Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp |
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Scope.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "TypeLocBuilder.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" using namespace clang; using namespace sema; ParsedType Sema::getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectTypePtr, bool EnteringContext) { // Determine where to perform name lookup. // FIXME: This area of the standard is very messy, and the current // wording is rather unclear about which scopes we search for the // destructor name; see core issues 399 and 555. Issue 399 in // particular shows where the current description of destructor name // lookup is completely out of line with existing practice, e.g., // this appears to be ill-formed: // // namespace N { // template <typename T> struct S { // ~S(); // }; // } // // void f(N::S<int>* s) { // s->N::S<int>::~S(); // } // // See also PR6358 and PR6359. // For this reason, we're currently only doing the C++03 version of this // code; the C++0x version has to wait until we get a proper spec. QualType SearchType; DeclContext *LookupCtx = 0; bool isDependent = false; bool LookInScope = false; // If we have an object type, it's because we are in a // pseudo-destructor-expression or a member access expression, and // we know what type we're looking for. if (ObjectTypePtr) SearchType = GetTypeFromParser(ObjectTypePtr); if (SS.isSet()) { NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); bool AlreadySearched = false; bool LookAtPrefix = true; // C++ [basic.lookup.qual]p6: // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, // the type-names are looked up as types in the scope designated by the // nested-name-specifier. In a qualified-id of the form: // // ::[opt] nested-name-specifier ~ class-name // // where the nested-name-specifier designates a namespace scope, and in // a qualified-id of the form: // // ::opt nested-name-specifier class-name :: ~ class-name // // the class-names are looked up as types in the scope designated by // the nested-name-specifier. // // Here, we check the first case (completely) and determine whether the // code below is permitted to look at the prefix of the // nested-name-specifier. DeclContext *DC = computeDeclContext(SS, EnteringContext); if (DC && DC->isFileContext()) { AlreadySearched = true; LookupCtx = DC; isDependent = false; } else if (DC && isa<CXXRecordDecl>(DC)) LookAtPrefix = false; // The second case from the C++03 rules quoted further above. NestedNameSpecifier *Prefix = 0; if (AlreadySearched) { // Nothing left to do. } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { CXXScopeSpec PrefixSS; PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); LookupCtx = computeDeclContext(PrefixSS, EnteringContext); isDependent = isDependentScopeSpecifier(PrefixSS); } else if (ObjectTypePtr) { LookupCtx = computeDeclContext(SearchType); isDependent = SearchType->isDependentType(); } else { LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = LookupCtx && LookupCtx->isDependentContext(); } LookInScope = false; } else if (ObjectTypePtr) { // C++ [basic.lookup.classref]p3: // If the unqualified-id is ~type-name, the type-name is looked up // in the context of the entire postfix-expression. If the type T // of the object expression is of a class type C, the type-name is // also looked up in the scope of class C. At least one of the // lookups shall find a name that refers to (possibly // cv-qualified) T. LookupCtx = computeDeclContext(SearchType); isDependent = SearchType->isDependentType(); assert((isDependent || !SearchType->isIncompleteType()) && "Caller should have completed object type"); LookInScope = true; } else { // Perform lookup into the current scope (only). LookInScope = true; } TypeDecl *NonMatchingTypeDecl = 0; LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); for (unsigned Step = 0; Step != 2; ++Step) { // Look for the name first in the computed lookup context (if we // have one) and, if that fails to find a match, in the scope (if // we're allowed to look there). Found.clear(); if (Step == 0 && LookupCtx) LookupQualifiedName(Found, LookupCtx); else if (Step == 1 && LookInScope && S) LookupName(Found, S); else continue; // FIXME: Should we be suppressing ambiguities here? if (Found.isAmbiguous()) return ParsedType(); if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { QualType T = Context.getTypeDeclType(Type); if (SearchType.isNull() || SearchType->isDependentType() || Context.hasSameUnqualifiedType(T, SearchType)) { // We found our type! return ParsedType::make(T); } if (!SearchType.isNull()) NonMatchingTypeDecl = Type; } // If the name that we found is a class template name, and it is // the same name as the template name in the last part of the // nested-name-specifier (if present) or the object type, then // this is the destructor for that class. // FIXME: This is a workaround until we get real drafting for core // issue 399, for which there isn't even an obvious direction. if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { QualType MemberOfType; if (SS.isSet()) { if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { // Figure out the type of the context, if it has one. if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) MemberOfType = Context.getTypeDeclType(Record); } } if (MemberOfType.isNull()) MemberOfType = SearchType; if (MemberOfType.isNull()) continue; // We're referring into a class template specialization. If the // class template we found is the same as the template being // specialized, we found what we are looking for. if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { if (ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { if (Spec->getSpecializedTemplate()->getCanonicalDecl() == Template->getCanonicalDecl()) return ParsedType::make(MemberOfType); } continue; } // We're referring to an unresolved class template // specialization. Determine whether we class template we found // is the same as the template being specialized or, if we don't // know which template is being specialized, that it at least // has the same name. if (const TemplateSpecializationType *SpecType = MemberOfType->getAs<TemplateSpecializationType>()) { TemplateName SpecName = SpecType->getTemplateName(); // The class template we found is the same template being // specialized. if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) return ParsedType::make(MemberOfType); continue; } // The class template we found has the same name as the // (dependent) template name being specialized. if (DependentTemplateName *DepTemplate = SpecName.getAsDependentTemplateName()) { if (DepTemplate->isIdentifier() && DepTemplate->getIdentifier() == Template->getIdentifier()) return ParsedType::make(MemberOfType); continue; } } } } if (isDependent) { // We didn't find our type, but that's okay: it's dependent // anyway. // FIXME: What if we have no nested-name-specifier? QualType T = CheckTypenameType(ETK_None, SourceLocation(), SS.getWithLocInContext(Context), II, NameLoc); return ParsedType::make(T); } if (NonMatchingTypeDecl) { QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); Diag(NameLoc, diag::err_destructor_expr_type_mismatch) << T << SearchType; Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) << T; } else if (ObjectTypePtr) Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) << &II; else Diag(NameLoc, diag::err_destructor_class_name); return ParsedType(); } ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) return ParsedType(); assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && "only get destructor types from declspecs"); QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); QualType SearchType = GetTypeFromParser(ObjectType); if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { return ParsedType::make(T); } Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) << T << SearchType; return ParsedType(); } /// \brief Build a C++ typeid expression with a type operand. ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { // C++ [expr.typeid]p4: // The top-level cv-qualifiers of the lvalue expression or the type-id // that is the operand of typeid are always ignored. // If the type of the type-id is a class type or a reference to a class // type, the class shall be completely-defined. Qualifiers Quals; QualType T = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), Quals); if (T->getAs<RecordType>() && RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) return ExprError(); return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, SourceRange(TypeidLoc, RParenLoc))); } /// \brief Build a C++ typeid expression with an expression operand. ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *E, SourceLocation RParenLoc) { if (E && !E->isTypeDependent()) { if (E->getType()->isPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return ExprError(); E = result.take(); } QualType T = E->getType(); if (const RecordType *RecordT = T->getAs<RecordType>()) { CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); // C++ [expr.typeid]p3: // [...] If the type of the expression is a class type, the class // shall be completely-defined. if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) return ExprError(); // C++ [expr.typeid]p3: // When typeid is applied to an expression other than an glvalue of a // polymorphic class type [...] [the] expression is an unevaluated // operand. [...] if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) { // The subexpression is potentially evaluated; switch the context // and recheck the subexpression. ExprResult Result = TranformToPotentiallyEvaluated(E); if (Result.isInvalid()) return ExprError(); E = Result.take(); // We require a vtable to query the type at run time. MarkVTableUsed(TypeidLoc, RecordD); } } // C++ [expr.typeid]p4: // [...] If the type of the type-id is a reference to a possibly // cv-qualified type, the result of the typeid expression refers to a // std::type_info object representing the cv-unqualified referenced // type. Qualifiers Quals; QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); if (!Context.hasSameType(T, UnqualT)) { T = UnqualT; E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take(); } } return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, SourceRange(TypeidLoc, RParenLoc))); } /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); ExprResult Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { // Find the std::type_info type. if (!getStdNamespace()) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); if (!CXXTypeInfoDecl) { IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); LookupQualifiedName(R, getStdNamespace()); CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); if (!CXXTypeInfoDecl) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); } QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); if (isType) { // The operand is a type; handle it as such. TypeSourceInfo *TInfo = 0; QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), &TInfo); if (T.isNull()) return ExprError(); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); } // The operand is an expression. return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); } /// Retrieve the UuidAttr associated with QT. static UuidAttr *GetUuidAttrOfType(QualType QT) { // Optionally remove one level of pointer, reference or array indirection. const Type *Ty = QT.getTypePtr();; if (QT->isPointerType() || QT->isReferenceType()) Ty = QT->getPointeeType().getTypePtr(); else if (QT->isArrayType()) Ty = cast<ArrayType>(QT)->getElementType().getTypePtr(); // Loop all record redeclaration looking for an uuid attribute. CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(), E = RD->redecls_end(); I != E; ++I) { if (UuidAttr *Uuid = I->getAttr<UuidAttr>()) return Uuid; } return 0; } /// \brief Build a Microsoft __uuidof expression with a type operand. ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { if (!Operand->getType()->isDependentType()) { if (!GetUuidAttrOfType(Operand->getType())) return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); } // FIXME: add __uuidof semantic analysis for type operand. return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, SourceRange(TypeidLoc, RParenLoc))); } /// \brief Build a Microsoft __uuidof expression with an expression operand. ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *E, SourceLocation RParenLoc) { if (!E->getType()->isDependentType()) { if (!GetUuidAttrOfType(E->getType()) && !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); } // FIXME: add __uuidof semantic analysis for type operand. return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, SourceRange(TypeidLoc, RParenLoc))); } /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); ExprResult Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { // If MSVCGuidDecl has not been cached, do the lookup. if (!MSVCGuidDecl) { IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); LookupQualifiedName(R, Context.getTranslationUnitDecl()); MSVCGuidDecl = R.getAsSingle<RecordDecl>(); if (!MSVCGuidDecl) return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); } QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); if (isType) { // The operand is a type; handle it as such. TypeSourceInfo *TInfo = 0; QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), &TInfo); if (T.isNull()) return ExprError(); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); } // The operand is an expression. return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); } /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc)); } /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); } /// ActOnCXXThrow - Parse throw expressions. ExprResult Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { bool IsThrownVarInScope = false; if (Ex) { // C++0x [class.copymove]p31: // When certain criteria are met, an implementation is allowed to omit the // copy/move construction of a class object [...] // // - in a throw-expression, when the operand is the name of a // non-volatile automatic object (other than a function or catch- // clause parameter) whose scope does not extend beyond the end of the // innermost enclosing try-block (if there is one), the copy/move // operation from the operand to the exception object (15.1) can be // omitted by constructing the automatic object directly into the // exception object if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { for( ; S; S = S->getParent()) { if (S->isDeclScope(Var)) { IsThrownVarInScope = true; break; } if (S->getFlags() & (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | Scope::TryScope)) break; } } } } return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); } ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, bool IsThrownVarInScope) { // Don't report an error if 'throw' is used in system headers. if (!getLangOpts().CXXExceptions && !getSourceManager().isInSystemHeader(OpLoc)) Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; if (Ex && !Ex->isTypeDependent()) { ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope); if (ExRes.isInvalid()) return ExprError(); Ex = ExRes.take(); } return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope)); } /// CheckCXXThrowOperand - Validate the operand of a throw. ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, bool IsThrownVarInScope) { // C++ [except.throw]p3: // A throw-expression initializes a temporary object, called the exception // object, the type of which is determined by removing any top-level // cv-qualifiers from the static type of the operand of throw and adjusting // the type from "array of T" or "function returning T" to "pointer to T" // or "pointer to function returning T", [...] if (E->getType().hasQualifiers()) E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, E->getValueKind()).take(); ExprResult Res = DefaultFunctionArrayConversion(E); if (Res.isInvalid()) return ExprError(); E = Res.take(); // If the type of the exception would be an incomplete type or a pointer // to an incomplete type other than (cv) void the program is ill-formed. QualType Ty = E->getType(); bool isPointer = false; if (const PointerType* Ptr = Ty->getAs<PointerType>()) { Ty = Ptr->getPointeeType(); isPointer = true; } if (!isPointer || !Ty->isVoidType()) { if (RequireCompleteType(ThrowLoc, Ty, PDiag(isPointer ? diag::err_throw_incomplete_ptr : diag::err_throw_incomplete) << E->getSourceRange())) return ExprError(); if (RequireNonAbstractType(ThrowLoc, E->getType(), PDiag(diag::err_throw_abstract_type) << E->getSourceRange())) return ExprError(); } // Initialize the exception result. This implicitly weeds out // abstract types or types with inaccessible copy constructors. // C++0x [class.copymove]p31: // When certain criteria are met, an implementation is allowed to omit the // copy/move construction of a class object [...] // // - in a throw-expression, when the operand is the name of a // non-volatile automatic object (other than a function or catch-clause // parameter) whose scope does not extend beyond the end of the // innermost enclosing try-block (if there is one), the copy/move // operation from the operand to the exception object (15.1) can be // omitted by constructing the automatic object directly into the // exception object const VarDecl *NRVOVariable = 0; if (IsThrownVarInScope) NRVOVariable = getCopyElisionCandidate(QualType(), E, false); InitializedEntity Entity = InitializedEntity::InitializeException(ThrowLoc, E->getType(), /*NRVO=*/NRVOVariable != 0); Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, QualType(), E, IsThrownVarInScope); if (Res.isInvalid()) return ExprError(); E = Res.take(); // If the exception has class type, we need additional handling. const RecordType *RecordTy = Ty->getAs<RecordType>(); if (!RecordTy) return Owned(E); CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); // If we are throwing a polymorphic class type or pointer thereof, // exception handling will make use of the vtable. MarkVTableUsed(ThrowLoc, RD); // If a pointer is thrown, the referenced object will not be destroyed. if (isPointer) return Owned(E); // If the class has a destructor, we must be able to call it. if (RD->hasIrrelevantDestructor()) return Owned(E); CXXDestructorDecl *Destructor = LookupDestructor(RD); if (!Destructor) return Owned(E); MarkFunctionReferenced(E->getExprLoc(), Destructor); CheckDestructorAccess(E->getExprLoc(), Destructor, PDiag(diag::err_access_dtor_exception) << Ty); DiagnoseUseOfDecl(Destructor, E->getExprLoc()); return Owned(E); } QualType Sema::getCurrentThisType() { DeclContext *DC = getFunctionLevelDeclContext(); QualType ThisTy = CXXThisTypeOverride; if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { if (method && method->isInstance()) ThisTy = method->getThisType(Context); } return ThisTy; } Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, Decl *ContextDecl, unsigned CXXThisTypeQuals, bool Enabled) : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) { if (!Enabled || !ContextDecl) return; CXXRecordDecl *Record = 0; if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) Record = Template->getTemplatedDecl(); else Record = cast<CXXRecordDecl>(ContextDecl); S.CXXThisTypeOverride = S.Context.getPointerType( S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); this->Enabled = true; } Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { if (Enabled) { S.CXXThisTypeOverride = OldCXXThisTypeOverride; } } void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) { // We don't need to capture this in an unevaluated context. if (ExprEvalContexts.back().Context == Unevaluated && !Explicit) return; // Otherwise, check that we can capture 'this'. unsigned NumClosures = 