config root man

Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp

//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for Objective-C expressions.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
#include "clang/Edit/Rewriters.h"
#include "clang/Edit/Commit.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/SmallString.h"
#include "clang/Lex/Preprocessor.h"

using namespace clang;
using namespace sema;
using llvm::makeArrayRef;

ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
                                        Expr **strings,
                                        unsigned NumStrings) {
  StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);

  // Most ObjC strings are formed out of a single piece.  However, we *can*
  // have strings formed out of multiple @ strings with multiple pptokens in
  // each one, e.g. @"foo" "bar" @"baz" "qux"   which need to be turned into one
  // StringLiteral for ObjCStringLiteral to hold onto.
  StringLiteral *S = Strings[0];

  // If we have a multi-part string, merge it all together.
  if (NumStrings != 1) {
    // Concatenate objc strings.
    SmallString<128> StrBuf;
    SmallVector<SourceLocation, 8> StrLocs;

    for (unsigned i = 0; i != NumStrings; ++i) {
      S = Strings[i];

      // ObjC strings can't be wide or UTF.
      if (!S->isAscii()) {
        Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
          << S->getSourceRange();
        return true;
      }

      // Append the string.
      StrBuf += S->getString();

      // Get the locations of the string tokens.
      StrLocs.append(S->tokloc_begin(), S->tokloc_end());
    }

    // Create the aggregate string with the appropriate content and location
    // information.
    S = StringLiteral::Create(Context, StrBuf,
                              StringLiteral::Ascii, /*Pascal=*/false,
                              Context.getPointerType(Context.CharTy),
                              &StrLocs[0], StrLocs.size());
  }
  
  return BuildObjCStringLiteral(AtLocs[0], S);
}

ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
  // Verify that this composite string is acceptable for ObjC strings.
  if (CheckObjCString(S))
    return true;

  // Initialize the constant string interface lazily. This assumes
  // the NSString interface is seen in this translation unit. Note: We
  // don't use NSConstantString, since the runtime team considers this
  // interface private (even though it appears in the header files).
  QualType Ty = Context.getObjCConstantStringInterface();
  if (!Ty.isNull()) {
    Ty = Context.getObjCObjectPointerType(Ty);
  } else if (getLangOpts().NoConstantCFStrings) {
    IdentifierInfo *NSIdent=0;
    std::string StringClass(getLangOpts().ObjCConstantStringClass);
    
    if (StringClass.empty())
      NSIdent = &Context.Idents.get("NSConstantString");
    else
      NSIdent = &Context.Idents.get(StringClass);
    
    NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
                                     LookupOrdinaryName);
    if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
      Context.setObjCConstantStringInterface(StrIF);
      Ty = Context.getObjCConstantStringInterface();
      Ty = Context.getObjCObjectPointerType(Ty);
    } else {
      // If there is no NSConstantString interface defined then treat this
      // as error and recover from it.
      Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
        << S->getSourceRange();
      Ty = Context.getObjCIdType();
    }
  } else {
    IdentifierInfo *NSIdent = &Context.Idents.get("NSString");
    NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
                                     LookupOrdinaryName);
    if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
      Context.setObjCConstantStringInterface(StrIF);
      Ty = Context.getObjCConstantStringInterface();
      Ty = Context.getObjCObjectPointerType(Ty);
    } else {
      // If there is no NSString interface defined, implicitly declare
      // a @class NSString; and use that instead. This is to make sure
      // type of an NSString literal is represented correctly, instead of
      // being an 'id' type.
      Ty = Context.getObjCNSStringType();
      if (Ty.isNull()) {
        ObjCInterfaceDecl *NSStringIDecl = 
          ObjCInterfaceDecl::Create (Context, 
                                     Context.getTranslationUnitDecl(), 
                                     SourceLocation(), NSIdent, 
                                     0, SourceLocation());
        Ty = Context.getObjCInterfaceType(NSStringIDecl);
        Context.setObjCNSStringType(Ty);
      }
      Ty = Context.getObjCObjectPointerType(Ty);
    }
  }

  return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
}

/// \brief Retrieve the NSNumber factory method that should be used to create
/// an Objective-C literal for the given type.
static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
                                                QualType T, QualType ReturnType,
                                                SourceRange Range) {
  llvm::Optional<NSAPI::NSNumberLiteralMethodKind> Kind 
    = S.NSAPIObj->getNSNumberFactoryMethodKind(T);
  
  if (!Kind) {
    S.Diag(Loc, diag::err_invalid_nsnumber_type)
      << T << Range;
    return 0;
  }
    
