (DestType->isIntegralType(Self.Context)) { assert(srcIsPtr && "One type must be a pointer"); // C++ 5.2.10p4: A pointer can be explicitly converted to any integral // type large enough to hold it; except in Microsoft mode, where the // integral type size doesn't matter. if ((Self.Context.getTypeSize(SrcType) > Self.Context.getTypeSize(DestType)) && !Self.getLangOpts().MicrosoftExt) { msg = diag::err_bad_reinterpret_cast_small_int; return TC_Failed; } Kind = CK_PointerToIntegral; return TC_Success; } if (SrcType->isIntegralOrEnumerationType()) { assert(destIsPtr && "One type must be a pointer"); // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly // converted to a pointer. // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not // necessarily converted to a null pointer value.] Kind = CK_IntegralToPointer; return TC_Success; } if (!destIsPtr || !srcIsPtr) { // With the valid non-pointer conversions out of the way, we can be even // more stringent. return TC_NotApplicable; } // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. // The C-style cast operator can. if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, /*CheckObjCLifetime=*/CStyle)) { msg = diag::err_bad_cxx_cast_qualifiers_away; return TC_Failed; } // Cannot convert between block pointers and Objective-C object pointers. if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) return TC_NotApplicable; if (IsLValueCast) { Kind = CK_LValueBitCast; } else if (DestType->isObjCObjectPointerType()) { Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr); } else if (DestType->isBlockPointerType()) { if (!SrcType->isBlockPointerType()) { Kind = CK_AnyPointerToBlockPointerCast; } else { Kind = CK_BitCast; } } else { Kind = CK_BitCast; } // Any pointer can be cast to an Objective-C pointer type with a C-style // cast. if (CStyle && DestType->isObjCObjectPointerType()) { return TC_Success; } // Not casting away constness, so the only remaining check is for compatible // pointer categories. if (SrcType->isFunctionPointerType()) { if (DestType->isFunctionPointerType()) { // C++ 5.2.10p6: A pointer to a function can be explicitly converted to // a pointer to a function of a different type. return TC_Success; } // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to // an object type or vice versa is conditionally-supported. // Compilers support it in C++03 too, though, because it's necessary for // casting the return value of dlsym() and GetProcAddress(). // FIXME: Conditionally-supported behavior should be configurable in the // TargetInfo or similar. Self.Diag(OpRange.getBegin(), Self.getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) << OpRange; return TC_Success; } if (DestType->isFunctionPointerType()) { // See above. Self.Diag(OpRange.getBegin(), Self.getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) << OpRange; return TC_Success; } // C++ 5.2.10p7: A pointer to an object can be explicitly converted to // a pointer to an object of different type. // Void pointers are not specified, but supported by every compiler out there. // So we finish by allowing everything that remains - it's got to be two // object pointers. return TC_Success; } void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle, bool ListInitialization) { // Handle placeholders. if (isPlaceholder()) { // C-style casts can resolve __unknown_any types. if (claimPlaceholder(BuiltinType::UnknownAny)) { SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, SrcExpr.get(), Kind, ValueKind, BasePath); return; } checkNonOverloadPlaceholders(); if (SrcExpr.isInvalid()) return; } // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". // This test is outside everything else because it's the only case where // a non-lvalue-reference target type does not lead to decay. if (DestType->isVoidType()) { Kind = CK_ToVoid; if (claimPlaceholder(BuiltinType::Overload)) { Self.ResolveAndFixSingleFunctionTemplateSpecialization( SrcExpr, /* Decay Function to ptr */ false, /* Complain */ true, DestRange, DestType, diag::err_bad_cstyle_cast_overload); if (SrcExpr.isInvalid()) return; } SrcExpr = Self.IgnoredValueConversions(SrcExpr.take()); if (SrcExpr.isInvalid()) return; return; } // If the type is dependent, we won't do any other semantic analysis now. if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent()) { assert(Kind == CK_Dependent); return; } if (ValueKind == VK_RValue && !DestType->isRecordType() && !isPlaceholder(BuiltinType::Overload)) { SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); if (SrcExpr.isInvalid()) return; } // AltiVec vector initialization with a single literal. if (const VectorType *vecTy = DestType->getAs<VectorType>()) if (vecTy->getVectorKind() == VectorType::AltiVecVector && (SrcExpr.get()->getType()->isIntegerType() || SrcExpr.get()->getType()->isFloatingType())) { Kind = CK_VectorSplat; return; } // C++ [expr.cast]p5: The conversions performed by // - a const_cast, // - a static_cast, // - a static_cast followed by a const_cast, // - a reinterpret_cast, or // - a reinterpret_cast followed by a const_cast, // can be performed using the cast notation of explicit type conversion. // [...] If a conversion can be interpreted in more than one of the ways // listed above, the interpretation that appears first in the list is used, // even if a cast resulting from that interpretation is ill-formed. // In plain language, this means trying a const_cast ... unsigned msg = diag::err_bad_cxx_cast_generic; TryCastResult tcr = TryConstCast(Self, SrcExpr.get(), DestType, /*CStyle*/true, msg); if (tcr == TC_Success) Kind = CK_NoOp; Sema::CheckedConversionKind CCK = FunctionalStyle? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast; if (tcr == TC_NotApplicable) { // ... or if that is not possible, a static_cast, ignoring const, ... tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, BasePath, ListInitialization); if (SrcExpr.isInvalid()) return; if (tcr == TC_NotApplicable) { // ... and finally a reinterpret_cast, ignoring const. tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/true, OpRange, msg, Kind); if (SrcExpr.isInvalid()) return; } } if (Self.getLangOpts().ObjCAutoRefCount && tcr == TC_Success) checkObjCARCConversion(CCK); if (tcr != TC_Success && msg != 0) { if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { DeclAccessPair Found; FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, /*Complain*/ true, Found); assert(!Fn && "cast failed but able to resolve overload expression!!"); (void)Fn; } else { diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), OpRange, SrcExpr.get(), DestType, ListInitialization); } } else if (Kind == CK_BitCast) { checkCastAlign(); } // Clear out SrcExpr if there was a fatal error. if (tcr != TC_Success) SrcExpr = ExprError(); } /// Check the semantics of a C-style cast operation, in C. void CastOperation::CheckCStyleCast() { assert(!Self.getLangOpts().CPlusPlus); // C-style casts can resolve __unknown_any types. if (claimPlaceholder(BuiltinType::UnknownAny)) { SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, SrcExpr.get(), Kind, ValueKind, BasePath); return; } // C99 6.5.4p2: the cast type needs to be void or scalar and the expression // type needs to be scalar. if (DestType->isVoidType()) { // We don't necessarily do lvalue-to-rvalue conversions on this. SrcExpr = Self.IgnoredValueConversions(SrcExpr.take()); if (SrcExpr.isInvalid()) return; // Cast to void allows any expr type. Kind = CK_ToVoid; return; } SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); if (SrcExpr.isInvalid()) return; QualType SrcType = SrcExpr.get()->getType(); // You can cast an _Atomic(T) to anything you can cast a T to. if (const AtomicType *AtomicSrcType = SrcType->getAs<AtomicType>()) SrcType = AtomicSrcType->getValueType(); assert(!SrcType->isPlaceholderType()); if (Self.RequireCompleteType(OpRange.getBegin(), DestType, diag::err_typecheck_cast_to_incomplete)) { SrcExpr = ExprError(); return; } if (!DestType->isScalarType() && !DestType->isVectorType()) { const RecordType *DestRecordTy = DestType->getAs<RecordType>(); if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){ // GCC struct/union extension: allow cast to self. Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar) << DestType << SrcExpr.get()->getSourceRange(); Kind = CK_NoOp; return; } // GCC's cast to union extension. if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) { RecordDecl *RD = DestRecordTy->getDecl(); RecordDecl::field_iterator Field, FieldEnd; for (Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (Self.Context.hasSameUnqualifiedType(Field->getType(), SrcType) && !Field->isUnnamedBitfield()) { Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union) << SrcExpr.get()->getSourceRange(); break; } } if (Field == FieldEnd) { Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type) << SrcType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } Kind = CK_ToUnion; return; } // Reject any other conversions to non-scalar types. Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar) << DestType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } // The type we're casting to is known to be a scalar or vector. // Require the operand to be a scalar or vector. if (!SrcType->isScalarType() && !SrcType->isVectorType()) { Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_typecheck_expect_scalar_operand) << SrcType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } if (DestType->isExtVectorType()) { SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.take(), Kind); return; } if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) { if (DestVecTy->getVectorKind() == VectorType::AltiVecVector && (SrcType->isIntegerType() || SrcType->isFloatingType())) { Kind = CK_VectorSplat; } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) { SrcExpr = ExprError(); } return; } if (SrcType->isVectorType()) { if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind)) SrcExpr = ExprError(); return; } // The source and target types are both scalars, i.e. // - arithmetic types (fundamental, enum, and complex) // - all kinds of pointers // Note that member pointers were filtered out with C++, above. if (isa<ObjCSelectorExpr>(SrcExpr.get())) { Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr); SrcExpr = ExprError(); return; } // If either type is a pointer, the other type has to be either an // integer or a pointer. if (!DestType->isArithmeticType()) { if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) { Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_pointer_from_non_pointer_int) << SrcType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } } else if (!SrcType->isArithmeticType()) { if (!DestType->isIntegralType(Self.Context) && DestType->isArithmeticType()) { Self.Diag(SrcExpr.get()->getLocStart(), diag::err_cast_pointer_to_non_pointer_int) << DestType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } } // ARC imposes extra restrictions on casts. if (Self.getLangOpts().ObjCAutoRefCount) { checkObjCARCConversion(Sema::CCK_CStyleCast); if (SrcExpr.isInvalid()) return; if (const PointerType *CastPtr = DestType->getAs<PointerType>()) { if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) { Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); if (CastPtr->getPointeeType()->isObjCLifetimeType() && ExprPtr->getPointeeType()->isObjCLifetimeType() && !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { Self.Diag(SrcExpr.get()->getLocStart(), diag::err_typecheck_incompatible_ownership) << SrcType << DestType << Sema::AA_Casting << SrcExpr.get()->getSourceRange(); return; } } } else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) { Self.Diag(SrcExpr.get()->getLocStart(), diag::err_arc_convesion_of_weak_unavailable) << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange(); SrcExpr = ExprError(); return; } } Kind = Self.PrepareScalarCast(SrcExpr, DestType); if (SrcExpr.isInvalid()) return; if (Kind == CK_BitCast) checkCastAlign(); } ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc, TypeSourceInfo *CastTypeInfo, SourceLocation RPLoc, Expr *CastExpr) { CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); Op.OpRange = SourceRange(LPLoc, CastExpr->getLocEnd()); if (getLangOpts().CPlusPlus) { Op.CheckCXXCStyleCast(/*FunctionalStyle=*/ false, isa<InitListExpr>(CastExpr)); } else { Op.CheckCStyleCast(); } if (Op.SrcExpr.isInvalid()) return ExprError(); return Op.complete(CStyleCastExpr::Create(Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.take(), &Op.BasePath, CastTypeInfo, LPLoc, RPLoc)); } ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo, SourceLocation LPLoc, Expr *CastExpr, SourceLocation RPLoc) { assert(LPLoc.isValid() && "List-initialization shouldn't get here."); CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getLocEnd()); Op.CheckCXXCStyleCast(/*FunctionalStyle=*/true, /*ListInit=*/false); if (Op.SrcExpr.isInvalid()) return ExprError(); return Op.complete(CXXFunctionalCastExpr::Create(Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.DestRange.getBegin(), Op.Kind, Op.SrcExpr.take(), &Op.BasePath, RPLoc)); }