0; for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) { if (CapturingScopeInfo *CSI = dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { if (CSI->CXXThisCaptureIndex != 0) { // 'this' is already being captured; there isn't anything more to do. break; } if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || Explicit) { // This closure can capture 'this'; continue looking upwards. NumClosures++; Explicit = false; continue; } // This context can't implicitly capture 'this'; fail out. Diag(Loc, diag::err_this_capture) << Explicit; return; } break; } // Mark that we're implicitly capturing 'this' in all the scopes we skipped. // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated // contexts. for (unsigned idx = FunctionScopes.size() - 1; NumClosures; --idx, --NumClosures) { CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); Expr *ThisExpr = 0; QualType ThisTy = getCurrentThisType(); if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) { // For lambda expressions, build a field and an initializing expression. CXXRecordDecl *Lambda = LSI->Lambda; FieldDecl *Field = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy, Context.getTrivialTypeSourceInfo(ThisTy, Loc), 0, false, false); Field->setImplicit(true); Field->setAccess(AS_private); Lambda->addDecl(Field); ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true); } bool isNested = NumClosures > 1; CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); } } ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. QualType ThisTy = getCurrentThisType(); if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); CheckCXXThisCapture(Loc); return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false)); } bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { // If we're outside the body of a member function, then we'll have a specified // type for 'this'. if (CXXThisTypeOverride.isNull()) return false; // Determine whether we're looking into a class that's currently being // defined. CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); return Class && Class->isBeingDefined(); } ExprResult Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenLoc, MultiExprArg exprs, SourceLocation RParenLoc) { if (!TypeRep) return ExprError(); TypeSourceInfo *TInfo; QualType Ty = GetTypeFromParser(TypeRep, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, SourceLocation LParenLoc, MultiExprArg exprs, SourceLocation RParenLoc) { QualType Ty = TInfo->getType(); unsigned NumExprs = exprs.size(); Expr **Exprs = (Expr**)exprs.get(); SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments( llvm::makeArrayRef(Exprs, NumExprs))) { exprs.release(); return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, NumExprs, RParenLoc)); } bool ListInitialization = LParenLoc.isInvalid(); assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."); SourceRange FullRange = SourceRange(TyBeginLoc, ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); // C++ [expr.type.conv]p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. if (NumExprs == 1 && !ListInitialization) { Expr *Arg = Exprs[0]; exprs.release(); return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); } QualType ElemTy = Ty; if (Ty->isArrayType()) { if (!ListInitialization) return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange); ElemTy = Context.getBaseElementType(Ty); } if (!Ty->isVoidType() && RequireCompleteType(TyBeginLoc, ElemTy, PDiag(diag::err_invalid_incomplete_type_use) << FullRange)) return ExprError(); if (RequireNonAbstractType(TyBeginLoc, Ty, diag::err_allocation_of_abstract_type)) return ExprError(); InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); InitializationKind Kind = NumExprs ? ListInitialization ? InitializationKind::CreateDirectList(TyBeginLoc) : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs)); if (!Result.isInvalid() && ListInitialization && isa<InitListExpr>(Result.get())) { // If the list-initialization doesn't involve a constructor call, we'll get // the initializer-list (with corrected type) back, but that's not what we // want, since it will be treated as an initializer list in further // processing. Explicitly insert a cast here. InitListExpr *List = cast<InitListExpr>(Result.take()); Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(), Expr::getValueKindForType(TInfo->getType()), TInfo, TyBeginLoc, CK_NoOp, List, /*Path=*/0, RParenLoc)); } // FIXME: Improve AST representation? return move(Result); } /// doesUsualArrayDeleteWantSize - Answers whether the usual /// operator delete[] for the given type has a size_t parameter. static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, QualType allocType) { const RecordType *record = allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); if (!record) return false; // Try to find an operator delete[] in class scope. DeclarationName deleteName = S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); S.LookupQualifiedName(ops, record->getDecl()); // We're just doing this for information. ops.suppressDiagnostics(); // Very likely: there's no operator delete[]. if (ops.empty()) return false; // If it's ambiguous, it should be illegal to call operator delete[] // on this thing, so it doesn't matter if we allocate extra space or not. if (ops.isAmbiguous()) return false; LookupResult::Filter filter = ops.makeFilter(); while (filter.hasNext()) { NamedDecl *del = filter.next()->getUnderlyingDecl(); // C++0x [basic.stc.dynamic.deallocation]p2: // A template instance is never a usual deallocation function, // regardless of its signature. if (isa<FunctionTemplateDecl>(del)) { filter.erase(); continue; } // C++0x [basic.stc.dynamic.deallocation]p2: // If class T does not declare [an operator delete[] with one // parameter] but does declare a member deallocation function // named operator delete[] with exactly two parameters, the // second of which has type std::size_t, then this function // is a usual deallocation function. if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { filter.erase(); continue; } } filter.done(); if (!ops.isSingleResult()) return false; const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); return (del->getNumParams() == 2); } /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). /// E.g.: /// @code new (memory) int[size][4] @endcode /// or /// @code ::new Foo(23, "hello") @endcode /// /// \param StartLoc The first location of the expression. /// \param UseGlobal True if 'new' was prefixed with '::'. /// \param PlacementLParen Opening paren of the placement arguments. /// \param PlacementArgs Placement new arguments. /// \param PlacementRParen Closing paren of the placement arguments. /// \param TypeIdParens If the type is in parens, the source range. /// \param D The type to be allocated, as well as array dimensions. /// \param ConstructorLParen Opening paren of the constructor args, empty if /// initializer-list syntax is used. /// \param ConstructorArgs Constructor/initialization arguments. /// \param ConstructorRParen Closing paren of the constructor args. ExprResult Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer) { bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto; Expr *ArraySize = 0; // If the specified type is an array, unwrap it and save the expression. if (D.getNumTypeObjects() > 0 && D.getTypeObject(0).Kind == DeclaratorChunk::Array) { DeclaratorChunk &Chunk = D.getTypeObject(0); if (TypeContainsAuto) return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) << D.getSourceRange()); if (Chunk.Arr.hasStatic) return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) << D.getSourceRange()); if (!Chunk.Arr.NumElts) return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) << D.getSourceRange()); ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); D.DropFirstTypeObject(); } // Every dimension shall be of constant size. if (ArraySize) { for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) break; DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; if (Expr *NumElts = (Expr *)Array.NumElts) { if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0, PDiag(diag::err_new_array_nonconst)).take(); if (!Array.NumElts) return ExprError(); } } } } TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0); QualType AllocType = TInfo->getType(); if (D.isInvalidType()) return ExprError(); SourceRange DirectInitRange; if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) DirectInitRange = List->getSourceRange(); return BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, move(PlacementArgs), PlacementRParen, TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, Initializer, TypeContainsAuto); } static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, Expr *Init) { if (!Init) return true; if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) return PLE->getNumExprs() == 0; if (isa<ImplicitValueInitExpr>(Init)) return true; else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) return !CCE->isListInitialization() && CCE->getConstructor()->isDefaultConstructor(); else if (Style == CXXNewExpr::ListInit) { assert(isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."); return true; } return false; } ExprResult Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, TypeSourceInfo *AllocTypeInfo, Expr *ArraySize, SourceRange DirectInitRange, Expr *Initializer, bool TypeMayContainAuto) { SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); CXXNewExpr::InitializationStyle initStyle; if (DirectInitRange.isValid()) { assert(Initializer && "Have parens but no initializer."); initStyle = CXXNewExpr::CallInit; } else if (Initializer && isa<InitListExpr>(Initializer)) initStyle = CXXNewExpr::ListInit; else { // In template instantiation, the initializer could be a CXXDefaultArgExpr // unwrapped from a CXXConstructExpr that was implicitly built. There is no // particularly sane way we can handle this (especially since it can even // occur for array new), so we throw the initializer away and have it be // rebuilt. if (Initializer && isa<CXXDefaultArgExpr>(Initializer)) Initializer = 0; assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."); initStyle = CXXNewExpr::NoInit; } Expr **Inits = &Initializer; unsigned NumInits = Initializer ? 1 : 0; if (initStyle == CXXNewExpr::CallInit) { if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) { Inits = List->getExprs(); NumInits = List->getNumExprs(); } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){ if (!isa<CXXTemporaryObjectExpr>(CCE)) { // Can happen in template instantiation. Since this is just an implicit // construction, we just take it apart and rebuild it. Inits = CCE->getArgs(); NumInits = CCE->getNumArgs(); } } } // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. if (TypeMayContainAuto && AllocType->getContainedAutoType()) { if (initStyle == CXXNewExpr::NoInit || NumInits == 0) return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) << AllocType << TypeRange); if (initStyle == CXXNewExpr::ListInit) return ExprError(Diag(Inits[0]->getLocStart(), diag::err_auto_new_requires_parens) << AllocType << TypeRange); if (NumInits > 1) { Expr *FirstBad = Inits[1]; return ExprError(Diag(FirstBad->getLocStart(), diag::err_auto_new_ctor_multiple_expressions) << AllocType << TypeRange); } Expr *Deduce = Inits[0]; TypeSourceInfo *DeducedType = 0; if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) << AllocType << Deduce->getType() << TypeRange << Deduce->getSourceRange()); if (!DeducedType) return ExprError(); AllocTypeInfo = DeducedType; AllocType = AllocTypeInfo->getType(); } // Per C++0x [expr.new]p5, the type being constructed may be a // typedef of an array type. if (!ArraySize) { if (const ConstantArrayType *Array = Context.getAsConstantArrayType(AllocType)) { ArraySize = IntegerLiteral::Create(Context, Array->getSize(), Context.getSizeType(), TypeRange.getEnd()); AllocType = Array->getElementType(); } } if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) return ExprError(); if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) { Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), diag::warn_dangling_std_initializer_list) << /*at end of FE*/0 << Inits[0]->getSourceRange(); } // In ARC, infer 'retaining' for the allocated if (getLangOpts().ObjCAutoRefCount && AllocType.getObjCLifetime() == Qualifiers::OCL_None && AllocType->isObjCLifetimeType()) { AllocType = Context.getLifetimeQualifiedType(AllocType, AllocType->getObjCARCImplicitLifetime()); } QualType ResultType = Context.getPointerType(AllocType); // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have // integral or enumeration type with a non-negative value." // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped // enumeration type, or a class type for which a single non-explicit // conversion function to integral or unscoped enumeration type exists. if (ArraySize && !ArraySize->isTypeDependent()) { ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType( StartLoc, ArraySize, PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x, PDiag(diag::err_array_size_incomplete_type) << ArraySize->getSourceRange(), PDiag(diag::err_array_size_explicit_conversion), PDiag(diag::note_array_size_conversion), PDiag(diag::err_array_size_ambiguous_conversion), PDiag(diag::note_array_size_conversion), PDiag(getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_array_size_conversion : diag::ext_array_size_conversion), /*AllowScopedEnumerations*/ false); if (ConvertedSize.isInvalid()) return ExprError(); ArraySize = ConvertedSize.take(); QualType SizeType = ArraySize->getType(); if (!SizeType->isIntegralOrUnscopedEnumerationType()) return ExprError(); // C++98 [expr.new]p7: // The expression in a direct-new-declarator shall have integral type // with a non-negative value. // // Let's see if this is a constant < 0. If so, we reject it out of // hand. Otherwise, if it's not a constant, we must have an unparenthesized // array type. // // Note: such a construct has well-defined semantics in C++11: it throws // std::bad_array_new_length. if (!ArraySize->isValueDependent()) { llvm::APSInt Value; // We've already performed any required implicit conversion to integer or // unscoped enumeration type. if (ArraySize->isIntegerConstantExpr(Value, Context)) { if (Value < llvm::APSInt( llvm::APInt::getNullValue(Value.getBitWidth()), Value.isUnsigned())) { if (getLangOpts().CPlusPlus0x) Diag(ArraySize->getLocStart(), diag::warn_typecheck_negative_array_new_size) << ArraySize->getSourceRange(); else return ExprError(Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size) << ArraySize->getSourceRange()); } else if (!AllocType->isDependentType()) { unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { if (getLangOpts().CPlusPlus0x) Diag(ArraySize->getLocStart(), diag::warn_array_new_too_large) << Value.toString(10) << ArraySize->getSourceRange(); else return ExprError(Diag(ArraySize->getLocStart(), diag::err_array_too_large) << Value.toString(10) << ArraySize->getSourceRange()); } } } else if (TypeIdParens.isValid()) { // Can't have dynamic array size when the type-id is in parentheses. Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) << ArraySize->getSourceRange() << FixItHint::CreateRemoval(TypeIdParens.getBegin()) << FixItHint::CreateRemoval(TypeIdParens.getEnd()); TypeIdParens = SourceRange(); } } // ARC: warn about ABI issues. if (getLangOpts().ObjCAutoRefCount) { QualType BaseAllocType = Context.getBaseElementType(AllocType); if (BaseAllocType.hasStrongOrWeakObjCLifetime()) Diag(StartLoc, diag::warn_err_new_delete_object_array) << 0 << BaseAllocType; } // Note that we do *not* convert the argument in any way. It can // be signed, larger than size_t, whatever. } FunctionDecl *OperatorNew = 0; FunctionDecl *OperatorDelete = 0; Expr **PlaceArgs = (Expr**)PlacementArgs.get(); unsigned NumPlaceArgs = PlacementArgs.size(); if (!AllocType->isDependentType() && !Expr::hasAnyTypeDependentArguments( llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) && FindAllocationFunctions(StartLoc, SourceRange(PlacementLParen, PlacementRParen), UseGlobal, AllocType, ArraySize, PlaceArgs, NumPlaceArgs, OperatorNew, OperatorDelete)) return ExprError(); // If this is an array allocation, compute whether the usual array // deallocation function for the type has a size_t parameter. bool UsualArrayDeleteWantsSize = false; if (ArraySize && !AllocType->isDependentType()) UsualArrayDeleteWantsSize = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); SmallVector<Expr *, 8> AllPlaceArgs; if (OperatorNew) { // Add default arguments, if any. const FunctionProtoType *Proto = OperatorNew->getType()->getAs<FunctionProtoType>(); VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, PlaceArgs, NumPlaceArgs, AllPlaceArgs, CallType)) return ExprError(); NumPlaceArgs = AllPlaceArgs.size(); if (NumPlaceArgs > 0) PlaceArgs = &AllPlaceArgs[0]; DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlaceArgs, NumPlaceArgs); // FIXME: Missing call to CheckFunctionCall or equivalent } // Warn if the type is over-aligned and is being allocated by global operator // new. if (NumPlaceArgs == 0 && OperatorNew && (OperatorNew->isImplicit() || getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); if (Align > SuitableAlign) Diag(StartLoc, diag::warn_overaligned_type) << AllocType << unsigned(Align / Context.getCharWidth()) << unsigned(SuitableAlign / Context.getCharWidth()); } } QualType InitType = AllocType; // Array 'new' can't have any initializers except empty parentheses. // Initializer lists are also allowed, in C++11. Rely on the parser for the // dialect distinction. if (ResultType->isArrayType() || ArraySize) { if (!isLegalArrayNewInitializer(initStyle, Initializer)) { SourceRange InitRange(Inits[0]->getLocStart(), Inits[NumInits - 1]->getLocEnd()); Diag(StartLoc, diag::err_new_array_init_args) << InitRange; return ExprError(); } if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { // We do the initialization typechecking against the array type // corresponding to the number of initializers + 1 (to also check // default-initialization). unsigned NumElements = ILE->getNumInits() + 1; InitType = Context.getConstantArrayType(AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), ArrayType::Normal, 0); } } if (!AllocType->isDependentType() && !Expr::hasAnyTypeDependentArguments( llvm::makeArrayRef(Inits, NumInits))) { // C++11 [expr.new]p15: // A new-expression that creates an object of type T initializes that // object as follows: InitializationKind Kind // - If the new-initializer is omitted, the object is default- // initialized (8.5); if no initialization is performed, // the object has indeterminate value = initStyle == CXXNewExpr::NoInit ? InitializationKind::CreateDefault(TypeRange.getBegin()) // - Otherwise, the new-initializer is interpreted according to the // initialization rules of 8.5 for direct-initialization. : initStyle == CXXNewExpr::ListInit ? InitializationKind::CreateDirectList(TypeRange.getBegin()) : InitializationKind::CreateDirect(TypeRange.getBegin(), DirectInitRange.getBegin(), DirectInitRange.getEnd()); InitializedEntity Entity = InitializedEntity::InitializeNew(StartLoc, InitType); InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits); ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); if (FullInit.isInvalid()) return ExprError(); // FullInit is our initializer; strip off CXXBindTemporaryExprs, because // we don't want the initialized object to be destructed. if (CXXBindTemporaryExpr *Binder = dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) FullInit = Owned(Binder->getSubExpr()); Initializer = FullInit.take(); } // Mark the new and delete operators as referenced. if (OperatorNew) MarkFunctionReferenced(StartLoc, OperatorNew); if (OperatorDelete) MarkFunctionReferenced(StartLoc, OperatorDelete); // C++0x [expr.new]p17: // If the new expression creates an array of objects of class type, // access and ambiguity control are done for the destructor. QualType BaseAllocType = Context.getBaseElementType(AllocType); if (ArraySize && !BaseAllocType->isDependentType()) { if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { if (CXXDestructorDecl *dtor = LookupDestructor( cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { MarkFunctionReferenced(StartLoc, dtor); CheckDestructorAccess(StartLoc, dtor, PDiag(diag::err_access_dtor) << BaseAllocType); DiagnoseUseOfDecl(dtor, StartLoc); } } } PlacementArgs.release(); return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, UsualArrayDeleteWantsSize, PlaceArgs, NumPlaceArgs, TypeIdParens, ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, StartLoc, DirectInitRange)); } /// \brief Checks that a type is suitable as the allocated type /// in a new-expression. bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R) { // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an // abstract class type or array thereof. if (AllocType->isFunctionType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 0 << R; else if (AllocType->isReferenceType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 1 << R; else if (!AllocType->isDependentType() && RequireCompleteType(Loc, AllocType, PDiag(diag::err_new_incomplete_type) << R)) return true; else if (RequireNonAbstractType(Loc, AllocType, diag::err_allocation_of_abstract_type)) return true; else if (AllocType->isVariablyModifiedType()) return Diag(Loc, diag::err_variably_modified_new_type) << AllocType; else if (unsigned AddressSpace = AllocType.getAddressSpace()) return Diag(Loc, diag::err_address_space_qualified_new) << AllocType.getUnqualifiedType() << AddressSpace; else if (getLangOpts().ObjCAutoRefCount) { if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { QualType BaseAllocType = Context.getBaseElementType(AT); if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && BaseAllocType->isObjCLifetimeType()) return Diag(Loc, diag::err_arc_new_array_without_ownership) << BaseAllocType; } } return false; } /// \brief Determine whether the given function is a non-placement /// deallocation function. static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { if (FD->isInvalidDecl()) return false; if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) return Method->isUsualDeallocationFunction(); return ((FD->getOverloadedOperator() == OO_Delete || FD->getOverloadedOperator() == OO_Array_Delete) && FD->getNumParams() == 1); } /// FindAllocationFunctions - Finds the overloads of operator new and delete /// that are appropriate for the allocation. bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete) { // --- Choosing an allocation function --- // C++ 5.3.4p8 - 14 & 18 // 1) If UseGlobal is true, only look in the global scope. Else, also look // in the scope of the allocated class. // 2) If an array size is given, look for operator new[], else look for // operator new. // 3) The first argument is always size_t. Append the arguments from the // placement form. SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); // We don't care about the actual value of this argument. // FIXME: Should the Sema create the expression and embed it in the syntax // tree? Or should the consumer just recalculate the value? IntegerLiteral Size(Context, llvm::APInt::getNullValue( Context.getTargetInfo().getPointerWidth(0)), Context.getSizeType(), SourceLocation()); AllocArgs[0] = &Size; std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); // C++ [expr.new]p8: // If the allocated type is a non-array type, the allocation // function's name is operator new and the deallocation function's // name is operator delete. If the allocated type is an array // type, the allocation function's name is operator new[] and the // deallocation function's name is operator delete[]. DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_New : OO_New); DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_Delete : OO_Delete); QualType AllocElemType = Context.getBaseElementType(AllocType); if (AllocElemType->isRecordType() && !UseGlobal) { CXXRecordDecl *Record = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), Record, /*AllowMissing=*/true, OperatorNew)) return true; } if (!OperatorNew) { // Didn't find a member overload. Look for a global one. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), TUDecl, /*AllowMissing=*/false, OperatorNew)) return true; } // We don't need an operator delete if we're running under // -fno-exceptions. if (!getLangOpts().Exceptions) { OperatorDelete = 0; return false; } // FindAllocationOverload can change the passed in arguments, so we need to // copy them back. if (NumPlaceArgs > 0) std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); // C++ [expr.new]p19: // // If the new-expression begins with a unary :: operator, the // deallocation function's name is looked up in the global // scope. Otherwise, if the allocated type is a class type T or an // array thereof, the deallocation function's name is looked up in // the scope of T. If this lookup fails to find the name, or if // the allocated type is not a class type or array thereof, the // deallocation function's name is looked up in the global scope. LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); if (AllocElemType->isRecordType() && !UseGlobal) { CXXRecordDecl *RD = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); LookupQualifiedName(FoundDelete, RD); } if (FoundDelete.isAmbiguous()) return true; // FIXME: clean up expressions? if (FoundDelete.empty()) { DeclareGlobalNewDelete(); LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); } FoundDelete.suppressDiagnostics(); SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; // Whether we're looking for a placement operator delete is dictated // by whether we selected a placement operator new, not by whether // we had explicit placement arguments. This matters for things like // struct A { void *operator new(size_t, int = 0); ... }; // A *a = new A() bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1); if (isPlacementNew) { // C++ [expr.new]p20: // A declaration of a placement deallocation function matches the // declaration of a placement allocation function if it has the // same number of parameters and, after parameter transformations // (8.3.5), all parameter types except the first are // identical. [...] // // To perform this comparison, we compute the function type that // the deallocation function should have, and use that type both // for template argument deduction and for comparison purposes. // // FIXME: this comparison should ignore CC and the like. QualType ExpectedFunctionType; { const FunctionProtoType *Proto = OperatorNew->getType()->getAs<FunctionProtoType>(); SmallVector<QualType, 4> ArgTypes; ArgTypes.push_back(Context.VoidPtrTy); for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) ArgTypes.push_back(Proto->getArgType(I)); FunctionProtoType::ExtProtoInfo EPI; EPI.Variadic = Proto->isVariadic(); ExpectedFunctionType = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), ArgTypes.size(), EPI); } for (LookupResult::iterator D = FoundDelete.begin(), DEnd = FoundDelete.end(); D != DEnd; ++D) { FunctionDecl *Fn = 0; if (FunctionTemplateDecl *FnTmpl = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { // Perform template argument deduction to try to match the // expected function type. TemplateDeductionInfo Info(Context, StartLoc); if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) continue; } else Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) Matches.push_back(std::make_pair(D.getPair(), Fn)); } } else { // C++ [expr.new]p20: // [...] Any non-placement deallocation function matches a // non-placement allocation function. [...] for (LookupResult::iterator D = FoundDelete.begin(), DEnd = FoundDelete.end(); D != DEnd; ++D) { if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) if (isNonPlacementDeallocationFunction(Fn)) Matches.push_back(std::make_pair(D.getPair(), Fn)); } } // C++ [expr.new]p20: // [...] If the lookup finds a single matching deallocation // function, that function will be called; otherwise, no // deallocation function will be called. if (Matches.size() == 1) { OperatorDelete = Matches[0].second; // C++0x [expr.new]p20: // If the lookup finds the two-parameter form of a usual // deallocation function (3.7.4.2) and that function, considered // as a placement deallocation function, would have been // selected as a match for the allocation function, the program // is ill-formed. if (NumPlaceArgs && getLangOpts().CPlusPlus0x && isNonPlacementDeallocationFunction(OperatorDelete)) { Diag(StartLoc, diag::err_placement_new_non_placement_delete) << SourceRange(PlaceArgs[0]->getLocStart(), PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); Diag(OperatorDelete->getLocation(), diag::note_previous_decl) << DeleteName; } else { CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), Matches[0].first); } } return false; } /// FindAllocationOverload - Find an fitting overload for the allocation /// function in the specified scope. bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator, bool Diagnose) { LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); LookupQualifiedName(R, Ctx); if (R.empty()) { if (AllowMissing || !Diagnose) return false; return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; } if (R.isAmbiguous()) return true; R.suppressDiagnostics(); OverloadCandidateSet Candidates(StartLoc); for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); Alloc != AllocEnd; ++Alloc) { // Even member operator new/delete are implicitly treated as // static, so don't use AddMemberCandidate. NamedDecl *D = (*Alloc)->getUnderlyingDecl(); if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), /*ExplicitTemplateArgs=*/0, llvm::makeArrayRef(Args, NumArgs), Candidates, /*SuppressUserConversions=*/false); continue; } FunctionDecl *Fn = cast<FunctionDecl>(D); AddOverloadCandidate(Fn, Alloc.getPair(), llvm::makeArrayRef(Args, NumArgs), Candidates, /*SuppressUserConversions=*/false); } // Do the resolution. OverloadCandidateSet::iterator Best; switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { case OR_Success: { // Got one! FunctionDecl *FnDecl = Best->Function; MarkFunctionReferenced(StartLoc, FnDecl); // The first argument is size_t, and the first parameter must be size_t, // too. This is checked on declaration and can be assumed. (It can't be // asserted on, though, since invalid decls are left in there.) // Watch out for variadic allocator function. unsigned NumArgsInFnDecl = FnDecl->getNumParams(); for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, FnDecl->getParamDecl(i)); if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i]))) return true; ExprResult Result = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i])); if (Result.isInvalid()) return true; Args[i] = Result.takeAs<Expr>(); } Operator = FnDecl; if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl, Diagnose) == AR_inaccessible) return true; return false; } case OR_No_Viable_Function: if (Diagnose) { Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; Candidates.NoteCandidates(*this, OCD_AllCandidates, llvm::makeArrayRef(Args, NumArgs)); } return true; case OR_Ambiguous: if (Diagnose) { Diag(StartLoc, diag::err_ovl_ambiguous_call) << Name << Range; Candidates.NoteCandidates(*this, OCD_ViableCandidates, llvm::makeArrayRef(Args, NumArgs)); } return true; case OR_Deleted: { if (Diagnose) { Diag(StartLoc, diag::err_ovl_deleted_call) << Best->Function->isDeleted() << Name << getDeletedOrUnavailableSuffix(Best->Function) << Range; Candidates.NoteCandidates(*this, OCD_AllCandidates, llvm::makeArrayRef(Args, NumArgs)); } return true; } } llvm_unreachable("Unreachable, bad result from BestViableFunction"); } /// DeclareGlobalNewDelete - Declare the global forms of operator new and /// delete. These are: /// @code /// // C++03: /// void* operator new(std::size_t) throw(std::bad_alloc); /// void* operator new[](std::size_t) throw(std::bad_alloc); /// void operator delete(void *) throw(); /// void operator delete[](void *) throw(); /// // C++0x: /// void* operator new(std::size_t); /// void* operator new[](std::size_t); /// void operator delete(void *); /// void operator delete[](void *); /// @endcode /// C++0x operator delete is implicitly noexcept. /// Note that the placement and nothrow forms of new are *not* implicitly /// declared. Their use requires including \<new\>. void Sema::DeclareGlobalNewDelete() { if (GlobalNewDeleteDeclared) return; // C++ [basic.std.dynamic]p2: // [...] The following allocation and deallocation functions (18.4) are // implicitly declared in global scope in each translation unit of a // program // // C++03: // void* operator new(std::size_t) throw(std::bad_alloc); // void* operator new[](std::size_t) throw(std::bad_alloc); // void operator delete(void*) throw(); // void operator delete[](void*) throw(); // C++0x: // void* operator new(std::size_t); // void* operator new[](std::size_t); // void operator delete(void*); // void operator delete[](void*); // // These implicit declarations introduce only the function names operator // new, operator new[], operator delete, operator delete[]. // // Here, we need to refer to std::bad_alloc, so we will implicitly declare // "std" or "bad_alloc" as necessary to form the exception specification. // However, we do not make these implicit declarations visible to name // lookup. // Note that the C++0x versions of operator delete are deallocation functions, // and thus are implicitly noexcept. if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) { // The "std::bad_alloc" class has not yet been declared, so build it // implicitly. StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), &PP.getIdentifierTable().get("bad_alloc"), 0); getStdBadAlloc()->setImplicit(true); } GlobalNewDeleteDeclared = true; QualType VoidPtr = Context.getPointerType(Context.VoidTy); QualType SizeT = Context.getSizeType(); bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_New), VoidPtr, SizeT, AssumeSaneOperatorNew); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_New), VoidPtr, SizeT, AssumeSaneOperatorNew); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Delete), Context.VoidTy, VoidPtr); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), Context.VoidTy, VoidPtr); } /// DeclareGlobalAllocationFunction - Declares a single implicit global /// allocation function if it doesn't already exist. void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument, bool AddMallocAttr) { DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); // Check if this function is already declared. { DeclContext::lookup_iterator Alloc, AllocEnd; for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); Alloc != AllocEnd; ++Alloc) { // Only look at non-template functions, as it is the predefined, // non-templated allocation function we are trying to declare here. if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { QualType InitialParamType = Context.getCanonicalType( Func->getParamDecl(0)->getType().getUnqualifiedType()); // FIXME: Do we need to check for default arguments here? if (Func->getNumParams() == 1 && InitialParamType == Argument) { if(AddMallocAttr && !Func->hasAttr<MallocAttr>()) Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); return; } } } } QualType BadAllocType; bool HasBadAllocExceptionSpec = (Name.getCXXOverloadedOperator() == OO_New || Name.getCXXOverloadedOperator() == OO_Array_New); if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) { assert(StdBadAlloc && "Must have std::bad_alloc declared"); BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); } FunctionProtoType::ExtProtoInfo EPI; if (HasBadAllocExceptionSpec) { if (!getLangOpts().CPlusPlus0x) { EPI.ExceptionSpecType = EST_Dynamic; EPI.NumExceptions = 1; EPI.Exceptions = &BadAllocType; } } else { EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ? EST_BasicNoexcept : EST_DynamicNone; } QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI); FunctionDecl *Alloc = FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, /*TInfo=*/0, SC_None, SC_None, false, true); Alloc->setImplicit(); if (AddMallocAttr) Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), SourceLocation(), 0, Argument, /*TInfo=*/0, SC_None, SC_None, 0); Alloc->setParams(Param); // FIXME: Also add this declaration to the IdentifierResolver, but // make sure it is at the end of the chain to coincide with the // global scope. Context.getTranslationUnitDecl()->addDecl(Alloc); } bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator, bool Diagnose) { LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); // Try to find operator delete/operator delete[] in class scope. LookupQualifiedName(Found, RD); if (Found.isAmbiguous()) return true; Found.suppressDiagnostics(); SmallVector<DeclAccessPair,4> Matches; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) { NamedDecl *ND = (*F)->getUnderlyingDecl(); // Ignore template operator delete members from the check for a usual // deallocation function. if (isa<FunctionTemplateDecl>(ND)) continue; if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) Matches.push_back(F.getPair()); } // There's exactly one suitable operator; pick it. if (Matches.size() == 1) { Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); if (Operator->isDeleted()) { if (Diagnose) { Diag(StartLoc, diag::err_deleted_function_use); NoteDeletedFunction(Operator); } return true; } if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), Matches[0], Diagnose) == AR_inaccessible) return true; return false; // We found multiple suitable operators; complain about the ambiguity. } else if (!Matches.empty()) { if (Diagnose) { Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) << Name << RD; for (SmallVectorImpl<DeclAccessPair>::iterator F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) Diag((*F)->getUnderlyingDecl()->getLocation(), diag::note_member_declared_here) << Name; } return true; } // We did find operator delete/operator delete[] declarations, but // none of them were suitable. if (!Found.empty()) { if (Diagnose) { Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) << Name << RD; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) Diag((*F)->getUnderlyingDecl()->getLocation(), diag::note_member_declared_here) << Name; } return true; } // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); Expr* DeallocArgs[1]; DeallocArgs[0] = &Null; if (FindAllocationOverload(StartLoc, SourceRange(), Name, DeallocArgs, 1, TUDecl, !Diagnose, Operator, Diagnose)) return true; assert(Operator && "Did not find a deallocation function!"); return false; } /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: /// @code ::delete ptr; @endcode /// or /// @code delete [] ptr; @endcode ExprResult Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *ExE) { // C++ [expr.delete]p1: // The operand shall have a pointer type, or a class type having a single // conversion function to a pointer type. The result has type void. // // DR599 amends "pointer type" to "pointer to object type" in both cases. ExprResult Ex = Owned(ExE); FunctionDecl *OperatorDelete = 0; bool ArrayFormAsWritten = ArrayForm; bool UsualArrayDeleteWantsSize = false; if (!Ex.get()->isTypeDependent()) { // Perform lvalue-to-rvalue cast, if needed. Ex = DefaultLvalueConversion(Ex.take()); QualType Type = Ex.get()->getType(); if (const RecordType *Record = Type->getAs<RecordType>()) { if (RequireCompleteType(StartLoc, Type, PDiag(diag::err_delete_incomplete_class_type))) return ExprError(); SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = I.getDecl(); if (isa<UsingShadowDecl>(D)) D = cast<UsingShadowDecl>(D)->getTargetDecl(); // Skip over templated conversion functions; they aren't considered. if (isa<FunctionTemplateDecl>(D)) continue; CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) ObjectPtrConversions.push_back(Conv); } if (ObjectPtrConversions.size() == 1) { // We have a single conversion to a pointer-to-object type. Perform // that conversion. // TODO: don't redo the conversion calculation. ExprResult Res = PerformImplicitConversion(Ex.get(), ObjectPtrConversions.front()->getConversionType(), AA_Converting); if (Res.isUsable()) { Ex = move(Res); Type = Ex.get()->getType(); } } else if (ObjectPtrConversions.size() > 1) { Diag(StartLoc, diag::err_ambiguous_delete_operand) << Type << Ex.get()->getSourceRange(); for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) NoteOverloadCandidate(ObjectPtrConversions[i]); return ExprError(); } } if (!Type->isPointerType()) return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex.get()->getSourceRange()); QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); QualType PointeeElem = Context.getBaseElementType(Pointee); if (unsigned AddressSpace = Pointee.getAddressSpace()) return Diag(Ex.get()->getLocStart(), diag::err_address_space_qualified_delete) << Pointee.getUnqualifiedType() << AddressSpace; CXXRecordDecl *PointeeRD = 0; if (Pointee->isVoidType() && !isSFINAEContext()) { // The C++ standard bans deleting a pointer to a non-object type, which // effectively bans deletion of "void*". However, most compilers support // this, so we treat it as a warning unless we're in a SFINAE context. Diag(StartLoc, diag::ext_delete_void_ptr_operand) << Type << Ex.get()->getSourceRange(); } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex.get()->getSourceRange()); } else if (!Pointee->isDependentType()) { if (!RequireCompleteType(StartLoc, Pointee, PDiag(diag::warn_delete_incomplete) << Ex.get()->getSourceRange())) { if (const RecordType *RT = PointeeElem->getAs<RecordType>()) PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); } } // C++ [expr.delete]p2: // [Note: a pointer to a const type can be the operand of a // delete-expression; it is not necessary to cast away the constness // (5.2.11) of the pointer expression before it is used as the operand // of the delete-expression. ] if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy)) Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_BitCast, Ex.take(), 0, VK_RValue)); if (Pointee->isArrayType() && !ArrayForm) { Diag(StartLoc, diag::warn_delete_array_type) << Type << Ex.get()->getSourceRange() << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); ArrayForm = true; } DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( ArrayForm ? OO_Array_Delete : OO_Delete); if (PointeeRD) { if (!UseGlobal && FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, OperatorDelete)) return ExprError(); // If we're allocating an array of records, check whether the // usual operator delete[] has a size_t parameter. if (ArrayForm) { // If the user specifically asked to use the global allocator, // we'll need to do the lookup into the class. if (UseGlobal) UsualArrayDeleteWantsSize = doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); // Otherwise, the usual operator delete[] should be the // function we just found. else if (isa<CXXMethodDecl>(OperatorDelete)) UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); } if (!PointeeRD->hasIrrelevantDestructor()) if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { MarkFunctionReferenced(StartLoc, const_cast<CXXDestructorDecl*>(Dtor)); DiagnoseUseOfDecl(Dtor, StartLoc); } // C++ [expr.delete]p3: // In the first alternative (delete object), if the static type of the // object to be deleted is different from its dynamic type, the static // type shall be a base class of the dynamic type of the object to be // deleted and the static type shall have a virtual destructor or the // behavior is undefined. // // Note: a final class cannot be derived from, no issue there if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { CXXDestructorDecl *dtor = PointeeRD->getDestructor(); if (dtor && !dtor->isVirtual()) { if (PointeeRD->isAbstract()) { // If the class is abstract, we warn by default, because we're // sure the code has undefined behavior. Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) << PointeeElem; } else if (!ArrayForm) { // Otherwise, if this is not an array delete, it's a bit suspect, // but not necessarily wrong. Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; } } } } else if (getLangOpts().ObjCAutoRefCount && PointeeElem->isObjCLifetimeType() && (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong || PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) && ArrayForm) { Diag(StartLoc, diag::warn_err_new_delete_object_array) << 1 << PointeeElem; } if (!OperatorDelete) { // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); Expr *Arg = Ex.get(); if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, &Arg, 1, TUDecl, /*AllowMissing=*/false, OperatorDelete)) return ExprError(); } MarkFunctionReferenced(StartLoc, OperatorDelete); // Check access and ambiguity of operator delete and destructor. if (PointeeRD) { if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, PDiag(diag::err_access_dtor) << PointeeElem); } } } return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, UsualArrayDeleteWantsSize, OperatorDelete, Ex.take(), StartLoc)); } /// \brief Check the use of the given variable as a C++ condition in an if, /// while, do-while, or switch statement. ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, bool ConvertToBoolean) { QualType T = ConditionVar->getType(); // C++ [stmt.select]p2: // The declarator shall not specify a function or an array. if (T->isFunctionType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_function_type) << ConditionVar->getSourceRange()); else if (T->isArrayType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_array_type) << ConditionVar->getSourceRange()); ExprResult Condition = Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, /*enclosing*/ false, ConditionVar->getLocation(), ConditionVar->getType().getNonReferenceType(), VK_LValue)); MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); if (ConvertToBoolean) { Condition = CheckBooleanCondition(Condition.take(), StmtLoc); if (Condition.isInvalid()) return ExprError(); } return move(Condition); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // return PerformContextuallyConvertToBool(CondExpr); } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (!ToPtrType->getPointeeType().hasQualifiers()) { switch (StrLit->getKind()) { case StringLiteral::UTF8: case StringLiteral::UTF16: case StringLiteral::UTF32: // We don't allow UTF literals to be implicitly converted break; case StringLiteral::Ascii: return (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S); case StringLiteral::Wide: return ToPointeeType->isWideCharType(); } } } return false; } static ExprResult BuildCXXCastArgument(Sema &S, SourceLocation CastLoc, QualType Ty, CastKind Kind, CXXMethodDecl *Method, DeclAccessPair FoundDecl, bool HadMultipleCandidates, Expr *From) { switch (Kind) { default: llvm_unreachable("Unhandled cast kind!"); case CK_ConstructorConversion: { CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); ASTOwningVector<Expr*> ConstructorArgs(S); if (S.CompleteConstructorCall(Constructor, MultiExprArg(&From, 1), CastLoc, ConstructorArgs)) return ExprError(); S.CheckConstructorAccess(CastLoc, Constructor, InitializedEntity::InitializeTemporary(Ty), Constructor->getAccess()); ExprResult Result = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), move_arg(ConstructorArgs), HadMultipleCandidates, /*ZeroInit*/ false, CXXConstructExpr::CK_Complete, SourceRange()); if (Result.isInvalid()) return ExprError(); return S.MaybeBindToTemporary(Result.takeAs<Expr>()); } case CK_UserDefinedConversion: { assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); // Create an implicit call expr that calls it. CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, HadMultipleCandidates); if (Result.isInvalid()) return ExprError(); // Record usage of conversion in an implicit cast. Result = S.Owned(ImplicitCastExpr::Create(S.Context, Result.get()->getType(), CK_UserDefinedConversion, Result.get(), 0, Result.get()->getValueKind())); S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl); return S.MaybeBindToTemporary(Result.get()); } } } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType using the pre-computed implicit /// conversion sequence ICS. Returns the converted /// expression. Action is the kind of conversion we're performing, /// used in the error message. ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, const ImplicitConversionSequence &ICS, AssignmentAction Action, CheckedConversionKind CCK) { switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: { ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, Action, CCK); if (Res.isInvalid()) return ExprError(); From = Res.take(); break; } case ImplicitConversionSequence::UserDefinedConversion: { FunctionDecl *FD = ICS.UserDefined.ConversionFunction; CastKind CastKind; QualType BeforeToType; assert(FD && "FIXME: aggregate initialization from init list"); if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { CastKind = CK_UserDefinedConversion; // If the user-defined conversion is specified by a conversion function, // the initial standard conversion sequence converts the source type to // the implicit object parameter of the conversion function. BeforeToType = Context.getTagDeclType(Conv->getParent()); } else { const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); CastKind = CK_ConstructorConversion; // Do no conversion if dealing with ... for the first conversion. if (!ICS.UserDefined.EllipsisConversion) { // If the user-defined conversion is specified by a constructor, the // initial standard conversion sequence converts the source type to the // type required by the argument of the constructor BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); } } // Watch out for elipsis conversion. if (!ICS.UserDefined.EllipsisConversion) { ExprResult Res = PerformImplicitConversion(From, BeforeToType, ICS.UserDefined.Before, AA_Converting, CCK); if (Res.isInvalid()) return ExprError(); From = Res.take(); } ExprResult CastArg = BuildCXXCastArgument(*this, From->getLocStart(), ToType.getNonReferenceType(), CastKind, cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, ICS.UserDefined.HadMultipleCandidates, From); if (CastArg.isInvalid()) return ExprError(); From = CastArg.take(); return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, AA_Converting, CCK); } case ImplicitConversionSequence::AmbiguousConversion: ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), PDiag(diag::err_typecheck_ambiguous_condition) << From->getSourceRange()); return ExprError(); case ImplicitConversionSequence::EllipsisConversion: llvm_unreachable("Cannot perform an ellipsis conversion"); case ImplicitConversionSequence::BadConversion: return ExprError(); } // Everything went well. return Owned(From); } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns the converted /// expression. Flavor is the context in which we're performing this /// conversion, for use in error messages. ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, CheckedConversionKind CCK) { bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); // Overall FIXME: we are recomputing too many types here and doing far too // much extra work. What this means is that we need to keep track of more // information that is computed when we try the implicit conversion initially, // so that we don't need to recompute anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: When can ToType be a reference type? assert(!ToType->isReferenceType()); if (SCS.Second == ICK_Derived_To_Base) { ASTOwningVector<Expr*> ConstructorArgs(*this); if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), MultiExprArg(*this, &From, 1), /*FIXME:ConstructLoc*/SourceLocation(), ConstructorArgs)) return ExprError(); return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, move_arg(ConstructorArgs), /*HadMultipleCandidates*/ false, /*ZeroInit*/ false, CXXConstructExpr::CK_Complete, SourceRange()); } return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, MultiExprArg(*this, &From, 1), /*HadMultipleCandidates*/ false, /*ZeroInit*/ false, CXXConstructExpr::CK_Complete, SourceRange()); } // Resolve overloaded function references. if (Context.hasSameType(FromType, Context.OverloadTy)) { DeclAccessPair Found; FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true, Found); if (!Fn) return ExprError(); if (DiagnoseUseOfDecl(Fn, From->getLocStart())) return ExprError(); From = FixOverloadedFunctionReference(From, Found, Fn); FromType = From->getType(); } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: // Nothing to do. break; case ICK_Lvalue_To_Rvalue: { assert(From->getObjectKind() != OK_ObjCProperty); FromType = FromType.getUnqualifiedType(); ExprResult FromRes = DefaultLvalueConversion(From); assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); From = FromRes.take(); break; } case ICK_Array_To_Pointer: FromType = Context.getArrayDecayedType(FromType); From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, VK_RValue, /*BasePath=*/0, CCK).take(); break; default: llvm_unreachable("Improper first standard conversion"); } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // If both sides are functions (or pointers/references to them), there could // be incompatible exception declarations. if (CheckExceptionSpecCompatibility(From, ToType)) return ExprError(); // Nothing else to do. break; case ICK_NoReturn_Adjustment: // If both sides are functions (or pointers/references to them), there could // be incompatible exception declarations. if (CheckExceptionSpecCompatibility(From, ToType)) return ExprError(); From = ImpCastExprToType(From, ToType, CK_NoOp, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Integral_Promotion: case ICK_Integral_Conversion: From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Floating_Promotion: case ICK_Floating_Conversion: From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Complex_Promotion: case ICK_Complex_Conversion: { QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); CastKind CK; if (FromEl->isRealFloatingType()) { if (ToEl->isRealFloatingType()) CK = CK_FloatingComplexCast; else CK = CK_FloatingComplexToIntegralComplex; } else if (ToEl->isRealFloatingType()) { CK = CK_IntegralComplexToFloatingComplex; } else { CK = CK_IntegralComplexCast; } From = ImpCastExprToType(From, ToType, CK, VK_RValue, /*BasePath=*/0, CCK).take(); break; } case ICK_Floating_Integral: if (ToType->isRealFloatingType()) From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_RValue, /*BasePath=*/0, CCK).take(); else From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Compatible_Conversion: From = ImpCastExprToType(From, ToType, CK_NoOp, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Writeback_Conversion: case ICK_Pointer_Conversion: { if (SCS.IncompatibleObjC && Action != AA_Casting) { // Diagnose incompatible Objective-C conversions if (Action == AA_Initializing || Action == AA_Assigning) Diag(From->getLocStart(), diag::ext_typecheck_convert_incompatible_pointer) << ToType << From->getType() << Action << From->getSourceRange() << 0; else Diag(From->getLocStart(), diag::ext_typecheck_convert_incompatible_pointer) << From->getType() << ToType << Action << From->getSourceRange() << 0; if (From->getType()->isObjCObjectPointerType() && ToType->isObjCObjectPointerType()) EmitRelatedResultTypeNote(From); } else if (getLangOpts().ObjCAutoRefCount && !CheckObjCARCUnavailableWeakConversion(ToType, From->getType())) { if (Action == AA_Initializing) Diag(From->getLocStart(), diag::err_arc_weak_unavailable_assign); else Diag(From->getLocStart(), diag::err_arc_convesion_of_weak_unavailable) << (Action == AA_Casting) << From->getType() << ToType << From->getSourceRange(); } CastKind Kind = CK_Invalid; CXXCastPath BasePath; if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) return ExprError(); // Make sure we extend blocks if necessary. // FIXME: doing this here is really ugly. if (Kind == CK_BlockPointerToObjCPointerCast) { ExprResult E = From; (void) PrepareCastToObjCObjectPointer(E); From = E.take(); } From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) .take(); break; } case ICK_Pointer_Member: { CastKind Kind = CK_Invalid; CXXCastPath BasePath; if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) return ExprError(); if (CheckExceptionSpecCompatibility(From, ToType)) return ExprError(); From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) .take(); break; } case ICK_Boolean_Conversion: // Perform half-to-boolean conversion via float. if (From->getType()->isHalfType()) { From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take(); FromType = Context.FloatTy; } From = ImpCastExprToType(From, Context.BoolTy, ScalarTypeToBooleanCastKind(FromType), VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Derived_To_Base: { CXXCastPath BasePath; if (CheckDerivedToBaseConversion(From->getType(), ToType.getNonReferenceType(), From->getLocStart(), From->getSourceRange(), &BasePath, CStyle)) return ExprError(); From = ImpCastExprToType(From, ToType.getNonReferenceType(), CK_DerivedToBase, From->getValueKind(), &BasePath, CCK).take(); break; } case ICK_Vector_Conversion: From = ImpCastExprToType(From, ToType, CK_BitCast, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Vector_Splat: From = ImpCastExprToType(From, ToType, CK_VectorSplat, VK_RValue, /*BasePath=*/0, CCK).take(); break; case ICK_Complex_Real: // Case 1. x -> _Complex y if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { QualType ElType = ToComplex->getElementType(); bool isFloatingComplex = ElType->isRealFloatingType(); // x -> y if (Context.hasSameUnqualifiedType(ElType, From->getType())) { // do nothing } else if (From->getType()->isRealFloatingType()) { From = ImpCastExprToType(From, ElType, isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take(); } else { assert(From->getType()->isIntegerType()); From = ImpCastExprToType(From, ElType, isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take(); } // y -> _Complex y From = ImpCastExprToType(From, ToType, isFloatingComplex ? CK_FloatingRealToComplex : CK_IntegralRealToComplex).take(); // Case 2. _Complex x -> y } else { const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); assert(FromComplex); QualType ElType = FromComplex->getElementType(); bool isFloatingComplex = ElType->isRealFloatingType(); // _Complex x -> x From = ImpCastExprToType(From, ElType, isFloatingComplex ? CK_FloatingComplexToReal : CK_IntegralComplexToReal, VK_RValue, /*BasePath=*/0, CCK).take(); // x -> y if (Context.hasSameUnqualifiedType(ElType, ToType)) { // do nothing } else if (ToType->isRealFloatingType()) { From = ImpCastExprToType(From, ToType, isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, VK_RValue, /*BasePath=*/0, CCK).take(); } else { assert(ToType->isIntegerType()); From = ImpCastExprToType(From, ToType, isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, VK_RValue, /*BasePath=*/0, CCK).take(); } } break; case ICK_Block_Pointer_Conversion: { From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue, /*BasePath=*/0, CCK).take(); break; } case ICK_TransparentUnionConversion: { ExprResult FromRes = Owned(From); Sema::AssignConvertType ConvTy = CheckTransparentUnionArgumentConstraints(ToType, FromRes); if (FromRes.isInvalid()) return ExprError(); From = FromRes.take(); assert ((ConvTy == Sema::Compatible) && "Improper transparent union