  // If we already looked up this method, we're done.
  if (S.NSNumberLiteralMethods[*Kind])
    return S.NSNumberLiteralMethods[*Kind];
  
  Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
                                                        /*Instance=*/false);
  
  // Look for the appropriate method within NSNumber.
  ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);;
  if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
    TypeSourceInfo *ResultTInfo = 0;
    Method = ObjCMethodDecl::Create(S.Context, SourceLocation(), SourceLocation(), Sel,
                           ReturnType,
                           ResultTInfo,
                           S.Context.getTranslationUnitDecl(),
                           false /*Instance*/, false/*isVariadic*/,
                           /*isSynthesized=*/false,
                           /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
                           ObjCMethodDecl::Required,
                           false);
    ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
                                             SourceLocation(), SourceLocation(),
                                             &S.Context.Idents.get("value"),
                                             T, /*TInfo=*/0, SC_None, SC_None, 0);
    Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>());
  }

  if (!Method) {
    S.Diag(Loc, diag::err_undeclared_nsnumber_method) << Sel;
    return 0;
  }
  
  // Make sure the return type is reasonable.
  if (!Method->getResultType()->isObjCObjectPointerType()) {
    S.Diag(Loc, diag::err_objc_literal_method_sig)
      << Sel;
    S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
      << Method->getResultType();
    return 0;
  }

  // Note: if the parameter type is out-of-line, we'll catch it later in the
  // implicit conversion.
  
  S.NSNumberLiteralMethods[*Kind] = Method;
  return Method;
}

/// BuildObjCNumericLiteral - builds an ObjCNumericLiteral AST node for the
/// numeric literal expression. Type of the expression will be "NSNumber *"
/// or "id" if NSNumber is unavailable.
ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
  // Look up the NSNumber class, if we haven't done so already.
  if (!NSNumberDecl) {
    NamedDecl *IF = LookupSingleName(TUScope,
                                NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber),
                                AtLoc, LookupOrdinaryName);
    NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
    
    if (!NSNumberDecl && getLangOpts().DebuggerObjCLiteral)
      NSNumberDecl =  ObjCInterfaceDecl::Create (Context,
                        Context.getTranslationUnitDecl(),
                        SourceLocation(), 
                        NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber),
                        0, SourceLocation());
    if (!NSNumberDecl) {
      Diag(AtLoc, diag::err_undeclared_nsnumber);
      return ExprError();
    }
  }
  
  // Determine the type of the literal.
  QualType NumberType = Number->getType();
  if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
    // In C, character literals have type 'int'. That's not the type we want
    // to use to determine the Objective-c literal kind.
    switch (Char->getKind()) {
    case CharacterLiteral::Ascii:
      NumberType = Context.CharTy;
      break;
      
    case CharacterLiteral::Wide:
      NumberType = Context.getWCharType();
      break;
      
    case CharacterLiteral::UTF16:
      NumberType = Context.Char16Ty;
      break;
      
    case CharacterLiteral::UTF32:
      NumberType = Context.Char32Ty;
      break;
    }
  }
  
  ObjCMethodDecl *Method = 0;
  // Look for the appropriate method within NSNumber.
  // Construct the literal.
  QualType Ty
    = Context.getObjCObjectPointerType(
                                    Context.getObjCInterfaceType(NSNumberDecl));
  Method  = getNSNumberFactoryMethod(*this, AtLoc, 
                                     NumberType, Ty, 
                                     Number->getSourceRange());

  if (!Method)
    return ExprError();

  // Convert the number to the type that the parameter expects.
  QualType ElementT = Method->param_begin()[0]->getType();
  ExprResult ConvertedNumber = PerformImplicitConversion(Number, ElementT,
                                                         AA_Sending);
  if (ConvertedNumber.isInvalid())
    return ExprError();
  Number = ConvertedNumber.get();
  
  return MaybeBindToTemporary(
           new (Context) ObjCNumericLiteral(Number, Ty, Method, AtLoc));
}

ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 
                                      SourceLocation ValueLoc,
                                      bool Value) {
  ExprResult Inner;
  if (getLangOpts().CPlusPlus) {
    Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
  } else {
    // C doesn't actually have a way to represent literal values of type 
    // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
    Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
    Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 
                              CK_IntegralToBoolean);
  }
  
  return BuildObjCNumericLiteral(AtLoc, Inner.get());
}

/// \brief Check that the given expression is a valid element of an Objective-C
/// collection literal.
static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 
                                                    QualType T) {  
  // If the expression is type-dependent, there's nothing for us to do.
  if (Element->isTypeDependent())
    return Element;

