Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp |
//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for Objective-C expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Initialization.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/Edit/Rewriters.h" #include "clang/Edit/Commit.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLoc.h" #include "llvm/ADT/SmallString.h" #include "clang/Lex/Preprocessor.h" using namespace clang; using namespace sema; using llvm::makeArrayRef; ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, Expr **strings, unsigned NumStrings) { StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); // Most ObjC strings are formed out of a single piece. However, we *can* // have strings formed out of multiple @ strings with multiple pptokens in // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one // StringLiteral for ObjCStringLiteral to hold onto. StringLiteral *S = Strings[0]; // If we have a multi-part string, merge it all together. if (NumStrings != 1) { // Concatenate objc strings. SmallString<128> StrBuf; SmallVector<SourceLocation, 8> StrLocs; for (unsigned i = 0; i != NumStrings; ++i) { S = Strings[i]; // ObjC strings can't be wide or UTF. if (!S->isAscii()) { Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) << S->getSourceRange(); return true; } // Append the string. StrBuf += S->getString(); // Get the locations of the string tokens. StrLocs.append(S->tokloc_begin(), S->tokloc_end()); } // Create the aggregate string with the appropriate content and location // information. S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, /*Pascal=*/false, Context.getPointerType(Context.CharTy), &StrLocs[0], StrLocs.size()); } return BuildObjCStringLiteral(AtLocs[0], S); } ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ // Verify that this composite string is acceptable for ObjC strings. if (CheckObjCString(S)) return true; // Initialize the constant string interface lazily. This assumes // the NSString interface is seen in this translation unit. Note: We // don't use NSConstantString, since the runtime team considers this // interface private (even though it appears in the header files). QualType Ty = Context.getObjCConstantStringInterface(); if (!Ty.isNull()) { Ty = Context.getObjCObjectPointerType(Ty); } else if (getLangOpts().NoConstantCFStrings) { IdentifierInfo *NSIdent=0; std::string StringClass(getLangOpts().ObjCConstantStringClass); if (StringClass.empty()) NSIdent = &Context.Idents.get("NSConstantString"); else NSIdent = &Context.Idents.get(StringClass); NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, LookupOrdinaryName); if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { Context.setObjCConstantStringInterface(StrIF); Ty = Context.getObjCConstantStringInterface(); Ty = Context.getObjCObjectPointerType(Ty); } else { // If there is no NSConstantString interface defined then treat this // as error and recover from it. Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent << S->getSourceRange(); Ty = Context.getObjCIdType(); } } else { IdentifierInfo *NSIdent = &Context.Idents.get("NSString"); NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, LookupOrdinaryName); if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { Context.setObjCConstantStringInterface(StrIF); Ty = Context.getObjCConstantStringInterface(); Ty = Context.getObjCObjectPointerType(Ty); } else { // If there is no NSString interface defined, implicitly declare // a @class NSString; and use that instead. This is to make sure // type of an NSString literal is represented correctly, instead of // being an 'id' type. Ty = Context.getObjCNSStringType(); if (Ty.isNull()) { ObjCInterfaceDecl *NSStringIDecl = ObjCInterfaceDecl::Create (Context, Context.getTranslationUnitDecl(), SourceLocation(), NSIdent, 0, SourceLocation()); Ty = Context.getObjCInterfaceType(NSStringIDecl); Context.setObjCNSStringType(Ty); } Ty = Context.getObjCObjectPointerType(Ty); } } return new (Context) ObjCStringLiteral(S, Ty, AtLoc); } /// \brief Retrieve the NSNumber factory method that should be used to create /// an Objective-C literal for the given type. static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, QualType T, QualType ReturnType, SourceRange Range) { llvm::Optional<NSAPI::NSNumberLiteralMethodKind> Kind = S.NSAPIObj->getNSNumberFactoryMethodKind(T); if (!Kind) { S.Diag(Loc, diag::err_invalid_nsnumber_type) << T << Range; return 0; } // If we already looked up this method, we're done. if (S.NSNumberLiteralMethods[*Kind]) return S.NSNumberLiteralMethods[*Kind]; Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, /*Instance=*/false); // Look for the appropriate method within NSNumber. ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);; if (!Method && S.getLangOpts().DebuggerObjCLiteral) { TypeSourceInfo *ResultTInfo = 0; Method = ObjCMethodDecl::Create(S.Context, SourceLocation(), SourceLocation(), Sel, ReturnType, ResultTInfo, S.Context.getTranslationUnitDecl(), false /*Instance*/, false/*isVariadic*/, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required, false); ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, SourceLocation(), SourceLocation(), &S.Context.Idents.get("value"), T, /*TInfo=*/0, SC_None, SC_None, 0); Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>()); } if (!Method) { S.Diag(Loc, diag::err_undeclared_nsnumber_method) << Sel; return 0; } // Make sure the return type is reasonable. if (!Method->getResultType()->isObjCObjectPointerType()) { S.Diag(Loc, diag::err_objc_literal_method_sig) << Sel; S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) << Method->getResultType(); return 0; } // Note: if the parameter type is out-of-line, we'll catch it later in the // implicit conversion. S.NSNumberLiteralMethods[*Kind] = Method; return Method; } /// BuildObjCNumericLiteral - builds an ObjCNumericLiteral AST node for the /// numeric literal expression. Type of the expression will be "NSNumber *" /// or "id" if NSNumber is unavailable. ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { // Look up the NSNumber class, if we haven't done so already. if (!NSNumberDecl) { NamedDecl *IF = LookupSingleName(TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber), AtLoc, LookupOrdinaryName); NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); if (!NSNumberDecl && getLangOpts().DebuggerObjCLiteral) NSNumberDecl = ObjCInterfaceDecl::Create (Context, Context.getTranslationUnitDecl(), SourceLocation(), NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber), 0, SourceLocation()); if (!NSNumberDecl) { Diag(AtLoc, diag::err_undeclared_nsnumber); return ExprError(); } } // Determine the type of the literal. QualType NumberType = Number->getType(); if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { // In C, character literals have type 'int'. That's not the type we want // to use to determine the Objective-c literal kind. switch (Char->getKind()) { case CharacterLiteral::Ascii: NumberType = Context.CharTy; break; case CharacterLiteral::Wide: NumberType = Context.getWCharType(); break; case CharacterLiteral::UTF16: NumberType = Context.Char16Ty; break; case CharacterLiteral::UTF32: NumberType = Context.Char32Ty; break; } } ObjCMethodDecl *Method = 0; // Look for the appropriate method within NSNumber. // Construct the literal. QualType Ty = Context.getObjCObjectPointerType( Context.getObjCInterfaceType(NSNumberDecl)); Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, Ty, Number->getSourceRange()); if (!Method) return ExprError(); // Convert the number to the type that the parameter expects. QualType ElementT = Method->param_begin()[0]->getType(); ExprResult ConvertedNumber = PerformImplicitConversion(Number, ElementT, AA_Sending); if (ConvertedNumber.isInvalid()) return ExprError(); Number = ConvertedNumber.get(); return MaybeBindToTemporary( new (Context) ObjCNumericLiteral(Number, Ty, Method, AtLoc)); } ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, bool Value) { ExprResult Inner; if (getLangOpts().CPlusPlus) { Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); } else { // C doesn't actually have a way to represent literal values of type // _Bool. So, we'll use 0/1 and implicit cast to _Bool. Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, CK_IntegralToBoolean); } return BuildObjCNumericLiteral(AtLoc, Inner.get()); } /// \brief Check that the given expression is a valid element of an Objective-C /// collection literal. static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, QualType T) { // If the expression is type-dependent, there's nothing for us to do. if (Element->isTypeDependent()) return Element; ExprResult Result = S.CheckPlaceholderExpr(Element); if (Result.isInvalid()) return ExprError(); Element = Result.get(); // In C++, check for an implicit conversion to an Objective-C object pointer // type. if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, T, /*Consumed=*/false); InitializationKind Kind = InitializationKind::CreateCopy(Element->getLocStart(), SourceLocation()); InitializationSequence Seq(S, Entity, Kind, &Element, 1); if (!Seq.Failed()) return Seq.Perform(S, Entity, Kind, MultiExprArg(S, &Element, 1)); } Expr *OrigElement = Element; // Perform lvalue-to-rvalue conversion. Result = S.DefaultLvalueConversion(Element); if (Result.isInvalid()) return ExprError(); Element = Result.get(); // Make sure that we have an Objective-C pointer type or block. if (!Element->getType()->isObjCObjectPointerType() && !Element->getType()->isBlockPointerType()) { bool Recovered = false; // If this is potentially an Objective-C numeric literal, add the '@'. if (isa<IntegerLiteral>(OrigElement) || isa<CharacterLiteral>(OrigElement) || isa<FloatingLiteral>(OrigElement) || isa<ObjCBoolLiteralExpr>(OrigElement) || isa<CXXBoolLiteralExpr>(OrigElement)) { if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { int Which = isa<CharacterLiteral>(OrigElement) ? 