conversion"); (void)ConvTy; break; } case ICK_Lvalue_To_Rvalue: case ICK_Array_To_Pointer: case ICK_Function_To_Pointer: case ICK_Qualification: case ICK_Num_Conversion_Kinds: llvm_unreachable("Improper second standard conversion"); } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: { // The qualification keeps the category of the inner expression, unless the // target type isn't a reference. ExprValueKind VK = ToType->isReferenceType() ? From->getValueKind() : VK_RValue; From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK_NoOp, VK, /*BasePath=*/0, CCK).take(); if (SCS.DeprecatedStringLiteralToCharPtr && !getLangOpts().WritableStrings) Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) << ToType.getNonReferenceType(); break; } default: llvm_unreachable("Improper third standard conversion"); } // If this conversion sequence involved a scalar -> atomic conversion, perform // that conversion now. if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) if (Context.hasSameType(ToAtomic->getValueType(), From->getType())) From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0, CCK).take(); return Owned(From); } ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT, SourceLocation KWLoc, ParsedType Ty, SourceLocation RParen) { TypeSourceInfo *TSInfo; QualType T = GetTypeFromParser(Ty, &TSInfo); if (!TSInfo) TSInfo = Context.getTrivialTypeSourceInfo(T); return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen); } /// \brief Check the completeness of a type in a unary type trait. /// /// If the particular type trait requires a complete type, tries to complete /// it. If completing the type fails, a diagnostic is emitted and false /// returned. If completing the type succeeds or no completion was required, /// returns true. static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, UnaryTypeTrait UTT, SourceLocation Loc, QualType ArgTy) { // C++0x [meta.unary.prop]p3: // For all of the class templates X declared in this Clause, instantiating // that template with a template argument that is a class template // specialization may result in the implicit instantiation of the template // argument if and only if the semantics of X require that the argument // must be a complete type. // We apply this rule to all the type trait expressions used to implement // these class templates. We also try to follow any GCC documented behavior // in these expressions to ensure portability of standard libraries. switch (UTT) { // is_complete_type somewhat obviously cannot require a complete type. case UTT_IsCompleteType: // Fall-through // These traits are modeled on the type predicates in C++0x // [meta.unary.cat] and [meta.unary.comp]. They are not specified as // requiring a complete type, as whether or not they return true cannot be // impacted by the completeness of the type. case UTT_IsVoid: case UTT_IsIntegral: case UTT_IsFloatingPoint: case UTT_IsArray: case UTT_IsPointer: case UTT_IsLvalueReference: case UTT_IsRvalueReference: case UTT_IsMemberFunctionPointer: case UTT_IsMemberObjectPointer: case UTT_IsEnum: case UTT_IsUnion: case UTT_IsClass: case UTT_IsFunction: case UTT_IsReference: case UTT_IsArithmetic: case UTT_IsFundamental: case UTT_IsObject: case UTT_IsScalar: case UTT_IsCompound: case UTT_IsMemberPointer: // Fall-through // These traits are modeled on type predicates in C++0x [meta.unary.prop] // which requires some of its traits to have the complete type. However, // the completeness of the type cannot impact these traits' semantics, and // so they don't require it. This matches the comments on these traits in // Table 49. case UTT_IsConst: case UTT_IsVolatile: case UTT_IsSigned: case UTT_IsUnsigned: return true; // C++0x [meta.unary.prop] Table 49 requires the following traits to be // applied to a complete type. case UTT_IsTrivial: case UTT_IsTriviallyCopyable: case UTT_IsStandardLayout: case UTT_IsPOD: case UTT_IsLiteral: case UTT_IsEmpty: case UTT_IsPolymorphic: case UTT_IsAbstract: // Fall-through // These traits require a complete type. case UTT_IsFinal: // These trait expressions are designed to help implement predicates in // [meta.unary.prop] despite not being named the same. They are specified // by both GCC and the Embarcadero C++ compiler, and require the complete // type due to the overarching C++0x type predicates being implemented // requiring the complete type. case UTT_HasNothrowAssign: case UTT_HasNothrowConstructor: case UTT_HasNothrowCopy: case UTT_HasTrivialAssign: case UTT_HasTrivialDefaultConstructor: case UTT_HasTrivialCopy: case UTT_HasTrivialDestructor: case UTT_HasVirtualDestructor: // Arrays of unknown bound are expressly allowed. QualType ElTy = ArgTy; if (ArgTy->isIncompleteArrayType()) ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); // The void type is expressly allowed. if (ElTy->isVoidType()) return true; return !S.RequireCompleteType( Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); } llvm_unreachable("Type trait not handled by switch"); } static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, SourceLocation KeyLoc, QualType T) { assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); ASTContext &C = Self.Context; switch(UTT) { // Type trait expressions corresponding to the primary type category // predicates in C++0x [meta.unary.cat]. case UTT_IsVoid: return T->isVoidType(); case UTT_IsIntegral: return T->isIntegralType(C); case UTT_IsFloatingPoint: return T->isFloatingType(); case UTT_IsArray: return T->isArrayType(); case UTT_IsPointer: return T->isPointerType(); case UTT_IsLvalueReference: return T->isLValueReferenceType(); case UTT_IsRvalueReference: return T->isRValueReferenceType(); case UTT_IsMemberFunctionPointer: return T->isMemberFunctionPointerType(); case UTT_IsMemberObjectPointer: return T->isMemberDataPointerType(); case UTT_IsEnum: return T->isEnumeralType(); case UTT_IsUnion: return T->isUnionType(); case UTT_IsClass: return T->isClassType() || T->isStructureType(); case UTT_IsFunction: return T->isFunctionType(); // Type trait expressions which correspond to the convenient composition // predicates in C++0x [meta.unary.comp]. case UTT_IsReference: return T->isReferenceType(); case UTT_IsArithmetic: return T->isArithmeticType() && !T->isEnumeralType(); case UTT_IsFundamental: return T->isFundamentalType(); case UTT_IsObject: return T->isObjectType(); case UTT_IsScalar: // Note: semantic analysis depends on Objective-C lifetime types to be // considered scalar types. However, such types do not actually behave // like scalar types at run time (since they may require retain/release // operations), so we report them as non-scalar. if (T->isObjCLifetimeType()) { switch (T.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: return true; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: case Qualifiers::OCL_Autoreleasing: return false; } } return T->isScalarType(); case UTT_IsCompound: return T->isCompoundType(); case UTT_IsMemberPointer: return T->isMemberPointerType(); // Type trait expressions which correspond to the type property predicates // in C++0x [meta.unary.prop]. case UTT_IsConst: return T.isConstQualified(); case UTT_IsVolatile: return T.isVolatileQualified(); case UTT_IsTrivial: return T.isTrivialType(Self.Context); case UTT_IsTriviallyCopyable: return T.isTriviallyCopyableType(Self.Context); case UTT_IsStandardLayout: return T->isStandardLayoutType(); case UTT_IsPOD: return T.isPODType(Self.Context); case UTT_IsLiteral: return T->isLiteralType(); case UTT_IsEmpty: if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) return !RD->isUnion() && RD->isEmpty(); return false; case UTT_IsPolymorphic: if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) return RD->isPolymorphic(); return false; case UTT_IsAbstract: if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) return RD->isAbstract(); return false; case UTT_IsFinal: if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) return RD->hasAttr<FinalAttr>(); return false; case UTT_IsSigned: return T->isSignedIntegerType(); case UTT_IsUnsigned: return T->isUnsignedIntegerType(); // Type trait expressions which query classes regarding their construction, // destruction, and copying. Rather than being based directly on the // related type predicates in the standard, they are specified by both // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those // specifications. // // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index case UTT_HasTrivialDefaultConstructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true then the trait is true, else if type is // a cv class or union type (or array thereof) with a trivial default // constructor ([class.ctor]) then the trait is true, else it is false. if (T.isPODType(Self.Context)) return true; if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor(); return false; case UTT_HasTrivialCopy: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true or type is a reference type then // the trait is true, else if type is a cv class or union type // with a trivial copy constructor ([class.copy]) then the trait // is true, else it is false. if (T.isPODType(Self.Context) || T->isReferenceType()) return true; if (const RecordType *RT = T->getAs<RecordType>()) return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor(); return false; case UTT_HasTrivialAssign: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If type is const qualified or is a reference type then the // trait is false. Otherwise if __is_pod (type) is true then the // trait is true, else if type is a cv class or union type with // a trivial copy assignment ([class.copy]) then the trait is // true, else it is false. // Note: the const and reference restrictions are interesting, // given that const and reference members don't prevent a class // from having a trivial copy assignment operator (but do cause // errors if the copy assignment operator is actually used, q.v. // [class.copy]p12). if (C.getBaseElementType(T).isConstQualified()) return false; if (T.isPODType(Self.Context)) return true; if (const RecordType *RT = T->getAs<RecordType>()) return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment(); return false; case UTT_HasTrivialDestructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __is_pod (type) is true or type is a reference type // then the trait is true, else if type is a cv class or union // type (or array thereof) with a trivial destructor // ([class.dtor]) then the trait is true, else it is // false. if (T.isPODType(Self.Context) || T->isReferenceType()) return true; // Objective-C++ ARC: autorelease types don't require destruction. if (T->isObjCLifetimeType() && T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) return true; if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor(); return false; // TODO: Propagate nothrowness for implicitly declared special members. case UTT_HasNothrowAssign: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If type is const qualified or is a reference type then the // trait is false. Otherwise if __has_trivial_assign (type) // is true then the trait is true, else if type is a cv class // or union type with copy assignment operators that are known // not to throw an exception then the trait is true, else it is // false. if (C.getBaseElementType(T).isConstQualified()) return false; if (T->isReferenceType()) return false; if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) return true; if (const RecordType *RT = T->getAs<RecordType>()) { CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->hasTrivialCopyAssignment()) return true; bool FoundAssign = false; DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal); LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc), Sema::LookupOrdinaryName); if (Self.LookupQualifiedName(Res, RD)) { Res.suppressDiagnostics(); for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); Op != OpEnd; ++Op) { if (isa<FunctionTemplateDecl>(*Op)) continue; CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); if (Operator->isCopyAssignmentOperator()) { FoundAssign = true; const FunctionProtoType *CPT = Operator->getType()->getAs<FunctionProtoType>(); CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); if (!CPT) return false; if (CPT->getExceptionSpecType() == EST_Delayed) return false; if (!CPT->isNothrow(Self.Context)) return false; } } } return FoundAssign; } return false; case UTT_HasNothrowCopy: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __has_trivial_copy (type) is true then the trait is true, else // if type is a cv class or union type with copy constructors that are // known not to throw an exception then the trait is true, else it is // false. if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) return true; if (const RecordType *RT = T->getAs<RecordType>()) { CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->hasTrivialCopyConstructor()) return true; bool FoundConstructor = false; unsigned FoundTQs; DeclContext::lookup_const_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); Con != ConEnd; ++Con) { // A template constructor is never a copy constructor. // FIXME: However, it may actually be selected at the actual overload // resolution point. if (isa<FunctionTemplateDecl>(*Con)) continue; CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); if (Constructor->isCopyConstructor(FoundTQs)) { FoundConstructor = true; const FunctionProtoType *CPT = Constructor->getType()->getAs<FunctionProtoType>(); CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); if (!CPT) return false; if (CPT->getExceptionSpecType() == EST_Delayed) return false; // FIXME: check whether evaluating default arguments can throw. // For now, we'll be conservative and assume that they can throw. if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) return false; } } return FoundConstructor; } return false; case UTT_HasNothrowConstructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If __has_trivial_constructor (type) is true then the trait is // true, else if type is a cv class or union type (or array // thereof) with a default constructor that is known not to // throw an exception then the trait is true, else it is false. if (T.isPODType(C) || T->isObjCLifetimeType()) return true; if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) { CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->hasTrivialDefaultConstructor()) return true; DeclContext::lookup_const_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); Con != ConEnd; ++Con) { // FIXME: In C++0x, a constructor template can be a default constructor. if (isa<FunctionTemplateDecl>(*Con)) continue; CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); if (Constructor->isDefaultConstructor()) { const FunctionProtoType *CPT = Constructor->getType()->getAs<FunctionProtoType>(); CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); if (!CPT) return false; if (CPT->getExceptionSpecType() == EST_Delayed) return false; // TODO: check whether evaluating default arguments can throw. // For now, we'll be conservative and assume that they can throw. return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0; } } } return false; case UTT_HasVirtualDestructor: // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: // If type is a class type with a virtual destructor ([class.dtor]) // then the trait is true, else it is false. if (const RecordType *Record = T->getAs<RecordType>()) { CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) return Destructor->isVirtual(); } return false; // These type trait expressions are modeled on the specifications for the // Embarcadero C++0x type trait functions: // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index case UTT_IsCompleteType: // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): // Returns True if and only if T is a complete type at the point of the // function call. return !T->isIncompleteType(); } llvm_unreachable("Type trait not covered by switch"); } ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, SourceLocation RParen) { QualType T = TSInfo->getType(); if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T)) return ExprError(); bool Value = false; if (!T->isDependentType()) Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T); return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value, RParen, Context.BoolTy)); } ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT, SourceLocation KWLoc, ParsedType LhsTy, ParsedType RhsTy, SourceLocation RParen) { TypeSourceInfo *LhsTSInfo; QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo); if (!LhsTSInfo) LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT); TypeSourceInfo *RhsTSInfo; QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo); if (!RhsTSInfo) RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT); return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen); } static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc) { switch (Kind) { case clang::TT_IsTriviallyConstructible: { // C++11 [meta.unary.prop]: // is_trivially_constructible is defined as: // // is_constructible<T, Args...>::value is true and the variable // definition for is_constructible, as defined below, is known to call no // operation that is not trivial. // // The predicate condition for a template specialization // is_constructible<T, Args...