  ExprResult Result = S.CheckPlaceholderExpr(Element);
  if (Result.isInvalid())
    return ExprError();
  Element = Result.get();

  // In C++, check for an implicit conversion to an Objective-C object pointer 
  // type.
  if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
    InitializedEntity Entity
      = InitializedEntity::InitializeParameter(S.Context, T, /*Consumed=*/false);
    InitializationKind Kind
      = InitializationKind::CreateCopy(Element->getLocStart(), SourceLocation());
    InitializationSequence Seq(S, Entity, Kind, &Element, 1);
    if (!Seq.Failed())
      return Seq.Perform(S, Entity, Kind, MultiExprArg(S, &Element, 1));
  }

  Expr *OrigElement = Element;

  // Perform lvalue-to-rvalue conversion.
  Result = S.DefaultLvalueConversion(Element);
  if (Result.isInvalid())
    return ExprError();
  Element = Result.get();  

  // Make sure that we have an Objective-C pointer type or block.
  if (!Element->getType()->isObjCObjectPointerType() &&
      !Element->getType()->isBlockPointerType()) {
    bool Recovered = false;
    
    // If this is potentially an Objective-C numeric literal, add the '@'.
    if (isa<IntegerLiteral>(OrigElement) || 
        isa<CharacterLiteral>(OrigElement) ||
        isa<FloatingLiteral>(OrigElement) ||
        isa<ObjCBoolLiteralExpr>(OrigElement) ||
        isa<CXXBoolLiteralExpr>(OrigElement)) {
      if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
        int Which = isa<CharacterLiteral>(OrigElement) ? 1
                  : (isa<CXXBoolLiteralExpr>(OrigElement) ||
                     isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
                  : 3;
        
        S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
          << Which << OrigElement->getSourceRange()
          << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
        
        Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(),
                                           OrigElement);
        if (Result.isInvalid())
          return ExprError();
        
        Element = Result.get();
        Recovered = true;
      }
    }
    // If this is potentially an Objective-C string literal, add the '@'.
    else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
      if (String->isAscii()) {
        S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
          << 0 << OrigElement->getSourceRange()
          << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");

        Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String);
        if (Result.isInvalid())
          return ExprError();
        
        Element = Result.get();
        Recovered = true;
      }
    }
    
    if (!Recovered) {
      S.Diag(Element->getLocStart(), diag::err_invalid_collection_element)
        << Element->getType();
      return ExprError();
    }
  }
  
  // Make sure that the element has the type that the container factory 
  // function expects. 
  return S.PerformCopyInitialization(
           InitializedEntity::InitializeParameter(S.Context, T, 
                                                  /*Consumed=*/false),
           Element->getLocStart(), Element);
}

ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
                                        Expr *IndexExpr,
                                        ObjCMethodDecl *getterMethod,
                                        ObjCMethodDecl *setterMethod) {
  // Feature support is for modern abi.
  if (!LangOpts.ObjCNonFragileABI)
    return ExprError();
  // If the expression is type-dependent, there's nothing for us to do.
  assert ((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&
          "base or index cannot have dependent type here");
  ExprResult Result = CheckPlaceholderExpr(IndexExpr);
  if (Result.isInvalid())
    return ExprError();
  IndexExpr = Result.get();
  
  // Perform lvalue-to-rvalue conversion.
  Result = DefaultLvalueConversion(BaseExpr);
  if (Result.isInvalid())
    return ExprError();
  BaseExpr = Result.get();
  return Owned(ObjCSubscriptRefExpr::Create(Context, 
                                            BaseExpr,
                                            IndexExpr,
                                            Context.PseudoObjectTy,
                                            getterMethod,
                                            setterMethod, RB));
  
}

ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
  // Look up the NSArray class, if we haven't done so already.
  if (!NSArrayDecl) {
    NamedDecl *IF = LookupSingleName(TUScope,
                                 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
                                 SR.getBegin(),
                                 LookupOrdinaryName);
    NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
    if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral)
      NSArrayDecl =  ObjCInterfaceDecl::Create (Context,
                            Context.getTranslationUnitDecl(),
                            SourceLocation(),
                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
                            0, SourceLocation());

    if (!NSArrayDecl) {
      Diag(SR.getBegin(), diag::err_undeclared_nsarray);
      return ExprError();
    }
  }
  