1 : (isa<CXXBoolLiteralExpr>(OrigElement) || isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 : 3; S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) << Which << OrigElement->getSourceRange() << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), OrigElement); if (Result.isInvalid()) return ExprError(); Element = Result.get(); Recovered = true; } } // If this is potentially an Objective-C string literal, add the '@'. else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { if (String->isAscii()) { S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) << 0 << OrigElement->getSourceRange() << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); if (Result.isInvalid()) return ExprError(); Element = Result.get(); Recovered = true; } } if (!Recovered) { S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) << Element->getType(); return ExprError(); } } // Make sure that the element has the type that the container factory // function expects. return S.PerformCopyInitialization( InitializedEntity::InitializeParameter(S.Context, T, /*Consumed=*/false), Element->getLocStart(), Element); } ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, Expr *IndexExpr, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod) { // Feature support is for modern abi. if (!LangOpts.ObjCNonFragileABI) return ExprError(); // If the expression is type-dependent, there's nothing for us to do. assert ((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && "base or index cannot have dependent type here"); ExprResult Result = CheckPlaceholderExpr(IndexExpr); if (Result.isInvalid()) return ExprError(); IndexExpr = Result.get(); // Perform lvalue-to-rvalue conversion. Result = DefaultLvalueConversion(BaseExpr); if (Result.isInvalid()) return ExprError(); BaseExpr = Result.get(); return Owned(ObjCSubscriptRefExpr::Create(Context, BaseExpr, IndexExpr, Context.PseudoObjectTy, getterMethod, setterMethod, RB)); } ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { // Look up the NSArray class, if we haven't done so already. if (!NSArrayDecl) { NamedDecl *IF = LookupSingleName(TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), SR.getBegin(), LookupOrdinaryName); NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral) NSArrayDecl = ObjCInterfaceDecl::Create (Context, Context.getTranslationUnitDecl(), SourceLocation(), NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 0, SourceLocation()); if (!NSArrayDecl) { Diag(SR.getBegin(), diag::err_undeclared_nsarray); return ExprError(); } } // Find the arrayWithObjects:count: method, if we haven't done so already. QualType IdT = Context.getObjCIdType(); if (!ArrayWithObjectsMethod) { Selector Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); ArrayWithObjectsMethod = NSArrayDecl->lookupClassMethod(Sel); if (!ArrayWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) { TypeSourceInfo *ResultTInfo = 0; ArrayWithObjectsMethod = ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(), Sel, IdT, ResultTInfo, Context.getTranslationUnitDecl(), false /*Instance*/, false/*isVariadic*/, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required, false); SmallVector<ParmVarDecl *, 2> Params; ParmVarDecl *objects = ParmVarDecl::Create(Context, ArrayWithObjectsMethod, SourceLocation(), SourceLocation(), &Context.Idents.get("objects"), Context.getPointerType(IdT), /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(objects); ParmVarDecl *cnt = ParmVarDecl::Create(Context, ArrayWithObjectsMethod, SourceLocation(), SourceLocation(), &Context.Idents.get("cnt"), Context.UnsignedLongTy, /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(cnt); ArrayWithObjectsMethod->setMethodParams(Context, Params, ArrayRef<SourceLocation>()); } if (!ArrayWithObjectsMethod) { Diag(SR.getBegin(), diag::err_undeclared_arraywithobjects) << Sel; return ExprError(); } } // Make sure the return type is reasonable. if (!ArrayWithObjectsMethod->getResultType()->isObjCObjectPointerType()) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << ArrayWithObjectsMethod->getSelector(); Diag(ArrayWithObjectsMethod->getLocation(), diag::note_objc_literal_method_return) << ArrayWithObjectsMethod->getResultType(); return ExprError(); } // Dig out the type that all elements should be converted to. QualType T = ArrayWithObjectsMethod->param_begin()[0]->getType(); const PointerType *PtrT = T->getAs<PointerType>(); if (!PtrT || !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << ArrayWithObjectsMethod->getSelector(); Diag(ArrayWithObjectsMethod->param_begin()[0]->getLocation(), diag::note_objc_literal_method_param) << 0 << T << Context.getPointerType(IdT.withConst()); return ExprError(); } T = PtrT->getPointeeType(); // Check that the 'count' parameter is integral. if (!ArrayWithObjectsMethod->param_begin()[1]->getType()->isIntegerType()) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << ArrayWithObjectsMethod->getSelector(); Diag(ArrayWithObjectsMethod->param_begin()[1]->getLocation(), diag::note_objc_literal_method_param) << 1 << ArrayWithObjectsMethod->param_begin()[1]->getType() << "integral"; return ExprError(); } // Check that each of the elements provided is valid in a collection literal, // performing conversions as necessary. Expr **ElementsBuffer = Elements.get(); for (unsigned I = 0, N = Elements.size(); I != N; ++I) { ExprResult Converted = CheckObjCCollectionLiteralElement(*this, ElementsBuffer[I], T); if (Converted.isInvalid()) return ExprError(); ElementsBuffer[I] = Converted.get(); } QualType Ty = Context.getObjCObjectPointerType( Context.getObjCInterfaceType(NSArrayDecl)); return MaybeBindToTemporary( ObjCArrayLiteral::Create(Context, llvm::makeArrayRef(Elements.get(), Elements.size()), Ty, ArrayWithObjectsMethod, SR)); } ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, ObjCDictionaryElement *Elements, unsigned NumElements) { // Look up the NSDictionary class, if we haven't done so already. if (!NSDictionaryDecl) { NamedDecl *IF = LookupSingleName(TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), SR.getBegin(), LookupOrdinaryName); NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral) NSDictionaryDecl = ObjCInterfaceDecl::Create (Context, Context.getTranslationUnitDecl(), SourceLocation(), NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 0, SourceLocation()); if (!NSDictionaryDecl) { Diag(SR.getBegin(), diag::err_undeclared_nsdictionary); return ExprError(); } } // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done // so already. QualType IdT = Context.getObjCIdType(); if (!DictionaryWithObjectsMethod) { Selector Sel = NSAPIObj->getNSDictionarySelector( NSAPI::NSDict_dictionaryWithObjectsForKeysCount); DictionaryWithObjectsMethod = NSDictionaryDecl->lookupClassMethod(Sel); if (!DictionaryWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) { DictionaryWithObjectsMethod = ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(), Sel, IdT, 0 /*TypeSourceInfo */, Context.getTranslationUnitDecl(), false /*Instance*/, false/*isVariadic*/, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required, false); SmallVector<ParmVarDecl *, 3> Params; ParmVarDecl *objects = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, SourceLocation(), SourceLocation(), &Context.Idents.get("objects"), Context.getPointerType(IdT), /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(objects); ParmVarDecl *keys = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, SourceLocation(), SourceLocation(), &Context.Idents.get("keys"), Context.getPointerType(IdT), /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(keys); ParmVarDecl *cnt = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, SourceLocation(), SourceLocation(), &Context.Idents.get("cnt"), Context.UnsignedLongTy, /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(cnt); DictionaryWithObjectsMethod->setMethodParams(Context, Params, ArrayRef<SourceLocation>()); } if (!DictionaryWithObjectsMethod) { Diag(SR.getBegin(), diag::err_undeclared_dictwithobjects) << Sel; return ExprError(); } } // Make sure the return type is reasonable. if (!DictionaryWithObjectsMethod->getResultType()->isObjCObjectPointerType()){ Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << DictionaryWithObjectsMethod->getSelector(); Diag(DictionaryWithObjectsMethod->getLocation(), diag::note_objc_literal_method_return) << DictionaryWithObjectsMethod->getResultType(); return ExprError(); } // Dig out the type that all values should be converted to. QualType ValueT = DictionaryWithObjectsMethod->param_begin()[0]->getType(); const PointerType *PtrValue = ValueT->getAs<PointerType>(); if (!PtrValue || !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << DictionaryWithObjectsMethod->getSelector(); Diag(DictionaryWithObjectsMethod->param_begin()[0]->getLocation(), diag::note_objc_literal_method_param) << 0 << ValueT << Context.getPointerType(IdT.withConst()); return ExprError(); } ValueT = PtrValue->getPointeeType(); // Dig out the type that all keys should be converted to. QualType KeyT = DictionaryWithObjectsMethod->param_begin()[1]->getType(); const PointerType *PtrKey = KeyT->getAs<PointerType>(); if (!PtrKey || !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), IdT)) { bool err = true; if (PtrKey) { if (QIDNSCopying.isNull()) { // key argument of selector is id<NSCopying>? if (ObjCProtocolDecl *NSCopyingPDecl = LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; QIDNSCopying = Context.getObjCObjectType(Context.ObjCBuiltinIdTy, (ObjCProtocolDecl**) PQ,1); QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); } } if (!QIDNSCopying.isNull()) err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), QIDNSCopying); } if (err) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << DictionaryWithObjectsMethod->getSelector(); Diag(DictionaryWithObjectsMethod->param_begin()[1]->getLocation(), diag::note_objc_literal_method_param) << 1 << KeyT << Context.getPointerType(IdT.withConst()); return ExprError(); } } KeyT = PtrKey->getPointeeType(); // Check that the 'count' parameter is integral. if (!DictionaryWithObjectsMethod->param_begin()[2]->getType() ->isIntegerType()) { Diag(SR.getBegin(), diag::err_objc_literal_method_sig) << DictionaryWithObjectsMethod->getSelector(); Diag(DictionaryWithObjectsMethod->param_begin()[2]->getLocation(), diag::note_objc_literal_method_param) << 2 << DictionaryWithObjectsMethod->param_begin()[2]->getType() << "integral"; return ExprError(); } // Check that each of the keys and values provided is valid in a collection // literal, performing conversions as necessary. bool HasPackExpansions = false; for (unsigned I = 0, N = NumElements; I != N; ++I) { // Check the key. ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, KeyT); if (Key.isInvalid()) return ExprError(); // Check the value. ExprResult Value = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT); if (Value.isInvalid()) return ExprError(); Elements[I].Key = Key.get(); Elements[I].Value = Value.get(); if (Elements[I].EllipsisLoc.isInvalid()) continue; if (!Elements[I].Key->containsUnexpandedParameterPack() && !Elements[I].Value->containsUnexpandedParameterPack()) { Diag(Elements[I].EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) << SourceRange(Elements[I].Key->getLocStart(), Elements[I].Value->getLocEnd()); return ExprError(); } HasPackExpansions = true; } QualType Ty = Context.getObjCObjectPointerType( Context.getObjCInterfaceType(NSDictionaryDecl)); return MaybeBindToTemporary( ObjCDictionaryLiteral::Create(Context, llvm::makeArrayRef(Elements, NumElements), HasPackExpansions, Ty, DictionaryWithObjectsMethod, SR)); } ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc) { QualType EncodedType = EncodedTypeInfo->getType(); QualType StrTy; if (EncodedType->isDependentType()) StrTy = Context.DependentTy; else { if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. !EncodedType->isVoidType()) // void is handled too. if (RequireCompleteType(AtLoc, EncodedType, PDiag(diag::err_incomplete_type_objc_at_encode) << EncodedTypeInfo->getTypeLoc().getSourceRange())) return ExprError(); std::string Str; Context.getObjCEncodingForType(EncodedType, Str); // The type of @encode is the same as the type of the corresponding string, // which is an array type. StrTy = Context.CharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) StrTy.addConst(); StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), ArrayType::Normal, 0); } return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); } ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType ty, SourceLocation RParenLoc) { // FIXME: Preserve type source info ? TypeSourceInfo *TInfo; QualType EncodedType = GetTypeFromParser(ty, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(EncodedType, PP.getLocForEndOfToken(LParenLoc)); return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); } ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc), false, false); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc)); if (!Method) Diag(SelLoc, diag::warn_undeclared_selector) << Sel; if (!Method || Method->getImplementationControl() != ObjCMethodDecl::Optional) { llvm::DenseMap<Selector, SourceLocation>::iterator Pos = ReferencedSelectors.find(Sel); if (Pos == ReferencedSelectors.end()) ReferencedSelectors.insert(std::make_pair(Sel, SelLoc)); } // In ARC, forbid the user from using @selector for // retain/release/autorelease/dealloc/retainCount. if (getLangOpts().ObjCAutoRefCount) { switch (Sel.getMethodFamily()) { case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_retainCount: case OMF_dealloc: Diag(AtLoc, diag::err_arc_illegal_selector) << Sel << SourceRange(LParenLoc, RParenLoc); break; case OMF_None: case OMF_alloc: case OMF_copy: case OMF_finalize: case OMF_init: case OMF_mutableCopy: case OMF_new: case OMF_self: case OMF_performSelector: break; } } QualType Ty = Context.getObjCSelType(); return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); } ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc); if (!PDecl) { Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; return true; } QualType Ty = Context.getObjCProtoType(); if (Ty.isNull()) return true; Ty = Context.getObjCObjectPointerType(Ty); return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc); } /// Try to capture an implicit reference to 'self'. ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { DeclContext *DC = getFunctionLevelDeclContext(); // If we're not in an ObjC method, error out. Note that, unlike the // C++ case, we don't require an instance method --- class methods // still have a 'self', and we really do still need to capture it! ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); if (!method) return 0; tryCaptureVariable(method->getSelfDecl(), Loc); return method; } static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { if (T == Context.getObjCInstanceType()) return Context.getObjCIdType(); return T; } QualType Sema::getMessageSendResultType(QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage) { assert(Method && "Must have a method"); if (!Method->hasRelatedResultType()) return Method->getSendResultType(); // If a method has a related return type: // - if the method found is an instance method, but the message send // was a class message send, T is the declared return type of the method // found if (Method->isInstanceMethod() && isClassMessage) return stripObjCInstanceType(Context, Method->getSendResultType()); // - if the receiver is super, T is a pointer to the class of the // enclosing method definition if (isSuperMessage) { if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) return Context.getObjCObjectPointerType( Context.getObjCInterfaceType(Class)); } // - if the receiver is the name of a class U, T is a pointer to U if (ReceiverType->getAs<ObjCInterfaceType>() || ReceiverType->isObjCQualifiedInterfaceType()) return Context.getObjCObjectPointerType(ReceiverType); // - if the receiver is of type Class or qualified Class type, // T is the declared return type of the method. if (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()) return stripObjCInstanceType(Context, Method->getSendResultType()); // - if the receiver is id, qualified id, Class, or qualified Class, T // is the receiver type, otherwise // - T is the type of the receiver expression. return ReceiverType; } void Sema::EmitRelatedResultTypeNote(const Expr *E) { E = E->IgnoreParenImpCasts(); const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); if (!MsgSend) return; const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); if (!Method) return; if (!Method->hasRelatedResultType()) return; if (Context.hasSameUnqualifiedType(Method->getResultType() .getNonReferenceType(), MsgSend->getType())) return; if (!Context.hasSameUnqualifiedType(Method->getResultType(), Context.getObjCInstanceType())) return; Diag(Method->getLocation(), diag::note_related_result_type_inferred) << Method->isInstanceMethod() << Method->getSelector() << MsgSend->getType(); } bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType, ExprValueKind &VK) { if (!Method) { // Apply default argument promotion as for (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) { if (Args[i]->isTypeDependent()) continue; ExprResult Result = DefaultArgumentPromotion(Args[i]); if (Result.isInvalid()) return true; Args[i] = Result.take(); } unsigned DiagID; if (getLangOpts().ObjCAutoRefCount) DiagID = diag::err_arc_method_not_found; else DiagID = isClassMessage ? diag::warn_class_method_not_found : diag::warn_inst_method_not_found; if (!getLangOpts().DebuggerSupport) Diag(lbrac, DiagID) << Sel << isClassMessage << SourceRange(lbrac, rbrac); // In debuggers, we want to use __unknown_anytype for these // results so that clients can cast them. if (getLangOpts().DebuggerSupport) { ReturnType = Context.UnknownAnyTy; } else { ReturnType = Context.getObjCIdType(); } VK = VK_RValue; return false; } ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, isSuperMessage); VK = Expr::getValueKindForType(Method->getResultType()); unsigned NumNamedArgs = Sel.getNumArgs(); // Method might have more arguments than selector indicates. This is due // to addition of c-style arguments in method. if (Method->param_size() > Sel.getNumArgs()) NumNamedArgs = Method->param_size(); // FIXME. This need be cleaned up. if (NumArgs < NumNamedArgs) { Diag(lbrac, diag::err_typecheck_call_too_few_args) << 2 << NumNamedArgs << NumArgs; return false; } bool IsError = false; for (unsigned i = 0; i < NumNamedArgs; i++) { // We can't do any type-checking on a type-dependent argument. if (Args[i]->isTypeDependent()) continue; Expr *argExpr = Args[i]; ParmVarDecl *param = Method->param_begin()[i]; assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); // Strip the unbridged-cast placeholder expression off unless it's // a consumed argument. if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && !param->hasAttr<CFConsumedAttr>()) argExpr = stripARCUnbridgedCast(argExpr); if (RequireCompleteType(argExpr->getSourceRange().getBegin(), param->getType(), PDiag(diag::err_call_incomplete_argument) << argExpr->getSourceRange())) return true; InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, param); ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr)); if (ArgE.isInvalid()) IsError = true; else Args[i] = ArgE.takeAs<Expr>(); } // Promote additional arguments to variadic methods. if (Method->isVariadic()) { for (unsigned i = NumNamedArgs; i < NumArgs; ++i) { if (Args[i]->isTypeDependent()) continue; ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); IsError |= Arg.isInvalid(); Args[i] = Arg.take(); } } else { // Check for extra arguments to non-variadic methods. if (NumArgs != NumNamedArgs) { Diag(Args[NumNamedArgs]->getLocStart(), diag::err_typecheck_call_too_many_args) << 2 /*method*/ << NumNamedArgs << NumArgs << Method->getSourceRange() << SourceRange(Args[NumNamedArgs]->getLocStart(), Args[NumArgs-1]->getLocEnd()); } } DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs); // Do additional checkings on method. IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs); return IsError; } bool Sema::isSelfExpr(Expr *receiver) { // 'self' is objc 'self' in an objc method only. ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); if (!method) return false; receiver = receiver->IgnoreParenLValueCasts(); if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) if (DRE->getDecl() == method->getSelfDecl()) return true; return false; } // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // If failed, then we search in class's root for an instance method. // Returns 0 if no method is found. ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { ObjCMethodDecl *Method = 0; // lookup in class and all superclasses while (ClassDecl && !Method) { if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Method = ImpDecl->getClassMethod(Sel); // Look through local category implementations associated with the class. if (!Method) Method = ClassDecl->getCategoryClassMethod(Sel); // Before we give up, check if the selector is an instance method. // But only in the root. This matches gcc's behaviour and what the // runtime expects. if (!Method && !ClassDecl->getSuperClass()) { Method = ClassDecl->lookupInstanceMethod(Sel); // Look through local category implementations associated // with the root class. if (!Method) Method = LookupPrivateInstanceMethod(Sel, ClassDecl); } ClassDecl = ClassDecl->getSuperClass(); } return Method; } ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { if (!ClassDecl->hasDefinition()) return 0; ObjCMethodDecl *Method = 0; while (ClassDecl && !Method) { // If we have implementations in scope, check "private" methods. if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Method = ImpDecl->getInstanceMethod(Sel); // Look through local category implementations associated with the class. if (!Method) Method = ClassDecl->getCategoryInstanceMethod(Sel); ClassDecl = ClassDecl->getSuperClass(); } return Method; } /// LookupMethodInType - Look up a method in an ObjCObjectType. ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, bool isInstance) { const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); if (ObjCInterfaceDecl *iface = objType->getInterface()) { // Look it up in the main interface (and categories, etc.) if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) return method; // Okay, look for "private" methods declared in any // @implementations we've seen. if (isInstance) { if (ObjCMethodDecl *method = LookupPrivateInstanceMethod(sel, iface)) return method; } else { if (ObjCMethodDecl *method = LookupPrivateClassMethod(sel, iface)) return method; } } // Check qualifiers. for (ObjCObjectType::qual_iterator i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i) if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance)) return method; return 0; } /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier /// list of a qualified objective pointer type. ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool Instance) { ObjCMethodDecl *MD = 0; for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), E = OPT->qual_end(); I != E; ++I) { ObjCProtocolDecl *PROTO = (*I); if ((MD = PROTO->lookupMethod(Sel, Instance))) { return MD; } } return 0; } /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an /// objective C interface. This is a property reference expression. ExprResult Sema:: HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super) { const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); ObjCInterfaceDecl *IFace = IFaceT->getDecl(); if (MemberName.getNameKind() != DeclarationName::Identifier) { Diag(MemberLoc, diag::err_invalid_property_name) << MemberName << QualType(OPT, 0); return ExprError(); } IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); SourceRange BaseRange = Super? SourceRange(SuperLoc) : BaseExpr->getSourceRange(); if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), PDiag(diag::err_property_not_found_forward_class) << MemberName << BaseRange)) return ExprError(); // Search for a declared property first. if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); if (Super) return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } // Check protocols on qualified interfaces. for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), E = OPT->qual_end(); I != E; ++I) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); if (Super) return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } // If that failed, look for an "implicit" property by seeing if the nullary // selector is implemented. // FIXME: The logic for looking up nullary and unary selectors should be // shared with the code in ActOnInstanceMessage. Selector Sel = PP.getSelectorTable().getNullarySelector(Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); // May be founf in property's qualified list. if (!Getter) Getter = LookupMethodInQualifiedType(Sel, OPT, true); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) Getter = IFace->lookupPrivateMethod(Sel); // Look through local category implementations associated with the class. if (!Getter) Getter = IFace->getCategoryInstanceMethod(Sel); if (Getter) { // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), Member); ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); // May be founf in property's qualified list. if (!Setter) Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = IFace->lookupPrivateMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) Setter = IFace->getCategoryInstanceMethod(SetterSel); if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { if (Super) return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } // Attempt to correct for typos in property names. DeclFilterCCC<ObjCPropertyDecl> Validator; if (TypoCorrection Corrected = CorrectTypo( DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL, NULL, Validator, IFace, false, OPT)) { ObjCPropertyDecl *Property = Corrected.getCorrectionDeclAs<ObjCPropertyDecl>(); DeclarationName TypoResult = Corrected.getCorrection(); Diag(MemberLoc, diag::err_property_not_found_suggest) << MemberName << QualType(OPT, 0) << TypoResult << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString()); Diag(Property->getLocation(), diag::note_previous_decl) << Property->getDeclName(); return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, TypoResult, MemberLoc, SuperLoc, SuperType, Super); } ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *Ivar = IFace->lookupInstanceVariable(Member, ClassDeclared)) { QualType T = Ivar->getType(); if (const ObjCObjectPointerType * OBJPT = T->getAsObjCInterfacePointerType()) { if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), PDiag(diag::err_property_not_as_forward_class) << MemberName << BaseExpr->getSourceRange())) return ExprError(); } Diag(MemberLoc, diag::err_ivar_access_using_property_syntax_suggest) << MemberName << QualType(OPT, 0) << Ivar->getDeclName() << FixItHint::CreateReplacement(OpLoc, "->"); return ExprError(); } Diag(MemberLoc, diag::err_property_not_found) << MemberName << QualType(OPT, 0); if (Setter) Diag(Setter->getLocation(), diag::note_getter_unavailable) << MemberName << BaseExpr->getSourceRange(); return ExprError(); } ExprResult Sema:: ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc) { IdentifierInfo *receiverNamePtr = &receiverName; ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, receiverNameLoc); bool IsSuper = false; if (IFace == 0) { // If the "receiver" is 'super' in a method, handle it as an expression-like // property reference. if (receiverNamePtr->isStr("super")) { IsSuper = true; if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { if (CurMethod->isInstanceMethod()) { QualType T = Context.getObjCInterfaceType(CurMethod->getClassInterface()); T = Context.getObjCObjectPointerType(T); return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), /*BaseExpr*/0, SourceLocation()/*OpLoc*/, &propertyName, propertyNameLoc, receiverNameLoc, T, true); } // Otherwise, if this is a class method, try dispatching to our // superclass. IFace = CurMethod->getClassInterface()->getSuperClass(); } } if (IFace == 0) { Diag(receiverNameLoc, diag::err_expected_ident_or_lparen); return ExprError(); } } // Search for a declared property first. Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Getter = ImpDecl->getClassMethod(Sel); if (Getter) { // FIXME: refactor/share with ActOnMemberReference(). // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) return ExprError(); } // Look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Setter = ImpDecl->getClassMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) Setter = IFace->getCategoryClassMethod(SetterSel); if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) return ExprError(); if (Getter || Setter) { if (IsSuper) return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, propertyNameLoc, receiverNameLoc, Context.getObjCInterfaceType(IFace))); return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, propertyNameLoc, receiverNameLoc, IFace)); } return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) << &propertyName << Context.getObjCInterfaceType(IFace)); } namespace { class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { public: ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { // Determine whether "super" is acceptable in the current context. if (Method && Method->getClassInterface()) WantObjCSuper = Method->getClassInterface()->getSuperClass(); } virtual bool ValidateCandidate(const TypoCorrection &candidate) { return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || candidate.isKeyword("super"); } }; } Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType) { ReceiverType = ParsedType(); // If the identifier is "super" and there is no trailing dot, we're // messaging super. If the identifier is "super" and there is a // trailing dot, it's an instance message. if (IsSuper && S->isInObjcMethodScope()) return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); LookupName(Result, S); switch (Result.getResultKind()) { case LookupResult::NotFound: // Normal name lookup didn't find anything. If we're in an // Objective-C method, look for ivars. If we find one, we're done! // FIXME: This is a hack. Ivar lookup should be part of normal // lookup. if (ObjCMethodDecl *Method = getCurMethodDecl()) { if (!Method->getClassInterface()) { // Fall back: let the parser try to parse it as an instance message. return ObjCInstanceMessage; } ObjCInterfaceDecl *ClassDeclared; if (Method->getClassInterface()->lookupInstanceVariable(Name, ClassDeclared)) return ObjCInstanceMessage; } // Break out; we'll perform typo correction below. break; case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: case LookupResult::Ambiguous: Result.suppressDiagnostics(); return ObjCInstanceMessage; case LookupResult::Found: { // If the identifier is a class or not, and there is a trailing dot, // it's an instance message. if (HasTrailingDot) return ObjCInstanceMessage; // We found something. If it's a type, then we have a class // message. Otherwise, it's an instance message. NamedDecl *ND = Result.getFoundDecl(); QualType T; if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) T = Context.getObjCInterfaceType(Class); else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) T = Context.getTypeDeclType(Type); else return ObjCInstanceMessage; // We have a class message, and T is the type we're // messaging. Build source-location information for it. TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl()); if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, NULL, Validator)) { if (Corrected.isKeyword()) { // If we've found the keyword "super" (the only keyword that would be // returned by CorrectTypo), this is a send to super. Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Corrected.getCorrection() << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); return ObjCSuperMessage; } else if (ObjCInterfaceDecl *Class = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { // If we found a declaration, correct when it refers to an Objective-C // class. Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Corrected.getCorrection() << FixItHint::CreateReplacement(SourceRange(NameLoc), Class->getNameAsString()); Diag(Class->getLocation(), diag::note_previous_decl) << Corrected.getCorrection(); QualType T = Context.getObjCInterfaceType(Class); TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } // Fall back: let the parser try to parse it as an instance message. return ObjCInstanceMessage; } ExprResult Sema::ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, ArrayRef<SourceLocation> SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args) { // Determine whether we are inside a method or not. ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); if (!Method) { Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); return ExprError(); } ObjCInterfaceDecl *Class = Method->getClassInterface(); if (!Class) { Diag(SuperLoc, diag::error_no_super_class_message) << Method->getDeclName(); return ExprError(); } ObjCInterfaceDecl *Super = Class->getSuperClass(); if (!Super) { // The current class does not have a superclass. Diag(SuperLoc, diag::error_root_class_cannot_use_super) << Class->getIdentifier(); return ExprError(); } // We are in a method whose class has a superclass, so 'super' // is acting as a keyword. if (Method->isInstanceMethod()) { if (Sel.getMethodFamily() == OMF_dealloc) ObjCShouldCallSuperDealloc = false; if (Sel.getMethodFamily() == OMF_finalize) ObjCShouldCallSuperFinalize = false; // Since we are in an instance method, this is an instance // message to the superclass instance. QualType SuperTy = Context.getObjCInterfaceType(Super); SuperTy = Context.getObjCObjectPointerType(SuperTy); return BuildInstanceMessage(0, SuperTy, SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLocs, RBracLoc, move(Args)); } // Since we are in a class method, this is a class message to // the superclass. return BuildClassMessage(/*ReceiverTypeInfo=*/0, Context.getObjCInterfaceType(Super), SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLocs, RBracLoc, move(Args)); } ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, bool isSuperReceiver, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args) { TypeSourceInfo *receiverTypeInfo = 0; if (!ReceiverType.isNull()) receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); return BuildClassMessage(receiverTypeInfo, ReceiverType, /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), Sel, Method, Loc, Loc, Loc, Args, /*isImplicit=*/true); } static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, unsigned DiagID, bool (*refactor)(const ObjCMessageExpr *, const NSAPI &, edit::Commit &)) { SourceLocation MsgLoc = Msg->getExprLoc(); if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored) return; SourceManager &SM = S.SourceMgr; edit::Commit ECommit(SM, S.LangOpts); if (refactor(Msg,*S.NSAPIObj, ECommit)) { DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) << Msg->getSelector() << Msg->getSourceRange(); // FIXME: Don't emit diagnostic at all if fixits are non-commitable. if (!ECommit.isCommitable()) return; for (edit::Commit::edit_iterator I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { const edit::Commit::Edit &Edit = *I; switch (Edit.Kind) { case edit::Commit::Act_Insert: Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, Edit.Text, Edit.BeforePrev)); break; case edit::Commit::Act_InsertFromRange: Builder.AddFixItHint( FixItHint::CreateInsertionFromRange(Edit.OrigLoc, Edit.getInsertFromRange(SM), Edit.BeforePrev)); break; case edit::Commit::Act_Remove: Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); break; } } } } static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, edit::rewriteObjCRedundantCallWithLiteral); } /// \brief Build an Objective-C class message expression. /// /// This routine takes care of both normal class messages and /// class messages to the superclass. /// /// \param ReceiverTypeInfo Type source information that describes the /// receiver of this message. This may be NULL, in which case we are /// sending to the superclass and \p SuperLoc must be a valid source /// location. /// \param ReceiverType The type of the object receiving the /// message. When \p ReceiverTypeInfo is non-NULL, this is the same /// type as that refers to. For a superclass send, this is the type of /// the superclass. /// /// \param SuperLoc The location of the "super" keyword in a /// superclass message. /// /// \param Sel The selector to which the message is being sent. /// /// \param Method The method that this class message is invoking, if /// already known. /// /// \param LBracLoc The location of the opening square bracket ']'. /// /// \param RBrac The location of the closing square bracket ']'. /// /// \param Args The message arguments. ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef<SourceLocation> SelectorLocs, SourceLocation RBracLoc, MultiExprArg ArgsIn, bool isImplicit) { SourceLocation Loc = SuperLoc.isValid()? SuperLoc : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); if (LBracLoc.isInvalid()) { Diag(Loc, diag::err_missing_open_square_message_send) << FixItHint::CreateInsertion(Loc, "["); LBracLoc = Loc; } if (ReceiverType->isDependentType()) { // If the receiver type is dependent, we can't type-check anything // at this point. Build a dependent expression. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); assert(SuperLoc.isInvalid() && "Message to super with dependent type"); return Owned(ObjCMessageExpr::Create(Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, SelectorLocs, /*Method=*/0, makeArrayRef(Args, NumArgs),RBracLoc, isImplicit)); } // Find the class to which we are sending this message. ObjCInterfaceDecl *Class = 0; const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); if (!ClassType || !(Class = ClassType->getInterface())) { Diag(Loc, diag::err_invalid_receiver_class_message) << ReceiverType; return ExprError(); } assert(Class && "We don't know which class we're messaging?"); // objc++ diagnoses during typename annotation. if (!getLangOpts().CPlusPlus) (void)DiagnoseUseOfDecl(Class, Loc); // Find the method we are messaging. if (!Method) { SourceRange TypeRange = SuperLoc.isValid()? SourceRange(SuperLoc) : ReceiverTypeInfo->getTypeLoc().getSourceRange(); if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), (getLangOpts().ObjCAutoRefCount ? PDiag(diag::err_arc_receiver_forward_class) : PDiag(diag::warn_receiver_forward_class)) << TypeRange)) { // A forward class used in messaging is treated as a 'Class' Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc)); if (Method && !getLangOpts().ObjCAutoRefCount) Diag(Method->getLocation(), diag::note_method_sent_forward_class) << Method->getDeclName(); } if (!Method) Method = Class->lookupClassMethod(Sel); // If we have an implementation in scope, check "private" methods. if (!Method) Method = LookupPrivateClassMethod(Sel, Class); if (Method && DiagnoseUseOfDecl(Method, Loc)) return ExprError(); } // Check the argument types and determine the result type. QualType ReturnType; ExprValueKind VK = VK_RValue; unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true, SuperLoc.isValid(), LBracLoc, RBracLoc, ReturnType, VK)) return ExprError(); if (Method && !Method->getResultType()->isVoidType() && RequireCompleteType(LBracLoc, Method->getResultType(), diag::err_illegal_message_expr_incomplete_type)) return ExprError(); // Construct the appropriate ObjCMessageExpr. ObjCMessageExpr *Result; if (SuperLoc.isValid()) Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, SuperLoc, /*IsInstanceSuper=*/false, ReceiverType, Sel, SelectorLocs, Method, makeArrayRef(Args, NumArgs), RBracLoc, isImplicit); else { Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, ReceiverTypeInfo, Sel, SelectorLocs, Method, makeArrayRef(Args, NumArgs), RBracLoc, isImplicit); if (!isImplicit) checkCocoaAPI(*this, Result); } return MaybeBindToTemporary(Result); } // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). ExprResult Sema::ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef<SourceLocation> SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args) { TypeSourceInfo *ReceiverTypeInfo; QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); if (ReceiverType.isNull()) return ExprError(); if (!ReceiverTypeInfo) ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); return BuildClassMessage(ReceiverTypeInfo, ReceiverType, /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, LBracLoc, SelectorLocs, RBracLoc, move(Args)); } ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, QualType ReceiverType, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args) { return BuildInstanceMessage(Receiver, ReceiverType, /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), Sel, Method, Loc, Loc, Loc, Args, /*isImplicit=*/true); } /// \brief Build an Objective-C instance message expression. /// /// This routine takes care of both normal instance messages and /// instance messages to the superclass instance. /// /// \param Receiver The expression that computes the object that will /// receive this message. This may be empty, in which case we are /// sending to the superclass instance and \p SuperLoc must be a valid /// source location. /// /// \param ReceiverType The (static) type of the object receiving the /// message. When a \p Receiver expression is provided, this is the /// same type as that expression. For a superclass instance send, this /// is a pointer to the type of the superclass. /// /// \param SuperLoc The location of the "super" keyword in a /// superclass instance message. /// /// \param Sel The selector to which the message is being sent. /// /// \param Method The method that this instance message is invoking, if /// already known. /// /// \param LBracLoc The location of the opening square bracket ']'. /// /// \param RBrac The location of the closing square bracket ']'. /// /// \param Args The message arguments. ExprResult Sema::BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef<SourceLocation> SelectorLocs, SourceLocation RBracLoc, MultiExprArg ArgsIn, bool isImplicit) { // The location of the receiver. SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); if (LBracLoc.isInvalid()) { Diag(Loc, diag::err_missing_open_square_message_send) << FixItHint::CreateInsertion(Loc, "["); LBracLoc = Loc; } // If we have a receiver expression, perform appropriate promotions // and determine receiver type. if (Receiver) { if (Receiver->hasPlaceholderType()) { ExprResult Result; if (Receiver->getType() == Context.UnknownAnyTy) Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); else Result = CheckPlaceholderExpr(Receiver); if (Result.isInvalid()) return ExprError(); Receiver = Result.take(); } if (Receiver->isTypeDependent()) { // If the receiver is type-dependent, we can't type-check anything // at this point. Build a dependent expression. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); assert(SuperLoc.isInvalid() && "Message to super with dependent type"); return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, SelectorLocs, /*Method=*/0, makeArrayRef(Args, NumArgs), RBracLoc, isImplicit)); } // If necessary, apply function/array conversion to the receiver. // C99 6.7.5.3p[7,8]. ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); if (Result.isInvalid()) return ExprError(); Receiver = Result.take(); ReceiverType = Receiver->getType(); } if (!Method) { // Handle messages to id. bool receiverIsId = ReceiverType->isObjCIdType(); if (receiverIsId || ReceiverType->isBlockPointerType() || (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), receiverIsId); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), receiverIsId); } else if (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()) { // Handle messages to Class. // We allow sending a message to a qualified Class ("Class<foo>"), which // is ok as long as one of the protocols implements the selector (if not, warn). if (const ObjCObjectPointerType *QClassTy = ReceiverType->getAsObjCQualifiedClassType()) { // Search protocols for class methods. Method = LookupMethodInQualifiedType(Sel, QClassTy, false); if (!Method) { Method = LookupMethodInQualifiedType(Sel, QClassTy, true); // warn if instance method found for a Class message. if (Method) { Diag(Loc, diag::warn_instance_method_on_class_found) << Method->getSelector() << Sel; Diag(Method->getLocation(), diag::note_method_declared_at) << Method->getDeclName(); } } } else { if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { // First check the public methods in the class interface. Method = ClassDecl->lookupClassMethod(Sel); if (!Method) Method = LookupPrivateClassMethod(Sel, ClassDecl); } if (Method && DiagnoseUseOfDecl(Method, Loc)) return ExprError(); } if (!Method) { // If not messaging 'self', look for any factory method named 'Sel'. if (!Receiver || !isSelfExpr(Receiver)) { Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), true); if (!Method) { // If no class (factory) method was found, check if an _instance_ // method of the same name exists in the root class only. Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), true); if (Method) if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { if (ID->getSuperClass()) Diag(Loc, diag::warn_root_inst_method_not_found) << Sel << SourceRange(LBracLoc, RBracLoc); } } } } } } else { ObjCInterfaceDecl* ClassDecl = 0; // We allow sending a message to a qualified ID ("id<foo>"), which is ok as // long as one of the protocols implements the selector (if not, warn). if (const ObjCObjectPointerType *QIdTy = ReceiverType->getAsObjCQualifiedIdType()) { // Search protocols for instance methods. Method = LookupMethodInQualifiedType(Sel, QIdTy, true); if (!Method) Method = LookupMethodInQualifiedType(Sel, QIdTy, false); } else if (const ObjCObjectPointerType *OCIType = ReceiverType->getAsObjCInterfacePointerType()) { // We allow sending a message to a pointer to an interface (an object). ClassDecl = OCIType->getInterfaceDecl(); // Try to complete the type. Under ARC, this is a hard error from which // we don't try to recover. const ObjCInterfaceDecl *forwardClass = 0; if (RequireCompleteType(Loc, OCIType->getPointeeType(), getLangOpts().ObjCAutoRefCount ? PDiag(diag::err_arc_receiver_forward_instance) << (Receiver ? Receiver->getSourceRange() : SourceRange(SuperLoc)) : PDiag(diag::warn_receiver_forward_instance) << (Receiver ? Receiver->getSourceRange() : SourceRange(SuperLoc)))) { if (getLangOpts().ObjCAutoRefCount) return ExprError(); forwardClass = OCIType->getInterfaceDecl(); Diag(Receiver ? Receiver->getLocStart() : SuperLoc, diag::note_receiver_is_id); Method = 0; } else { Method = ClassDecl->lookupInstanceMethod(Sel); } if (!Method) // Search protocol qualifiers. Method = LookupMethodInQualifiedType(Sel, OCIType, true); if (!Method) { // If we have implementations in scope, check "private" methods. Method = LookupPrivateInstanceMethod(Sel, ClassDecl); if (!Method && getLangOpts().ObjCAutoRefCount) { Diag(Loc, diag::err_arc_may_not_respond) << OCIType->getPointeeType() << Sel; return ExprError(); } if (!Method && (!Receiver || !isSelfExpr(Receiver))) { // If we still haven't found a method, look in the global pool. This // behavior isn't very desirable, however we need it for GCC // compatibility. FIXME: should we deviate?? if (OCIType->qual_empty()) { Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc)); if (Method && !forwardClass) Diag(Loc, diag::warn_maynot_respond) << OCIType->getInterfaceDecl()->getIdentifier() << Sel; } } } if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass)) return ExprError(); } else if (!getLangOpts().ObjCAutoRefCount && !Context.getObjCIdType().isNull() && (ReceiverType->isPointerType() || ReceiverType->isIntegerType())) { // Implicitly convert integers and pointers to 'id' but emit a warning. // But not in ARC. Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << Receiver->getSourceRange(); if (ReceiverType->isPointerType()) Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), CK_CPointerToObjCPointerCast).take(); else { // TODO: specialized warning on null receivers? bool IsNull = Receiver->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), IsNull ? CK_NullToPointer : CK_IntegralToPointer).take(); } ReceiverType = Receiver->getType(); } else { ExprResult ReceiverRes; if (getLangOpts().CPlusPlus) ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver); if (ReceiverRes.isUsable()) { Receiver = ReceiverRes.take(); return BuildInstanceMessage(Receiver, ReceiverType, SuperLoc, Sel, Method, LBracLoc, SelectorLocs, RBracLoc, move(ArgsIn)); } else { // Reject other random receiver types (e.g. structs). Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << Receiver->getSourceRange(); return ExprError(); } } } } // Check the message arguments. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); QualType ReturnType; ExprValueKind VK = VK_RValue; bool ClassMessage = (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()); if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, ClassMessage, SuperLoc.isValid(), LBracLoc, RBracLoc, ReturnType, VK)) return ExprError(); if (Method && !Method->getResultType()->isVoidType() && RequireCompleteType(LBracLoc, Method->getResultType(), diag::err_illegal_message_expr_incomplete_type)) return ExprError(); SourceLocation SelLoc = SelectorLocs.front(); // In ARC, forbid the user from sending messages to // retain/release/autorelease/dealloc/retainCount explicitly. if (getLangOpts().ObjCAutoRefCount) { ObjCMethodFamily family = (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); switch (family) { case OMF_init: if (Method) checkInitMethod(Method, ReceiverType); case OMF_None: case OMF_alloc: case OMF_copy: case OMF_finalize: case OMF_mutableCopy: case OMF_new: case OMF_self: break; case OMF_dealloc: case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_retainCount: Diag(Loc, diag::err_arc_illegal_explicit_message) << Sel << SelLoc; break; case OMF_performSelector: if (Method && NumArgs >= 1) { if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { Selector ArgSel = SelExp->getSelector(); ObjCMethodDecl *SelMethod = LookupInstanceMethodInGlobalPool(ArgSel, SelExp->getSourceRange()); if (!SelMethod) SelMethod = LookupFactoryMethodInGlobalPool(ArgSel, SelExp->getSourceRange()); if (SelMethod) { ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); switch (SelFamily) { case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: case OMF_self: case OMF_init: // Issue error, unless ns_returns_not_retained. if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { // selector names a +1 method Diag(SelLoc, diag::err_arc_perform_selector_retains); Diag(SelMethod->getLocation(), diag::note_method_declared_at) << SelMethod->getDeclName(); } break; default: // +0 call. OK. unless ns_returns_retained. if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { // selector names a +1 method Diag(SelLoc, diag::err_arc_perform_selector_retains); Diag(SelMethod->getLocation(), diag::note_method_declared_at) << SelMethod->getDeclName(); } break; } } } else { // error (may leak). Diag(SelLoc, diag::warn_arc_perform_selector_leaks); Diag(Args[0]->getExprLoc(), diag::note_used_here); } } break; } } // Construct the appropriate ObjCMessageExpr instance. ObjCMessageExpr *Result; if (SuperLoc.isValid()) Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, SuperLoc, /*IsInstanceSuper=*/true, ReceiverType, Sel, SelectorLocs, Method, makeArrayRef(Args, NumArgs), RBracLoc, isImplicit); else { Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, Receiver, Sel, SelectorLocs, Method, makeArrayRef(Args, NumArgs), RBracLoc, isImplicit); if (!isImplicit) checkCocoaAPI(*this, Result); } if (getLangOpts().ObjCAutoRefCount) { if (Receiver && (Receiver->IgnoreParenImpCasts()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)) Diag(Receiver->getLocStart(), diag::warn_receiver_is_weak); // In ARC, annotate delegate init calls. if (Result->getMethodFamily() == OMF_init && (SuperLoc.isValid() || isSelfExpr(Receiver))) { // Only consider init calls *directly* in init implementations, // not within blocks. ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); if (method && method->getMethodFamily() == OMF_init) { // The implicit assignment to self means we also don't want to // consume the result. Result->setDelegateInitCall(true); return Owned(Result); } } // In ARC, check for message sends which are likely to introduce // retain cycles. checkRetainCycles(Result); } return MaybeBindToTemporary(Result); } // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). ExprResult Sema::ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef<SourceLocation> SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args) { if (!Receiver) return ExprError(); return BuildInstanceMessage(Receiver, Receiver->getType(), /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, LBracLoc, SelectorLocs, RBracLoc, move(Args)); } enum ARCConversionTypeClass { /// int, void, struct A ACTC_none, /// id, void (^)() ACTC_retainable, /// id*, id***, void (^*)(), ACTC_indirectRetainable, /// void* might be a normal C type, or it might a CF type. ACTC_voidPtr, /// struct A* ACTC_coreFoundation }; static bool isAnyRetainable(ARCConversionTypeClass ACTC) { return (ACTC == ACTC_retainable || ACTC == ACTC_coreFoundation || ACTC == ACTC_voidPtr); } static bool isAnyCLike(ARCConversionTypeClass ACTC) { return ACTC == ACTC_none || ACTC == ACTC_voidPtr || ACTC == ACTC_coreFoundation; } static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { bool isIndirect = false; // Ignore an outermost reference type. if (const ReferenceType *ref = type->getAs<ReferenceType>()) { type = ref->getPointeeType(); isIndirect = true; } // Drill through pointers and arrays recursively. while (true) { if (const PointerType *ptr = type->getAs<PointerType>()) { type = ptr->getPointeeType(); // The first level of pointer may be the innermost pointer on a CF type. if (!isIndirect) { if (type->isVoidType()) return ACTC_voidPtr; if (type->isRecordType()) return ACTC_coreFoundation; } } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); } else { break; } isIndirect = true; } if (isIndirect) { if (type->isObjCARCBridgableType()) return ACTC_indirectRetainable; return ACTC_none; } if (type->isObjCARCBridgableType()) return ACTC_retainable; return ACTC_none; } namespace { /// A result from the cast checker. enum ACCResult { /// Cannot be casted. ACC_invalid, /// Can be safely retained or not retained. ACC_bottom, /// Can be casted at +0. ACC_plusZero, /// Can be casted at +1. ACC_plusOne }; ACCResult merge(ACCResult left, ACCResult right) { if (left == right) return left; if (left == ACC_bottom) return right; if (right == ACC_bottom) return left; return ACC_invalid; } /// A checker which white-lists certain expressions whose conversion /// to or from retainable type would otherwise be forbidden in ARC. class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { typedef StmtVisitor<ARCCastChecker, ACCResult> super; ASTContext &Context; ARCConversionTypeClass SourceClass; ARCConversionTypeClass TargetClass; static bool isCFType(QualType type) { // Someday this can use ns_bridged. For now, it has to do this. return type->isCARCBridgableType(); } public: ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, ARCConversionTypeClass target) : Context(Context), SourceClass(source), TargetClass(target) {} using super::Visit; ACCResult Visit(Expr *e) { return super::Visit(e->IgnoreParens()); } ACCResult VisitStmt(Stmt *s) { return ACC_invalid; } /// Null pointer constants can be casted however you please. ACCResult VisitExpr(Expr *e) { if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) return ACC_bottom; return ACC_invalid; } /// Objective-C string literals can be safely casted. ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { // If we're casting to any retainable type, go ahead. Global // strings are immune to retains, so this is bottom. if (isAnyRetainable(TargetClass)) return ACC_bottom; return ACC_invalid; } /// Look through certain implicit and explicit casts. ACCResult VisitCastExpr(CastExpr *e) { switch (e->getCastKind()) { case CK_NullToPointer: return ACC_bottom; case CK_NoOp: case CK_LValueToRValue: case CK_BitCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: return Visit(e->getSubExpr()); default: return ACC_invalid; } } /// Look through unary extension. ACCResult VisitUnaryExtension(UnaryOperator *e) { return Visit(e->getSubExpr()); } /// Ignore the LHS of a comma operator. ACCResult VisitBinComma(BinaryOperator *e) { return Visit(e->getRHS()); } /// Conditional operators are okay if both sides are okay. ACCResult VisitConditionalOperator(ConditionalOperator *e) { ACCResult left = Visit(e->getTrueExpr()); if (left == ACC_invalid) return ACC_invalid; return merge(left, Visit(e->getFalseExpr())); } /// Look through pseudo-objects. ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { // If we're getting here, we should always have a result. return Visit(e->getResultExpr()); } /// Statement expressions are okay if their result expression is okay. ACCResult VisitStmtExpr(StmtExpr *e) { return Visit(e->getSubStmt()->body_back()); } /// Some declaration references are okay. ACCResult VisitDeclRefExpr(DeclRefExpr *e) { // References to global constants from system headers are okay. // These are things like 'kCFStringTransformToLatin'. They are // can also be assumed to be immune to retains. VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); if (isAnyRetainable(TargetClass) && isAnyRetainable(SourceClass) && var && var->getStorageClass() == SC_Extern && var->getType().isConstQualified() && Context.getSourceManager().isInSystemHeader(var->getLocation())) { return ACC_bottom; } // Nothing else. return ACC_invalid; } /// Some calls are okay. ACCResult VisitCallExpr(CallExpr *e) { if (FunctionDecl *fn = e->getDirectCallee()) if (ACCResult result = checkCallToFunction(fn)) return result; return super::VisitCallExpr(e); } ACCResult checkCallToFunction(FunctionDecl *fn) { // Require a CF*Ref return type. if (!isCFType(fn->getResultType())) return ACC_invalid; if (!isAnyRetainable(TargetClass)) return ACC_invalid; // Honor an explicit 'not retained' attribute. if (fn->hasAttr<CFReturnsNotRetainedAttr>()) return ACC_plusZero; // Honor an explicit 'retained' attribute, except that for // now we're not going to permit implicit handling of +1 results, // because it's a bit frightening. if (fn->hasAttr<CFReturnsRetainedAttr>()) return ACC_invalid; // ACC_plusOne if we start accepting this // Recognize this specific builtin function, which is used by CFSTR. unsigned builtinID = fn->getBuiltinID(); if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) return ACC_bottom; // Otherwise, don't do anything implicit with an unaudited function. if (!fn->hasAttr<CFAuditedTransferAttr>()) return ACC_invalid; // Otherwise, it's +0 unless it follows the create convention. if (ento::coreFoundation::followsCreateRule(fn)) return ACC_invalid; // ACC_plusOne if we start accepting this return ACC_plusZero; } ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { return checkCallToMethod(e->getMethodDecl()); } ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { ObjCMethodDecl *method; if (e->isExplicitProperty()) method = e->getExplicitProperty()->getGetterMethodDecl(); else method = e->getImplicitPropertyGetter(); return checkCallToMethod(method); } ACCResult checkCallToMethod(ObjCMethodDecl *method) { if (!method) return ACC_invalid; // Check for message sends to functions returning CF types. We // just obey the Cocoa conventions with these, even though the // return type is CF. if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType())) return ACC_invalid; // If the method is explicitly marked not-retained, it's +0. if (method->hasAttr<CFReturnsNotRetainedAttr>()) return ACC_plusZero; // If the method is explicitly marked as returning retained, or its // selector follows a +1 Cocoa convention, treat it as +1. if (method->hasAttr<CFReturnsRetainedAttr>()) return ACC_plusOne; switch (method->getSelector().getMethodFamily()) { case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: return ACC_plusOne; default: // Otherwise, treat it as +0. return ACC_plusZero; } } }; } static bool KnownName(Sema &S, const char *name) { LookupResult R(S, &S.Context.Idents.get(name), SourceLocation(), Sema::LookupOrdinaryName); return S.LookupName(R, S.TUScope, false); } static void addFixitForObjCARCConversion(Sema &S, DiagnosticBuilder &DiagB, Sema::CheckedConversionKind CCK, SourceLocation afterLParen, QualType castType, Expr *castExpr, const char *bridgeKeyword, const char *CFBridgeName) { // We handle C-style and implicit casts here. switch (CCK) { case Sema::CCK_ImplicitConversion: case Sema::CCK_CStyleCast: break; case Sema::CCK_FunctionalCast: case Sema::CCK_OtherCast: return; } if (CFBridgeName) { Expr *castedE = castExpr; if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) castedE = CCE->getSubExpr(); castedE = castedE->IgnoreImpCasts(); SourceRange range = castedE->getSourceRange(); if (isa<ParenExpr>(castedE)) { DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), CFBridgeName)); } else { std::string namePlusParen = CFBridgeName; namePlusParen += "("; DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), namePlusParen)); DiagB.AddFixItHint(FixItHint::CreateInsertion( S.PP.getLocForEndOfToken(range.getEnd()), ")")); } return; } if (CCK == Sema::CCK_CStyleCast) { DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); } else { std::string castCode = "("; castCode += bridgeKeyword; castCode += castType.getAsString(); castCode += ")"; Expr *castedE = castExpr->IgnoreImpCasts(); SourceRange range = castedE->getSourceRange(); if (isa<ParenExpr>(castedE)) { DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), castCode)); } else { castCode += "("; DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), castCode)); DiagB.AddFixItHint(FixItHint::CreateInsertion( S.PP.getLocForEndOfToken(range.getEnd()), ")")); } } } static void diagnoseObjCARCConversion(Sema &S, SourceRange castRange, QualType castType, ARCConversionTypeClass castACTC, Expr *castExpr, ARCConversionTypeClass exprACTC, Sema::CheckedConversionKind CCK) { SourceLocation loc = (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); if (S.makeUnavailableInSystemHeader(loc, "converts between Objective-C and C pointers in -fobjc-arc")) return; QualType castExprType = castExpr->getType(); unsigned srcKind = 0; switch (exprACTC) { case ACTC_none: case ACTC_coreFoundation: case ACTC_voidPtr: srcKind = (castExprType->isPointerType() ? 1 : 0); break; case ACTC_retainable: srcKind = (castExprType->isBlockPointerType() ? 