> shall be satisfied if and only if the // following variable definition would be well-formed for some invented // variable t: // // T t(create<Args>()...); if (Args.empty()) { S.Diag(KWLoc, diag::err_type_trait_arity) << 1 << 1 << 1 << (int)Args.size(); return false; } bool SawVoid = false; for (unsigned I = 0, N = Args.size(); I != N; ++I) { if (Args[I]->getType()->isVoidType()) { SawVoid = true; continue; } if (!Args[I]->getType()->isIncompleteType() && S.RequireCompleteType(KWLoc, Args[I]->getType(), diag::err_incomplete_type_used_in_type_trait_expr)) return false; } // If any argument was 'void', of course it won't type-check. if (SawVoid) return false; llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; llvm::SmallVector<Expr *, 2> ArgExprs; ArgExprs.reserve(Args.size() - 1); for (unsigned I = 1, N = Args.size(); I != N; ++I) { QualType T = Args[I]->getType(); if (T->isObjectType() || T->isFunctionType()) T = S.Context.getRValueReferenceType(T); OpaqueArgExprs.push_back( OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), T.getNonLValueExprType(S.Context), Expr::getValueKindForType(T))); ArgExprs.push_back(&OpaqueArgExprs.back()); } // Perform the initialization in an unevaluated context within a SFINAE // trap at translation unit scope. EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, RParenLoc)); InitializationSequence Init(S, To, InitKind, ArgExprs.begin(), ArgExprs.size()); if (Init.Failed()) return false; ExprResult Result = Init.Perform(S, To, InitKind, MultiExprArg(ArgExprs.data(), ArgExprs.size())); if (Result.isInvalid() || SFINAE.hasErrorOccurred()) return false; // The initialization succeeded; not make sure there are no non-trivial // calls. return !Result.get()->hasNonTrivialCall(S.Context); } } return false; } ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef<TypeSourceInfo *> Args, SourceLocation RParenLoc) { bool Dependent = false; for (unsigned I = 0, N = Args.size(); I != N; ++I) { if (Args[I]->getType()->isDependentType()) { Dependent = true; break; } } bool Value = false; if (!Dependent) Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind, Args, RParenLoc, Value); } ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef<ParsedType> Args, SourceLocation RParenLoc) { llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs; ConvertedArgs.reserve(Args.size()); for (unsigned I = 0, N = Args.size(); I != N; ++I) { TypeSourceInfo *TInfo; QualType T = GetTypeFromParser(Args[I], &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); ConvertedArgs.push_back(TInfo); } return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); } static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT, QualType LhsT, QualType RhsT, SourceLocation KeyLoc) { assert(!LhsT->isDependentType() && !RhsT->isDependentType() && "Cannot evaluate traits of dependent types"); switch(BTT) { case BTT_IsBaseOf: { // C++0x [meta.rel]p2 // Base is a base class of Derived without regard to cv-qualifiers or // Base and Derived are not unions and name the same class type without // regard to cv-qualifiers. const RecordType *lhsRecord = LhsT->getAs<RecordType>(); if (!lhsRecord) return false; const RecordType *rhsRecord = RhsT->getAs<RecordType>(); if (!rhsRecord) return false; assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)); if (lhsRecord == rhsRecord) return !lhsRecord->getDecl()->isUnion(); // C++0x [meta.rel]p2: // If Base and Derived are class types and are different types // (ignoring possible cv-qualifiers) then Derived shall be a // complete type. if (Self.RequireCompleteType(KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) return false; return cast<CXXRecordDecl>(rhsRecord->getDecl()) ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); } case BTT_IsSame: return Self.Context.hasSameType(LhsT, RhsT); case BTT_TypeCompatible: return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), RhsT.getUnqualifiedType()); case BTT_IsConvertible: case BTT_IsConvertibleTo: { // C++0x [meta.rel]p4: // Given the following function prototype: // // template <class T> // typename add_rvalue_reference<T>::type create(); // // the predicate condition for a template specialization // is_convertible<From, To> shall be satisfied if and only if // the return expression in the following code would be // well-formed, including any implicit conversions to the return // type of the function: // // To test() { // return create<From>(); // } // // Access checking is performed as if in a context unrelated to To and // From. Only the validity of the immediate context of the expression // of the return-statement (including conversions to the return type) // is considered. // // We model the initialization as a copy-initialization of a temporary // of the appropriate type, which for this expression is identical to the // return statement (since NRVO doesn't apply). if (LhsT->isObjectType() || LhsT->isFunctionType()) LhsT = Self.Context.getRValueReferenceType(LhsT); InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), Expr::getValueKindForType(LhsT)); Expr *FromPtr = &From; InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, SourceLocation())); // Perform the initialization in an unevaluated context within a SFINAE // trap at translation unit scope. EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); InitializationSequence Init(Self, To, Kind, &FromPtr, 1); if (Init.Failed()) return false; ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1)); return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); } case BTT_IsTriviallyAssignable: { // C++11 [meta.unary.prop]p3: // is_trivially_assignable is defined as: // is_assignable<T, U>::value is true and the assignment, as defined by // is_assignable, is known to call no operation that is not trivial // // is_assignable is defined as: // The expression declval<T>() = declval<U>() is well-formed when // treated as an unevaluated operand (Clause 5). // // For both, T and U shall be complete types, (possibly cv-qualified) // void, or arrays of unknown bound. if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && Self.RequireCompleteType(KeyLoc, LhsT, diag::err_incomplete_type_used_in_type_trait_expr)) return false; if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && Self.RequireCompleteType(KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) return false; // cv void is never assignable. if (LhsT->isVoidType() || RhsT->isVoidType()) return false; // Build expressions that emulate the effect of declval<T>() and // declval<U>(). if (LhsT->isObjectType() || LhsT->isFunctionType()) LhsT = Self.Context.getRValueReferenceType(LhsT); if (RhsT->isObjectType() || RhsT->isFunctionType()) RhsT = Self.Context.getRValueReferenceType(RhsT); OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), Expr::getValueKindForType(LhsT)); OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), Expr::getValueKindForType(RhsT)); // Attempt the assignment in an unevaluated context within a SFINAE // trap at translation unit scope. EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs); if (Result.isInvalid() || SFINAE.hasErrorOccurred()) return false; return !Result.get()->hasNonTrivialCall(Self.Context); } } llvm_unreachable("Unknown type trait or not implemented"); } ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT, SourceLocation KWLoc, TypeSourceInfo *LhsTSInfo, TypeSourceInfo *RhsTSInfo, SourceLocation RParen) { QualType LhsT = LhsTSInfo->getType(); QualType RhsT = RhsTSInfo->getType(); if (BTT == BTT_TypeCompatible) { if (getLangOpts().CPlusPlus) { Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus) << SourceRange(KWLoc, RParen); return ExprError(); } } bool Value = false; if (!LhsT->isDependentType() && !RhsT->isDependentType()) Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc); // Select trait result type. QualType ResultType; switch (BTT) { case BTT_IsBaseOf: ResultType = Context.BoolTy; break; case BTT_IsConvertible: ResultType = Context.BoolTy; break; case BTT_IsSame: ResultType = Context.BoolTy; break; case BTT_TypeCompatible: ResultType = Context.IntTy; break; case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break; case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy; } return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo, RhsTSInfo, Value, RParen, ResultType)); } ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType Ty, Expr* DimExpr, SourceLocation RParen) { TypeSourceInfo *TSInfo; QualType T = GetTypeFromParser(Ty, &TSInfo); if (!TSInfo) TSInfo = Context.getTrivialTypeSourceInfo(T); return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); } static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, QualType T, Expr *DimExpr, SourceLocation KeyLoc) { assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); switch(ATT) { case ATT_ArrayRank: if (T->isArrayType()) { unsigned Dim = 0; while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { ++Dim; T = AT->getElementType(); } return Dim; } return 0; case ATT_ArrayExtent: { llvm::APSInt Value; uint64_t Dim; if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, Self.PDiag(diag::err_dimension_expr_not_constant_integer), false).isInvalid()) return 0; if (Value.isSigned() && Value.isNegative()) { Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) << DimExpr->getSourceRange(); return 0; } Dim = Value.getLimitedValue(); if (T->isArrayType()) { unsigned D = 0; bool Matched = false; while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { if (Dim == D) { Matched = true; break; } ++D; T = AT->getElementType(); } if (Matched && T->isArrayType()) { if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) return CAT->getSize().getLimitedValue(); } } return 0; } } llvm_unreachable("Unknown type trait or not implemented"); } ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, Expr* DimExpr, SourceLocation RParen) { QualType T = TSInfo->getType(); // FIXME: This should likely be tracked as an APInt to remove any host // assumptions about the width of size_t on the target. uint64_t Value = 0; if (!T->isDependentType()) Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); // While the specification for these traits from the Embarcadero C++ // compiler's documentation says the return type is 'unsigned int', Clang // returns 'size_t'. On Windows, the primary platform for the Embarcadero // compiler, there is no difference. On several other platforms this is an // important distinction. return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, RParen, Context.getSizeType())); } ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen) { // If error parsing the expression, ignore. if (!Queried) return ExprError(); ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); return move(Result); } static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { switch (ET) { case ET_IsLValueExpr: return E->isLValue(); case ET_IsRValueExpr: return E->isRValue(); } llvm_unreachable("Expression trait not covered by switch"); } ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen) { if (Queried->isTypeDependent()) { // Delay type-checking for type-dependent expressions. } else if (Queried->getType()->isPlaceholderType()) { ExprResult PE = CheckPlaceholderExpr(Queried); if (PE.isInvalid()) return ExprError(); return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen); } bool Value = EvaluateExpressionTrait(ET, Queried); return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy)); } QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation Loc, bool isIndirect) { assert(!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"); // The LHS undergoes lvalue conversions if this is ->*. if (isIndirect) { LHS = DefaultLvalueConversion(LHS.take()); if (LHS.isInvalid()) return QualType(); } // The RHS always undergoes lvalue conversions. RHS = DefaultLvalueConversion(RHS.take()); if (RHS.isInvalid()) return QualType(); const char *OpSpelling = isIndirect ? "->*" : ".*"; // C++ 5.5p2 // The binary operator .* [p3: ->*] binds its second operand, which shall // be of type "pointer to member of T" (where T is a completely-defined // class type) [...] QualType RHSType = RHS.get()->getType(); const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); if (!MemPtr) { Diag(Loc, diag::err_bad_memptr_rhs) << OpSpelling << RHSType << RHS.get()->getSourceRange(); return QualType(); } QualType Class(MemPtr->getClass(), 0); // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the // member pointer points must be completely-defined. However, there is no // reason for this semantic distinction, and the rule is not enforced by // other compilers. Therefore, we do not check this property, as it is // likely to be considered a defect. // C++ 5.5p2 // [...] to its first operand, which shall be of class T or of a class of // which T is an unambiguous and accessible base class. [p3: a pointer to // such a class] QualType LHSType = LHS.get()->getType(); if (isIndirect) { if (const PointerType *Ptr = LHSType->getAs<PointerType>()) LHSType = Ptr->getPointeeType(); else { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << 1 << LHSType << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); return QualType(); } } if (!Context.hasSameUnqualifiedType(Class, LHSType)) { // If we want to check the hierarchy, we need a complete type. if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect)) { return QualType(); } CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); // FIXME: Would it be useful to print full ambiguity paths, or is that // overkill? if (!IsDerivedFrom(LHSType, Class, Paths) || Paths.isAmbiguous(Context.getCanonicalType(Class))) { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect << LHS.get()->getType(); return QualType(); } // Cast LHS to type of use. QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); CXXCastPath BasePath; BuildBasePathArray(Paths, BasePath); LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK, &BasePath); } if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { // Diagnose use of pointer-to-member type which when used as // the functional cast in a pointer-to-member expression. Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; return QualType(); } // C++ 5.5p2 // The result is an object or a function of the type specified by the // second operand. // The cv qualifiers are the union of those in the pointer and the left side, // in accordance with 5.5p5 and 5.2.5. QualType Result = MemPtr->getPointeeType(); Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); // C++0x [expr.mptr.oper]p6: // In a .* expression whose object expression is an rvalue, the program is // ill-formed if the second operand is a pointer to member function with // ref-qualifier &. In a ->* expression or in a .* expression whose object // expression is an lvalue, the program is ill-formed if the second operand // is a pointer to member function with ref-qualifier &&. if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { switch (Proto->getRefQualifier()) { case RQ_None: // Do nothing break; case RQ_LValue: if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) Diag(Loc, diag::err_pointer_to_member_oper_value_classify) << RHSType << 1 << LHS.get()->getSourceRange(); break; case RQ_RValue: if (isIndirect || !LHS.get()->Classify(Context).isRValue()) Diag(Loc, diag::err_pointer_to_member_oper_value_classify) << RHSType << 0 << LHS.get()->getSourceRange(); break; } } // C++ [expr.mptr.oper]p6: // The result of a .* expression whose second operand is a pointer // to a data member is of the same value category as its // first operand. The result of a .* expression whose second // operand is a pointer to a member function is a prvalue. The // result of an ->* expression is an lvalue if its second operand // is a pointer to data member and a prvalue otherwise. if (Result->isFunctionType()) { VK = VK_RValue; return Context.BoundMemberTy; } else if (isIndirect) { VK = VK_LValue; } else { VK = LHS.get()->getValueKind(); } return Result; } /// \brief Try to convert a type to another according to C++0x 5.16p3. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, the two operands are attempted to be /// converted to each other. This function does the conversion in one direction. /// It returns true if the program is ill-formed and has already been diagnosed /// as such. static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, SourceLocation QuestionLoc, bool &HaveConversion, QualType &ToType) { HaveConversion = false; ToType = To->getType(); InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), SourceLocation()); // C++0x 5.16p3 // The process for determining whether an operand expression E1 of type T1 // can be converted to match an operand expression E2 of type T2 is defined // as follows: // -- If E2 is an lvalue: bool ToIsLvalue = To->isLValue(); if (ToIsLvalue) { // E1 can be converted to match E2 if E1 can be implicitly converted to // type "lvalue reference to T2", subject to the constraint that in the // conversion the reference must bind directly to E1. QualType T = Self.Context.getLValueReferenceType(ToType); InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); if (InitSeq.isDirectReferenceBinding()) { ToType = T; HaveConversion = true; return false; } if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); } // -- If E2 is an rvalue, or if the conversion above cannot be done: // -- if E1 and E2 have class type, and the underlying class types are // the same or one is a base class of the other: QualType FTy = From->getType(); QualType TTy = To->getType(); const RecordType *FRec = FTy->getAs<RecordType>(); const RecordType *TRec = TTy->getAs<RecordType>(); bool FDerivedFromT = FRec && TRec && FRec != TRec && Self.IsDerivedFrom(FTy, TTy); if (FRec && TRec && (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { // E1 can be converted to match E2 if the class of T2 is the // same type as, or a base class of, the class of T1, and // [cv2 > cv1]. if (FRec == TRec || FDerivedFromT) { if (TTy.isAtLeastAsQualifiedAs(FTy)) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); if (InitSeq) { HaveConversion = true; return false; } if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); } } return false; } // -- Otherwise: E1 can be converted to match E2 if E1 can be // implicitly converted to the type that expression E2 would have // if E2 were converted to an rvalue (or the type it has, if E2 is // an rvalue). // // This actually refers very narrowly to the lvalue-to-rvalue conversion, not // to the array-to-pointer or function-to-pointer conversions. if (!TTy->getAs<TagType>()) TTy = TTy.getUnqualifiedType(); InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); HaveConversion = !InitSeq.Failed(); ToType = TTy; if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); return false; } /// \brief Try to find a common type for two according to C++0x 5.16p5. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, overload resolution is used to find a /// conversion to a common type. static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc) { Expr *Args[2] = { LHS.get(), RHS.get() }; OverloadCandidateSet CandidateSet(QuestionLoc); Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2, CandidateSet); OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { case OR_Success: { // We found a match. Perform the conversions on the arguments and move on. ExprResult LHSRes = Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], Sema::AA_Converting); if (LHSRes.isInvalid()) break; LHS = move(LHSRes); ExprResult RHSRes = Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], Sema::AA_Converting); if (RHSRes.isInvalid()) break; RHS = move(RHSRes); if (Best->Function) Self.MarkFunctionReferenced(QuestionLoc, Best->Function); return false; } case OR_No_Viable_Function: // Emit a better diagnostic if one of the expressions is a null pointer // constant and the other is a pointer type. In this case, the user most // likely forgot to take the address of the other expression. if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) return true; Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return true; case OR_Ambiguous: Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); // FIXME: Print the possible common types by printing the return types of // the viable candidates. break; case OR_Deleted: llvm_unreachable("Conditional operator has only built-in overloads"); } return true; } /// \brief Perform an "extended" implicit conversion as returned by /// TryClassUnification. static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), SourceLocation()); Expr *Arg = E.take(); InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1); ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1)); if (Result.isInvalid()) return true; E = Result; return false; } /// \brief Check the operands of ?: under C++ semantics. /// /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y /// extension. In this case, LHS == Cond. (But they're not aliases.) QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc) { // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ // interface pointers. // C++0x 5.16p1 // The first expression is contextually converted to bool. if (!Cond.get()->isTypeDependent()) { ExprResult CondRes = CheckCXXBooleanCondition(Cond.take()); if (CondRes.isInvalid()) return QualType(); Cond = move(CondRes); } // Assume r-value. VK = VK_RValue; OK = OK_Ordinary; // Either of the arguments dependent? if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) return Context.DependentTy; // C++0x 5.16p2 // If either the second or the third operand has type (cv) void, ... QualType LTy = LHS.get()->getType(); QualType RTy = RHS.get()->getType(); bool LVoid = LTy->isVoidType(); bool RVoid = RTy->isVoidType(); if (LVoid || RVoid) { // ... then the [l2r] conversions are performed on the second and third // operands ... LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); LTy = LHS.get()->getType(); RTy = RHS.get()->getType(); // ... and one of the following shall hold: // -- The second or the third operand (but not both) is a throw- // expression; the result is of the type of the other and is an rvalue. bool LThrow = isa<CXXThrowExpr>(LHS.get()); bool RThrow = isa<CXXThrowExpr>(RHS.get()); if (LThrow && !RThrow) return RTy; if (RThrow && !LThrow) return LTy; // -- Both the second and third operands have type void; the result is of // type void and is an rvalue. if (LVoid && RVoid) return Context.VoidTy; // Neither holds, error. Diag(QuestionLoc, diag::err_conditional_void_nonvoid) << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // Neither is void. // C++0x 5.16p3 // Otherwise, if the second and third operand have different types, and // either has (cv) class type, and attempt is made to convert each of those // operands to the other. if (!Context.hasSameType(LTy, RTy) && (LTy->isRecordType() || RTy->isRecordType())) { ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; // These return true if a single direction is already ambiguous. QualType L2RType, R2LType; bool HaveL2R, HaveR2L; if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) return QualType(); if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) return QualType(); // If both can be converted, [...] the program is ill-formed. if (HaveL2R && HaveR2L) { Diag(QuestionLoc, diag::err_conditional_ambiguous) << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } // If exactly one conversion is possible, that conversion is applied to // the chosen operand and the converted operands are used in place of the // original operands for the remainder of this section. if (HaveL2R) { if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) return QualType(); LTy = LHS.get()->getType(); } else if (HaveR2L) { if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) return QualType(); RTy = RHS.get()->getType(); } } // C++0x 5.16p4 // If the second and third operands are glvalues of the same value // category and have the same type, the result is of that type and // value category and it is a bit-field if the second or the third // operand is a bit-field, or if both are bit-fields. // We only extend this to bitfields, not to the crazy other kinds of // l-values. bool Same = Context.hasSameType(LTy, RTy); if (Same && LHS.get()->isGLValue() && LHS.get()->getValueKind() == RHS.get()->getValueKind() && LHS.get()->isOrdinaryOrBitFieldObject() && RHS.get()->isOrdinaryOrBitFieldObject()) { VK = LHS.get()->getValueKind(); if (LHS.get()->getObjectKind() == OK_BitField || RHS.get()->getObjectKind() == OK_BitField) OK = OK_BitField; return LTy; } // C++0x 5.16p5 // Otherwise, the result is an rvalue. If the second and third operands // do not have the same type, and either has (cv) class type, ... if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { // ... overload resolution is used to determine the conversions (if any) // to be applied to the operands. If the overload resolution fails, the // program is ill-formed. if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) return QualType(); } // C++0x 5.16p6 // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard // conversions are performed on the second and third operands. LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); LTy = LHS.get()->getType(); RTy = RHS.get()->getType(); // After those conversions, one of the following shall hold: // -- The second and third operands have the same type; the result // is of that type. If the operands have class type, the result // is a prvalue temporary of the result type, which is // copy-initialized from either the second operand or the third // operand depending on the value of the first operand. if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { if (LTy->isRecordType()) { // The operands have class type. Make a temporary copy. InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); ExprResult LHSCopy = PerformCopyInitialization(Entity, SourceLocation(), LHS); if (LHSCopy.isInvalid()) return QualType(); ExprResult RHSCopy = PerformCopyInitialization(Entity, SourceLocation(), RHS); if (RHSCopy.isInvalid()) return QualType(); LHS = LHSCopy; RHS = RHSCopy; } return LTy; } // Extension: conditional operator involving vector types. if (LTy->isVectorType() || RTy->isVectorType()) return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); // -- The second and third operands have arithmetic or enumeration type; // the usual arithmetic conversions are performed to bring them to a // common type, and the result is of that type. if (LTy->isArithmeticType() && RTy->isArithmeticType()) { UsualArithmeticConversions(LHS, RHS); if (LHS.isInvalid() || RHS.isInvalid()) return QualType(); return LHS.get()->getType(); } // -- The second and third operands have pointer type, or one has pointer // type and the other is a null pointer constant; pointer conversions // and qualification conversions are performed to bring them to their // composite pointer type. The result is of the composite pointer type. // -- The second and third operands have pointer to member type, or one has // pointer to member type and the other is a null pointer constant; // pointer to member conversions and qualification conversions are // performed to bring them to a common type, whose cv-qualification // shall match the cv-qualification of either the second or the third // operand. The result is of the common type. bool NonStandardCompositeType = false; QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, isSFINAEContext()? 0 : &NonStandardCompositeType); if (!Composite.isNull()) { if (NonStandardCompositeType) Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands_nonstandard) << LTy << RTy << Composite << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return Composite; } // Similarly, attempt to find composite type of two objective-c pointers. Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); if (!Composite.isNull()) return Composite; // Check if we are using a null with a non-pointer type. if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) return QualType(); Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHS.get()->getType() << RHS.get()->getType() << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); return QualType(); } /// \brief Find a merged pointer type and convert the two expressions to it. /// /// This finds the composite pointer type (or member pointer type) for @p E1 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this /// type and returns it. /// It does not emit diagnostics. /// /// \param Loc The location of the operator requiring these two expressions to /// be converted to the composite pointer type. /// /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find /// a non-standard (but still sane) composite type to which both expressions /// can be converted. When such a type is chosen, \c *NonStandardCompositeType /// will be set true. QualType Sema::FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool *NonStandardCompositeType) { if (NonStandardCompositeType) *NonStandardCompositeType = false; assert(getLangOpts().CPlusPlus && "This function assumes C++"); QualType T1 = E1->getType(), T2 = E2->getType(); if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && !T2->isAnyPointerType() && !T2->isMemberPointerType()) return QualType(); // C++0x 5.9p2 // Pointer conversions and qualification conversions are performed on // pointer operands to bring them to their composite pointer type. If // one operand is a null pointer constant, the composite pointer type is // the type of the other operand. if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T2->isMemberPointerType()) E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take(); else E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take(); return T2; } if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T1->isMemberPointerType()) E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take(); else E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take(); return T1; } // Now both have to be pointers or member pointers. if ((!T1->isPointerType() && !T1->isMemberPointerType()) || (!T2->isPointerType() && !T2->isMemberPointerType())) return QualType(); // Otherwise, of one of the operands has type "pointer to cv1 void," then // the other has type "pointer to cv2 T" and the composite pointer type is // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. // Otherwise, the composite pointer type is a pointer type similar to the // type of one of the operands, with a cv-qualification signature that is // the union of the cv-qualification signatures of the operand types. // In practice, the first part here is redundant; it's subsumed by the second. // What we do here is, we build the two possible composite types, and try the // conversions in both directions. If only one works, or if the two composite // types are the same, we have succeeded. // FIXME: extended qualifiers? typedef SmallVector<unsigned, 4> QualifierVector; QualifierVector QualifierUnion; typedef SmallVector<std::pair<const Type *, const Type *>, 4> ContainingClassVector; ContainingClassVector MemberOfClass; QualType Composite1 = Context.getCanonicalType(T1), Composite2 = Context.getCanonicalType(T2); unsigned NeedConstBefore = 0; do { const PointerType *Ptr1, *Ptr2; if ((Ptr1 = Composite1->getAs<PointerType>()) && (Ptr2 = Composite2->getAs<PointerType>())) { Composite1 = Ptr1->getPointeeType(); Composite2 = Ptr2->getPointeeType(); // If we're allowed to create a non-standard composite type, keep track // of where we need to fill in additional 'const' qualifiers. if (NonStandardCompositeType && Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) NeedConstBefore = QualifierUnion.size(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); continue; } const MemberPointerType *MemPtr1, *MemPtr2; if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && (MemPtr2 = Composite2->getAs<MemberPointerType>())) { Composite1 = MemPtr1->getPointeeType(); Composite2 = MemPtr2->getPointeeType(); // If we're allowed to create a non-standard composite type, keep track // of where we need to fill in additional 'const' qualifiers. if (NonStandardCompositeType && Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) NeedConstBefore = QualifierUnion.size(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), MemPtr2->getClass())); continue; } // FIXME: block pointer types? // Cannot unwrap any more types. break; } while (true); if (NeedConstBefore && NonStandardCompositeType) { // Extension: Add 'const' to qualifiers that come before the first qualifier // mismatch, so that our (non-standard!) composite type meets the // requirements of C++ [conv.qual]p4 bullet 3. for (unsigned I = 0; I != NeedConstBefore; ++I) { if ((QualifierUnion[I] & Qualifiers::Const) == 0) { QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; *NonStandardCompositeType = true; } } } // Rewrap the composites as pointers or member pointers with the union CVRs. ContainingClassVector::reverse_iterator MOC = MemberOfClass.rbegin(); for (QualifierVector::reverse_iterator I = QualifierUnion.rbegin(), E = QualifierUnion.rend(); I != E; (void)++I, ++MOC) { Qualifiers Quals = Qualifiers::fromCVRMask(*I); if (MOC->first && MOC->second) { // Rebuild member pointer type Composite1 = Context.getMemberPointerType( Context.getQualifiedType(Composite1, Quals), MOC->first); Composite2 = Context.getMemberPointerType( Context.getQualifiedType(Composite2, Quals), MOC->second); } else { // Rebuild pointer type Composite1 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); Composite2 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); } } // Try to convert to the first composite pointer type. InitializedEntity Entity1 = InitializedEntity::InitializeTemporary(Composite1); InitializationKind Kind = InitializationKind::CreateCopy(Loc, SourceLocation()); InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); if (E1ToC1 && E2ToC1) { // Conversion to Composite1 is viable. if (!Context.hasSameType(Composite1, Composite2)) { // Composite2 is a different type from Composite1. Check whether // Composite2 is also viable. InitializedEntity Entity2 = InitializedEntity::InitializeTemporary(Composite2); InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); if (E1ToC2 && E2ToC2) { // Both Composite1 and Composite2 are viable and are different; // this is an ambiguity. return QualType(); } } // Convert E1 to Composite1 ExprResult E1Result = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1)); if (E1Result.isInvalid()) return QualType(); E1 = E1Result.takeAs<Expr>(); // Convert E2 to Composite1 ExprResult E2Result = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1)); if (E2Result.isInvalid()) return QualType(); E2 = E2Result.takeAs<Expr>(); return Composite1; } // Check whether Composite2 is viable. InitializedEntity Entity2 = InitializedEntity::InitializeTemporary(Composite2); InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); if (!E1ToC2 || !E2ToC2) return QualType(); // Convert E1 to Composite2 ExprResult E1Result = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1)); if (E1Result.isInvalid()) return QualType(); E1 = E1Result.takeAs<Expr>(); // Convert E2 to Composite2 ExprResult E2Result = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1)); if (E2Result.isInvalid()) return QualType(); E2 = E2Result.takeAs<Expr>(); return Composite2; } ExprResult Sema::MaybeBindToTemporary(Expr *E) { if (!E) return ExprError(); assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); // If the result is a glvalue, we shouldn't bind it. if (!E->isRValue()) return Owned(E); // In ARC, calls that return a retainable type can return retained, // in which case we have to insert a consuming cast. if (getLangOpts().ObjCAutoRefCount && E->getType()->isObjCRetainableType()) { bool ReturnsRetained; // For actual calls, we compute this by examining the type of the // called value. if (CallExpr *Call = dyn_cast<CallExpr>(E)) { Expr *Callee = Call->getCallee()->IgnoreParens(); QualType T = Callee->getType(); if (T == Context.BoundMemberTy) { // Handle pointer-to-members. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) T = BinOp->getRHS()->getType(); else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) T = Mem->getMemberDecl()->getType(); } if (const PointerType *Ptr = T->getAs<PointerType>()) T = Ptr->getPointeeType(); else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) T = Ptr->getPointeeType(); else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) T = MemPtr->getPointeeType(); const FunctionType *FTy = T->getAs<FunctionType>(); assert(FTy && "call to value not of function type?"); ReturnsRetained = FTy->getExtInfo().getProducesResult(); // ActOnStmtExpr arranges things so that StmtExprs of retainable // type always produce a +1 object. } else if (isa<StmtExpr>(E)) { ReturnsRetained = true; // We hit this case with the lambda conversion-to-block optimization; // we don't want any extra casts here. } else if (isa<CastExpr>(E) && isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { return Owned(E); // For message sends and property references, we try to find an // actual method. FIXME: we should infer retention by selector in // cases where we don't have an actual method. } else { ObjCMethodDecl *D = 0; if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { D = Send->getMethodDecl(); } else if (ObjCNumericLiteral *NumLit = dyn_cast<ObjCNumericLiteral>(E)) { D = NumLit->getObjCNumericLiteralMethod(); } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { D = ArrayLit->getArrayWithObjectsMethod(); } else if (ObjCDictionaryLiteral *DictLit = dyn_cast<ObjCDictionaryLiteral>(E)) { D = DictLit->getDictWithObjectsMethod(); } ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); // Don't do reclaims on performSelector calls; despite their // return type, the invoked method doesn't necessarily actually // return an object. if (!ReturnsRetained && D && D->getMethodFamily() == OMF_performSelector) return Owned(E); } // Don't reclaim an object of Class type. if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) return Owned(E); ExprNeedsCleanups = true; CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject : CK_ARCReclaimReturnedObject); return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0, VK_RValue)); } if (!getLangOpts().CPlusPlus) return Owned(E); // Search for the base element type (cf. ASTContext::getBaseElementType) with // a fast path for the common case that the type is directly a RecordType. const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); const RecordType *RT = 0; while (!RT) { switch (T->getTypeClass()) { case Type::Record: RT = cast<RecordType>(T); break; case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: T = cast<ArrayType>(T)->getElementType().getTypePtr(); break; default: return Owned(E); } } // That should be enough to guarantee that this type is complete, if we're // not processing a decltype expression. CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->isInvalidDecl() || RD->isDependentContext()) return Owned(E); bool IsDecltype = ExprEvalContexts.back().IsDecltype; CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD); if (Destructor) { MarkFunctionReferenced(E->getExprLoc(), Destructor); CheckDestructorAccess(E->getExprLoc(), Destructor, PDiag(diag::err_access_dtor_temp) << E->getType()); DiagnoseUseOfDecl(Destructor, E->getExprLoc()); // If destructor is trivial, we can avoid the extra copy. if (Destructor->isTrivial()) return Owned(E); // We need a cleanup, but we don't need to remember the temporary. ExprNeedsCleanups = true; } CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); if (IsDecltype) ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); return Owned(Bind); } ExprResult Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { if (SubExpr.isInvalid()) return ExprError(); return Owned(MaybeCreateExprWithCleanups(SubExpr.take())); } Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { assert(SubExpr && "sub expression can't be null!"); CleanupVarDeclMarking(); unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; assert(ExprCleanupObjects.size() >= FirstCleanup); assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); if (!ExprNeedsCleanups) return SubExpr; ArrayRef<ExprWithCleanups::CleanupObject> Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, ExprCleanupObjects.size() - FirstCleanup); Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); DiscardCleanupsInEvaluationContext(); return E; } Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { assert(SubStmt && "sub statement can't be null!"); CleanupVarDeclMarking(); if (!ExprNeedsCleanups) return SubStmt; // FIXME: In order to attach the temporaries, wrap the statement into // a StmtExpr; currently this is only used for asm statements. // This is hacky, either create a new CXXStmtWithTemporaries statement or // a new AsmStmtWithTemporaries. CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1, SourceLocation(), SourceLocation()); Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation()); return MaybeCreateExprWithCleanups(E); } /// Process the expression contained within a decltype. For such expressions, /// certain semantic checks on temporaries are delayed until this point, and /// are omitted for the 'topmost' call in the decltype expression. If the /// topmost call bound a temporary, strip that temporary off the expression. ExprResult Sema::ActOnDecltypeExpression(Expr *E) { ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back(); assert(Rec.IsDecltype && "not in a decltype expression"); // C++11 [expr.call]p11: // If a function call is a prvalue of object type, // -- if the function call is either // -- the operand of a decltype-specifier, or // -- the right operand of a comma operator that is the operand of a // decltype-specifier, // a temporary object is not introduced for the prvalue. // Recursively rebuild ParenExprs and comma expressions to strip out the // outermost CXXBindTemporaryExpr, if