2 : 3); break; case ACTC_indirectRetainable: srcKind = 4; break; } // Check whether this could be fixed with a bridge cast. SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin()); SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; // Bridge from an ARC type to a CF type. if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { S.Diag(loc, diag::err_arc_cast_requires_bridge) << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit << 2 // of C pointer type << castExprType << unsigned(castType->isBlockPointerType()) // to ObjC|block type << castType << castRange << castExpr->getSourceRange(); bool br = KnownName(S, "CFBridgingRelease"); { DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, castType, castExpr, "__bridge ", 0); } { DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_transfer) << castExprType << br; addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, castType, castExpr, "__bridge_transfer ", br ? "CFBridgingRelease" : 0); } return; } // Bridge from a CF type to an ARC type. if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { bool br = KnownName(S, "CFBridgingRetain"); S.Diag(loc, diag::err_arc_cast_requires_bridge) << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type << castExprType << 2 // to C pointer type << castType << castRange << castExpr->getSourceRange(); { DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, castType, castExpr, "__bridge ", 0); } { DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_retained) << castType << br; addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, castType, castExpr, "__bridge_retained ", br ? "CFBridgingRetain" : 0); } return; } S.Diag(loc, diag::err_arc_mismatched_cast) << (CCK != Sema::CCK_ImplicitConversion) << srcKind << castExprType << castType << castRange << castExpr->getSourceRange(); } Sema::ARCConversionResult Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, Expr *&castExpr, CheckedConversionKind CCK) { QualType castExprType = castExpr->getType(); // For the purposes of the classification, we assume reference types // will bind to temporaries. QualType effCastType = castType; if (const ReferenceType *ref = castType->getAs<ReferenceType>()) effCastType = ref->getPointeeType(); ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); if (exprACTC == castACTC) { // check for viablity and report error if casting an rvalue to a // life-time qualifier. if ((castACTC == ACTC_retainable) && (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && (castType != castExprType)) { const Type *DT = castType.getTypePtr(); QualType QDT = castType; // We desugar some types but not others. We ignore those // that cannot happen in a cast; i.e. auto, and those which // should not be de-sugared; i.e typedef. if (const ParenType *PT = dyn_cast<ParenType>(DT)) QDT = PT->desugar(); else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) QDT = TP->desugar(); else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) QDT = AT->desugar(); if (QDT != castType && QDT.getObjCLifetime() != Qualifiers::OCL_None) { SourceLocation loc = (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); Diag(loc, diag::err_arc_nolifetime_behavior); } } return ACR_okay; } if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; // Allow all of these types to be cast to integer types (but not // vice-versa). if (castACTC == ACTC_none && castType->isIntegralType(Context)) return ACR_okay; // Allow casts between pointers to lifetime types (e.g., __strong id*) // and pointers to void (e.g., cv void *). Casting from void* to lifetime* // must be explicit. if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) return ACR_okay; if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && CCK != CCK_ImplicitConversion) return ACR_okay; switch (ARCCastChecker(Context, exprACTC, castACTC).Visit(castExpr)) { // For invalid casts, fall through. case ACC_invalid: break; // Do nothing for both bottom and +0. case ACC_bottom: case ACC_plusZero: return ACR_okay; // If the result is +1, consume it here. case ACC_plusOne: castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), CK_ARCConsumeObject, castExpr, 0, VK_RValue); ExprNeedsCleanups = true; return ACR_okay; } // If this is a non-implicit cast from id or block type to a // CoreFoundation type, delay complaining in case the cast is used // in an acceptable context. if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && CCK != CCK_ImplicitConversion) return ACR_unbridged; diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, exprACTC, CCK); return ACR_okay; } /// Given that we saw an expression with the ARCUnbridgedCastTy /// placeholder type, complain bitterly. void Sema::diagnoseARCUnbridgedCast(Expr *e) { // We expect the spurious ImplicitCastExpr to already have been stripped. assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); SourceRange castRange; QualType castType; CheckedConversionKind CCK; if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); castType = cast->getTypeAsWritten(); CCK = CCK_CStyleCast; } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); castType = cast->getTypeAsWritten(); CCK = CCK_OtherCast; } else { castType = cast->getType(); CCK = CCK_ImplicitConversion; } ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType.getNonReferenceType()); Expr *castExpr = realCast->getSubExpr(); assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, ACTC_retainable, CCK); } /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast /// type, remove the placeholder cast. Expr *Sema::stripARCUnbridgedCast(Expr *e) { assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { assert(uo->getOpcode() == UO_Extension); Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), sub->getValueKind(), sub->getObjectKind(), uo->getOperatorLoc()); } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { assert(!gse->isResultDependent()); unsigned n = gse->getNumAssocs(); SmallVector<Expr*, 4> subExprs(n); SmallVector<TypeSourceInfo*, 4> subTypes(n); for (unsigned i = 0; i != n; ++i) { subTypes[i] = gse->getAssocTypeSourceInfo(i); Expr *sub = gse->getAssocExpr(i); if (i == gse->getResultIndex()) sub = stripARCUnbridgedCast(sub); subExprs[i] = sub; } return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes.data(), subExprs.data(), n, gse->getDefaultLoc(), gse->getRParenLoc(), gse->containsUnexpandedParameterPack(), gse->getResultIndex()); } else { assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); return cast<ImplicitCastExpr>(e)->getSubExpr(); } } bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, QualType exprType) { QualType canCastType = Context.getCanonicalType(castType).getUnqualifiedType(); QualType canExprType = Context.getCanonicalType(exprType).getUnqualifiedType(); if (isa<ObjCObjectPointerType>(canCastType) && castType.getObjCLifetime() == Qualifiers::OCL_Weak && canExprType->isObjCObjectPointerType()) { if (const ObjCObjectPointerType *ObjT = canExprType->getAs<ObjCObjectPointerType>()) if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable()) return false; } return true; } /// Look for an ObjCReclaimReturnedObject cast and destroy it. static Expr *maybeUndoReclaimObject(Expr *e) { // For now, we just undo operands that are *immediately* reclaim // expressions, which prevents the vast majority of potential // problems here. To catch them all, we'd need to rebuild arbitrary // value-propagating subexpressions --- we can't reliably rebuild // in-place because of expression sharing. if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) if (ice->getCastKind() == CK_ARCReclaimReturnedObject) return ice->getSubExpr(); return e; } ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr) { ExprResult SubResult = UsualUnaryConversions(SubExpr); if (SubResult.isInvalid()) return ExprError(); SubExpr = SubResult.take(); QualType T = TSInfo->getType(); QualType FromType = SubExpr->getType(); CastKind CK; bool MustConsume = false; if (T->isDependentType() || SubExpr->isTypeDependent()) { // Okay: we'll build a dependent expression type. CK = CK_Dependent; } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { // Casting CF -> id CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast : CK_CPointerToObjCPointerCast); switch (Kind) { case OBC_Bridge: break; case OBC_BridgeRetained: { bool br = KnownName(*this, "CFBridgingRelease"); Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) << 2 << FromType << (T->isBlockPointerType()? 1 : 0) << T << SubExpr->getSourceRange() << Kind; Diag(BridgeKeywordLoc, diag::note_arc_bridge) << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) << FromType << br << FixItHint::CreateReplacement(BridgeKeywordLoc, br ? "CFBridgingRelease " : "__bridge_transfer "); Kind = OBC_Bridge; break; } case OBC_BridgeTransfer: // We must consume the Objective-C object produced by the cast. MustConsume = true; break; } } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { // Okay: id -> CF CK = CK_BitCast; switch (Kind) { case OBC_Bridge: // Reclaiming a value that's going to be __bridge-casted to CF // is very dangerous, so we don't do it. SubExpr = maybeUndoReclaimObject(SubExpr); break; case OBC_BridgeRetained: // Produce the object before casting it. SubExpr = ImplicitCastExpr::Create(Context, FromType, CK_ARCProduceObject, SubExpr, 0, VK_RValue); break; case OBC_BridgeTransfer: { bool br = KnownName(*this, "CFBridgingRetain"); Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) << (FromType->isBlockPointerType()? 1 : 0) << FromType << 2 << T << SubExpr->getSourceRange() << Kind; Diag(BridgeKeywordLoc, diag::note_arc_bridge) << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) << T << br << FixItHint::CreateReplacement(BridgeKeywordLoc, br ? "CFBridgingRetain " : "__bridge_retained"); Kind = OBC_Bridge; break; } } } else { Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) << FromType << T << Kind << SubExpr->getSourceRange() << TSInfo->getTypeLoc().getSourceRange(); return ExprError(); } Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, BridgeKeywordLoc, TSInfo, SubExpr); if (MustConsume) { ExprNeedsCleanups = true; Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 0, VK_RValue); } return Result; } ExprResult Sema::ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr) { TypeSourceInfo *TSInfo = 0; QualType T = GetTypeFromParser(Type, &TSInfo); if (!TSInfo) TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, SubExpr); }