any. if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (SubExpr.get() == PE->getSubExpr()) return Owned(E); return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take()); } if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { if (BO->getOpcode() == BO_Comma) { ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); if (RHS.isInvalid()) return ExprError(); if (RHS.get() == BO->getRHS()) return Owned(E); return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(), BO_Comma, BO->getType(), BO->getValueKind(), BO->getObjectKind(), BO->getOperatorLoc())); } } CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); if (TopBind) E = TopBind->getSubExpr(); // Disable the special decltype handling now. Rec.IsDecltype = false; // Perform the semantic checks we delayed until this point. CallExpr *TopCall = dyn_cast<CallExpr>(E); for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) { CallExpr *Call = Rec.DelayedDecltypeCalls[I]; if (Call == TopCall) continue; if (CheckCallReturnType(Call->getCallReturnType(), Call->getLocStart(), Call, Call->getDirectCallee())) return ExprError(); } // Now all relevant types are complete, check the destructors are accessible // and non-deleted, and annotate them on the temporaries. for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) { CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I]; if (Bind == TopBind) continue; CXXTemporary *Temp = Bind->getTemporary(); CXXRecordDecl *RD = Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); CXXDestructorDecl *Destructor = LookupDestructor(RD); Temp->setDestructor(Destructor); MarkFunctionReferenced(E->getExprLoc(), Destructor); CheckDestructorAccess(E->getExprLoc(), Destructor, PDiag(diag::err_access_dtor_temp) << E->getType()); DiagnoseUseOfDecl(Destructor, E->getExprLoc()); // We need a cleanup, but we don't need to remember the temporary. ExprNeedsCleanups = true; } // Possibly strip off the top CXXBindTemporaryExpr. return Owned(E); } ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor) { // Since this might be a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); if (Result.isInvalid()) return ExprError(); Base = Result.get(); Result = CheckPlaceholderExpr(Base); if (Result.isInvalid()) return ExprError(); Base = Result.take(); QualType BaseType = Base->getType(); MayBePseudoDestructor = false; if (BaseType->isDependentType()) { // If we have a pointer to a dependent type and are using the -> operator, // the object type is the type that the pointer points to. We might still // have enough information about that type to do something useful. if (OpKind == tok::arrow) if (const PointerType *Ptr = BaseType->getAs<PointerType>()) BaseType = Ptr->getPointeeType(); ObjectType = ParsedType::make(BaseType); MayBePseudoDestructor = true; return Owned(Base); } // C++ [over.match.oper]p8: // [...] When operator->returns, the operator-> is applied to the value // returned, with the original second operand. if (OpKind == tok::arrow) { // The set of types we've considered so far. llvm::SmallPtrSet<CanQualType,8> CTypes; SmallVector<SourceLocation, 8> Locations; CTypes.insert(Context.getCanonicalType(BaseType)); while (BaseType->isRecordType()) { Result = BuildOverloadedArrowExpr(S, Base, OpLoc); if (Result.isInvalid()) return ExprError(); Base = Result.get(); if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) Locations.push_back(OpCall->getDirectCallee()->getLocation()); BaseType = Base->getType(); CanQualType CBaseType = Context.getCanonicalType(BaseType); if (!CTypes.insert(CBaseType)) { Diag(OpLoc, diag::err_operator_arrow_circular); for (unsigned i = 0; i < Locations.size(); i++) Diag(Locations[i], diag::note_declared_at); return ExprError(); } } if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()) BaseType = BaseType->getPointeeType(); } // Objective-C properties allow "." access on Objective-C pointer types, // so adjust the base type to the object type itself. if (BaseType->isObjCObjectPointerType()) BaseType = BaseType->getPointeeType(); // C++ [basic.lookup.classref]p2: // [...] If the type of the object expression is of pointer to scalar // type, the unqualified-id is looked up in the context of the complete // postfix-expression. // // This also indicates that we could be parsing a pseudo-destructor-name. // Note that Objective-C class and object types can be pseudo-destructor // expressions or normal member (ivar or property) access expressions. if (BaseType->isObjCObjectOrInterfaceType()) { MayBePseudoDestructor = true; } else if (!BaseType->isRecordType()) { ObjectType = ParsedType(); MayBePseudoDestructor = true; return Owned(Base); } // The object type must be complete (or dependent), or // C++11 [expr.prim.general]p3: // Unlike the object expression in other contexts, *this is not required to // be of complete type for purposes of class member access (5.2.5) outside // the member function body. if (!BaseType->isDependentType() && !isThisOutsideMemberFunctionBody(BaseType) && RequireCompleteType(OpLoc, BaseType, PDiag(diag::err_incomplete_member_access))) return ExprError(); // C++ [basic.lookup.classref]p2: // If the id-expression in a class member access (5.2.5) is an // unqualified-id, and the type of the object expression is of a class // type C (or of pointer to a class type C), the unqualified-id is looked // up in the scope of class C. [...] ObjectType = ParsedType::make(BaseType); return move(Base); } ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, Expr *MemExpr) { SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) << isa<CXXPseudoDestructorExpr>(MemExpr) << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); return ActOnCallExpr(/*Scope*/ 0, MemExpr, /*LPLoc*/ ExpectedLParenLoc, MultiExprArg(), /*RPLoc*/ ExpectedLParenLoc); } static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, tok::TokenKind& OpKind, SourceLocation OpLoc) { if (Base->hasPlaceholderType()) { ExprResult result = S.CheckPlaceholderExpr(Base); if (result.isInvalid()) return true; Base = result.take(); } ObjectType = Base->getType(); // C++ [expr.pseudo]p2: // The left-hand side of the dot operator shall be of scalar type. The // left-hand side of the arrow operator shall be of pointer to scalar type. // This scalar type is the object type. // Note that this is rather different from the normal handling for the // arrow operator. if (OpKind == tok::arrow) { if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { ObjectType = Ptr->getPointeeType(); } else if (!Base->isTypeDependent()) { // The user wrote "p->" when she probably meant "p."; fix it. S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << ObjectType << true << FixItHint::CreateReplacement(OpLoc, "."); if (S.isSFINAEContext()) return true; OpKind = tok::period; } } return false; } ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeTypeInfo, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destructed, bool HasTrailingLParen) { TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); QualType ObjectType; if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) return ExprError(); if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { if (getLangOpts().MicrosoftMode && ObjectType->isVoidType()) Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); else Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) << ObjectType << Base->getSourceRange(); return ExprError(); } // C++ [expr.pseudo]p2: // [...] The cv-unqualified versions of the object type and of the type // designated by the pseudo-destructor-name shall be the same type. if (DestructedTypeInfo) { QualType DestructedType = DestructedTypeInfo->getType(); SourceLocation DestructedTypeStart = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) << ObjectType << DestructedType << Base->getSourceRange() << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); // Recover by setting the destructed type to the object type. DestructedType = ObjectType; DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); } else if (DestructedType.getObjCLifetime() != ObjectType.getObjCLifetime()) { if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { // Okay: just pretend that the user provided the correctly-qualified // type. } else { Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) << ObjectType << DestructedType << Base->getSourceRange() << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); } // Recover by setting the destructed type to the object type. DestructedType = ObjectType; DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); } } } // C++ [expr.pseudo]p2: // [...] Furthermore, the two type-names in a pseudo-destructor-name of the // form // // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name // // shall designate the same scalar type. if (ScopeTypeInfo) { QualType ScopeType = ScopeTypeInfo->getType(); if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), diag::err_pseudo_dtor_type_mismatch) << ObjectType << ScopeType << Base->getSourceRange() << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); ScopeType = QualType(); ScopeTypeInfo = 0; } } Expr *Result = new (Context) CXXPseudoDestructorExpr(Context, Base, OpKind == tok::arrow, OpLoc, SS.getWithLocInContext(Context), ScopeTypeInfo, CCLoc, TildeLoc, Destructed); if (HasTrailingLParen) return Owned(Result); return DiagnoseDtorReference(Destructed.getLocation(), Result); } ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName, bool HasTrailingLParen) { assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && "Invalid first type name in pseudo-destructor"); assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && "Invalid second type name in pseudo-destructor"); QualType ObjectType; if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) return ExprError(); // Compute the object type that we should use for name lookup purposes. Only // record types and dependent types matter. ParsedType ObjectTypePtrForLookup; if (!SS.isSet()) { if (ObjectType->isRecordType()) ObjectTypePtrForLookup = ParsedType::make(ObjectType); else if (ObjectType->isDependentType()) ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); } // Convert the name of the type being destructed (following the ~) into a // type (with source-location information). QualType DestructedType; TypeSourceInfo *DestructedTypeInfo = 0; PseudoDestructorTypeStorage Destructed; if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { ParsedType T = getTypeName(*SecondTypeName.Identifier, SecondTypeName.StartLocation, S, &SS, true, false, ObjectTypePtrForLookup); if (!T && ((SS.isSet() && !computeDeclContext(SS, false)) || (!SS.isSet() && ObjectType->isDependentType()))) { // The name of the type being destroyed is a dependent name, and we // couldn't find anything useful in scope. Just store the identifier and // it's location, and we'll perform (qualified) name lookup again at // template instantiation time. Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, SecondTypeName.StartLocation); } else if (!T) { Diag(SecondTypeName.StartLocation, diag::err_pseudo_dtor_destructor_non_type) << SecondTypeName.Identifier << ObjectType; if (isSFINAEContext()) return ExprError(); // Recover by assuming we had the right type all along. DestructedType = ObjectType; } else DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); } else { // Resolve the template-id to a type. TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; ASTTemplateArgsPtr TemplateArgsPtr(*this, TemplateId->getTemplateArgs(), TemplateId->NumArgs); TypeResult T = ActOnTemplateIdType(TemplateId->SS, TemplateId->TemplateKWLoc, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); if (T.isInvalid() || !T.get()) { // Recover by assuming we had the right type all along. DestructedType = ObjectType; } else DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); } // If we've performed some kind of recovery, (re-)build the type source // information. if (!DestructedType.isNull()) { if (!DestructedTypeInfo) DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, SecondTypeName.StartLocation); Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); } // Convert the name of the scope type (the type prior to '::') into a type. TypeSourceInfo *ScopeTypeInfo = 0; QualType ScopeType; if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.Identifier) { if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { ParsedType T = getTypeName(*FirstTypeName.Identifier, FirstTypeName.StartLocation, S, &SS, true, false, ObjectTypePtrForLookup); if (!T) { Diag(FirstTypeName.StartLocation, diag::err_pseudo_dtor_destructor_non_type) << FirstTypeName.Identifier << ObjectType; if (isSFINAEContext()) return ExprError(); // Just drop this type. It's unnecessary anyway. ScopeType = QualType(); } else ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); } else { // Resolve the template-id to a type. TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; ASTTemplateArgsPtr TemplateArgsPtr(*this, TemplateId->getTemplateArgs(), TemplateId->NumArgs); TypeResult T = ActOnTemplateIdType(TemplateId->SS, TemplateId->TemplateKWLoc, TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); if (T.isInvalid() || !T.get()) { // Recover by dropping this type. ScopeType = QualType(); } else ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); } } if (!ScopeType.isNull() && !ScopeTypeInfo) ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, FirstTypeName.StartLocation); return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, ScopeTypeInfo, CCLoc, TildeLoc, Destructed, HasTrailingLParen); } ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation TildeLoc, const DeclSpec& DS, bool HasTrailingLParen) { QualType ObjectType; if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) return ExprError(); QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); TypeLocBuilder TLB; DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 0, SourceLocation(), TildeLoc, Destructed, HasTrailingLParen); } ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates) { if (Method->getParent()->isLambda() && Method->getConversionType()->isBlockPointerType()) { // This is a lambda coversion to block pointer; check if the argument // is a LambdaExpr. Expr *SubE = E; CastExpr *CE = dyn_cast<CastExpr>(SubE); if (CE && CE->getCastKind() == CK_NoOp) SubE = CE->getSubExpr(); SubE = SubE->IgnoreParens(); if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) SubE = BE->getSubExpr(); if (isa<LambdaExpr>(SubE)) { // For the conversion to block pointer on a lambda expression, we // construct a special BlockLiteral instead; this doesn't really make // a difference in ARC, but outside of ARC the resulting block literal // follows the normal lifetime rules for block literals instead of being // autoreleased. DiagnosticErrorTrap Trap(Diags); ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), E->getExprLoc(), Method, E); if (Exp.isInvalid()) Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); return Exp; } } ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0, FoundDecl, Method); if (Exp.isInvalid()) return true; MemberExpr *ME = new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method, SourceLocation(), Context.BoundMemberTy, VK_RValue, OK_Ordinary); if (HadMultipleCandidates) ME->setHadMultipleCandidates(true); QualType ResultType = Method->getResultType(); ExprValueKind VK = Expr::getValueKindForType(ResultType); ResultType = ResultType.getNonLValueExprType(Context); MarkFunctionReferenced(Exp.get()->getLocStart(), Method); CXXMemberCallExpr *CE = new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK, Exp.get()->getLocEnd()); return CE; } ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, SourceLocation RParen) { CanThrowResult CanThrow = canThrow(Operand); return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen)); } ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, Expr *Operand, SourceLocation RParen) { return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); } /// Perform the conversions required for an expression used in a /// context that ignores the result. ExprResult Sema::IgnoredValueConversions(Expr *E) { if (E->hasPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return Owned(E); E = result.take(); } // C99 6.3.2.1: // [Except in specific positions,] an lvalue that does not have // array type is converted to the value stored in the // designated object (and is no longer an lvalue). if (E->isRValue()) { // In C, function designators (i.e. expressions of function type) // are r-values, but we still want to do function-to-pointer decay // on them. This is both technically correct and convenient for // some clients. if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) return DefaultFunctionArrayConversion(E); return Owned(E); } // Otherwise, this rule does not apply in C++, at least not for the moment. if (getLangOpts().CPlusPlus) return Owned(E); // GCC seems to also exclude expressions of incomplete enum type. if (const EnumType *T = E->getType()->getAs<EnumType>()) { if (!T->getDecl()->isComplete()) { // FIXME: stupid workaround for a codegen bug! E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take(); return Owned(E); } } ExprResult Res = DefaultFunctionArrayLvalueConversion(E); if (Res.isInvalid()) return Owned(E); E = Res.take(); if (!E->getType()->isVoidType()) RequireCompleteType(E->getExprLoc(), E->getType(), diag::err_incomplete_type); return Owned(E); } ExprResult Sema::ActOnFinishFullExpr(Expr *FE) { ExprResult FullExpr = Owned(FE); if (!FullExpr.get()) return ExprError(); if (DiagnoseUnexpandedParameterPack(FullExpr.get())) return ExprError(); // Top-level message sends default to 'id' when we're in a debugger. if (getLangOpts().DebuggerCastResultToId && FullExpr.get()->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(FullExpr.get())) { FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType()); if (FullExpr.isInvalid()) return ExprError(); } FullExpr = CheckPlaceholderExpr(FullExpr.take()); if (FullExpr.isInvalid()) return ExprError(); FullExpr = IgnoredValueConversions(FullExpr.take()); if (FullExpr.isInvalid()) return ExprError(); CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc()); return MaybeCreateExprWithCleanups(FullExpr); } StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { if (!FullStmt) return StmtError(); return MaybeCreateStmtWithCleanups(FullStmt); } Sema::IfExistsResult Sema::CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, const DeclarationNameInfo &TargetNameInfo) { DeclarationName TargetName = TargetNameInfo.getName(); if (!TargetName) return IER_DoesNotExist; // If the name itself is dependent, then the result is dependent. if (TargetName.isDependentName()) return IER_Dependent; // Do the redeclaration lookup in the current scope. LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, Sema::NotForRedeclaration); LookupParsedName(R, S, &SS); R.suppressDiagnostics(); switch (R.getResultKind()) { case LookupResult::Found: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: case LookupResult::Ambiguous: return IER_Exists; case LookupResult::NotFound: return IER_DoesNotExist; case LookupResult::NotFoundInCurrentInstantiation: return IER_Dependent; } llvm_unreachable("Invalid LookupResult Kind!"); } Sema::IfExistsResult Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name) { DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); // Check for unexpanded parameter packs. SmallVector<UnexpandedParameterPack, 4> Unexpanded; collectUnexpandedParameterPacks(SS, Unexpanded); collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); if (!Unexpanded.empty()) { DiagnoseUnexpandedParameterPacks(KeywordLoc, IsIfExists? UPPC_IfExists : UPPC_IfNotExists, Unexpanded); return IER_Error; } return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); }