  // Find the arrayWithObjects:count: method, if we haven't done so already.
  QualType IdT = Context.getObjCIdType();
  if (!ArrayWithObjectsMethod) {
    Selector
      Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
    ArrayWithObjectsMethod = NSArrayDecl->lookupClassMethod(Sel);
    if (!ArrayWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) {
      TypeSourceInfo *ResultTInfo = 0;
      ArrayWithObjectsMethod =
                         ObjCMethodDecl::Create(Context,
                           SourceLocation(), SourceLocation(), Sel,
                           IdT,
                           ResultTInfo,
                           Context.getTranslationUnitDecl(),
                           false /*Instance*/, false/*isVariadic*/,
                           /*isSynthesized=*/false,
                           /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
                           ObjCMethodDecl::Required,
                           false);
      SmallVector<ParmVarDecl *, 2> Params;
      ParmVarDecl *objects = ParmVarDecl::Create(Context, ArrayWithObjectsMethod,
                                                SourceLocation(), SourceLocation(),
                                                &Context.Idents.get("objects"),
                                                Context.getPointerType(IdT),
                                                /*TInfo=*/0,
                                                SC_None,
                                                SC_None,
                                                0);
      Params.push_back(objects);
      ParmVarDecl *cnt = ParmVarDecl::Create(Context, ArrayWithObjectsMethod,
                                                SourceLocation(), SourceLocation(),
                                                &Context.Idents.get("cnt"),
                                                Context.UnsignedLongTy,
                                                /*TInfo=*/0,
                                                SC_None,
                                                SC_None,
                                                0);
      Params.push_back(cnt);
      ArrayWithObjectsMethod->setMethodParams(Context, Params,
                                              ArrayRef<SourceLocation>());


    }

    if (!ArrayWithObjectsMethod) {
      Diag(SR.getBegin(), diag::err_undeclared_arraywithobjects) << Sel;
      return ExprError();
    }
  }
  
  // Make sure the return type is reasonable.
  if (!ArrayWithObjectsMethod->getResultType()->isObjCObjectPointerType()) {
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
      << ArrayWithObjectsMethod->getSelector();
    Diag(ArrayWithObjectsMethod->getLocation(),
         diag::note_objc_literal_method_return)
      << ArrayWithObjectsMethod->getResultType();
    return ExprError();
  }

  // Dig out the type that all elements should be converted to.
  QualType T = ArrayWithObjectsMethod->param_begin()[0]->getType();
  const PointerType *PtrT = T->getAs<PointerType>();
  if (!PtrT || 
      !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
      << ArrayWithObjectsMethod->getSelector();
    Diag(ArrayWithObjectsMethod->param_begin()[0]->getLocation(),
         diag::note_objc_literal_method_param)
      << 0 << T 
      << Context.getPointerType(IdT.withConst());
    return ExprError();
  }
  T = PtrT->getPointeeType();
  
  // Check that the 'count' parameter is integral.
  if (!ArrayWithObjectsMethod->param_begin()[1]->getType()->isIntegerType()) {
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
      << ArrayWithObjectsMethod->getSelector();
    Diag(ArrayWithObjectsMethod->param_begin()[1]->getLocation(),
         diag::note_objc_literal_method_param)
      << 1 
      << ArrayWithObjectsMethod->param_begin()[1]->getType()
      << "integral";
    return ExprError();
  }

  // Check that each of the elements provided is valid in a collection literal,
  // performing conversions as necessary.
  Expr **ElementsBuffer = Elements.get();
  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
    ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
                                                             ElementsBuffer[I],
                                                             T);
    if (Converted.isInvalid())
      return ExprError();
    
    ElementsBuffer[I] = Converted.get();
  }
    
  QualType Ty 
    = Context.getObjCObjectPointerType(
                                    Context.getObjCInterfaceType(NSArrayDecl));

  return MaybeBindToTemporary(
           ObjCArrayLiteral::Create(Context, 
                                    llvm::makeArrayRef(Elements.get(), 
                                                       Elements.size()), 
                                    Ty, ArrayWithObjectsMethod, SR));
}

ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 
                                            ObjCDictionaryElement *Elements,
                                            unsigned NumElements) {
  // Look up the NSDictionary class, if we haven't done so already.
  if (!NSDictionaryDecl) {
    NamedDecl *IF = LookupSingleName(TUScope,
                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
                            SR.getBegin(), LookupOrdinaryName);
    NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
    if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral)
      NSDictionaryDecl =  ObjCInterfaceDecl::Create (Context,
                            Context.getTranslationUnitDecl(),
                            SourceLocation(),
                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
                            0, SourceLocation());

    if (!NSDictionaryDecl) {
      Diag(SR.getBegin(), diag::err_undeclared_nsdictionary);
      return ExprError();    
    }
  }
  
  // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
  // so already.
  QualType IdT = Context.getObjCIdType();
  if (!DictionaryWithObjectsMethod) {
    Selector Sel = NSAPIObj->getNSDictionarySelector(
                                    NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
    DictionaryWithObjectsMethod = NSDictionaryDecl->lookupClassMethod(Sel);
    if (!DictionaryWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) {
      DictionaryWithObjectsMethod = 
                         ObjCMethodDecl::Create(Context,  
                           SourceLocation(), SourceLocation(), Sel,
                           IdT,
                           0 /*TypeSourceInfo */,
                           Context.getTranslationUnitDecl(),
                           false /*Instance*/, false/*isVariadic*/,
                           /*isSynthesized=*/false,
                           /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
                           ObjCMethodDecl::Required,
                           false);
      SmallVector<ParmVarDecl *, 3> Params;
      ParmVarDecl *objects = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod,
                                                SourceLocation(), SourceLocation(),
                                                &Context.Idents.get("objects"),
                                                Context.getPointerType(IdT),
                                                /*TInfo=*/0,
                                                SC_None,
                                                SC_None,
                                                0);
      Params.push_back(objects);
      ParmVarDecl *keys = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod,
                                                SourceLocation(), SourceLocation(),
                                                &Context.Idents.get("keys"),
                                                Context.getPointerType(IdT),
                                                /*TInfo=*/0,
                                                SC_None,
                                                SC_None,
                                                0);
      Params.push_back(keys);
      ParmVarDecl *cnt = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod,
                                                SourceLocation(), SourceLocation(),
                                                &Context.Idents.get("cnt"),
                                                Context.UnsignedLongTy,
                                                /*TInfo=*/0,
                                                SC_None,
                                                SC_None,
                                                0);
      Params.push_back(cnt);
      DictionaryWithObjectsMethod->setMethodParams(Context, Params, 
                                                   ArrayRef<SourceLocation>());
    }

    if (!DictionaryWithObjectsMethod) {
      Diag(SR.getBegin(), diag::err_undeclared_dictwithobjects) << Sel;
      return ExprError();    
    }
  }
  
  // Make sure the return type is reasonable.
  if (!DictionaryWithObjectsMethod->getResultType()->isObjCObjectPointerType()){
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
    << DictionaryWithObjectsMethod->getSelector();
    Diag(DictionaryWithObjectsMethod->getLocation(),
         diag::note_objc_literal_method_return)
    << DictionaryWithObjectsMethod->getResultType();
    return ExprError();
  }

  // Dig out the type that all values should be converted to.
  QualType ValueT =  DictionaryWithObjectsMethod->param_begin()[0]->getType();
  const PointerType *PtrValue = ValueT->getAs<PointerType>();
  if (!PtrValue || 
      !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
      << DictionaryWithObjectsMethod->getSelector();
    Diag(DictionaryWithObjectsMethod->param_begin()[0]->getLocation(),
         diag::note_objc_literal_method_param)
      << 0 << ValueT
      << Context.getPointerType(IdT.withConst());
    return ExprError();
  }
  ValueT = PtrValue->getPointeeType();

  // Dig out the type that all keys should be converted to.
  QualType KeyT = DictionaryWithObjectsMethod->param_begin()[1]->getType();
  const PointerType *PtrKey = KeyT->getAs<PointerType>();
  if (!PtrKey || 
      !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
                                      IdT)) {
    bool err = true;
    if (PtrKey) {
      if (QIDNSCopying.isNull()) {
        // key argument of selector is id<NSCopying>?
        if (ObjCProtocolDecl *NSCopyingPDecl =
            LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
          ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
          QIDNSCopying = 
            Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
                                      (ObjCProtocolDecl**) PQ,1);
          QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
        }
      }
      if (!QIDNSCopying.isNull())
        err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
                                              QIDNSCopying);
    }
    
    if (err) {
      Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
        << DictionaryWithObjectsMethod->getSelector();
      Diag(DictionaryWithObjectsMethod->param_begin()[1]->getLocation(),
           diag::note_objc_literal_method_param)
        << 1 << KeyT
        << Context.getPointerType(IdT.withConst());
      return ExprError();
    }
  }
  KeyT = PtrKey->getPointeeType();

  // Check that the 'count' parameter is integral.
  if (!DictionaryWithObjectsMethod->param_begin()[2]->getType()
                                                            ->isIntegerType()) {
    Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
      << DictionaryWithObjectsMethod->getSelector();
    Diag(DictionaryWithObjectsMethod->param_begin()[2]->getLocation(),
         diag::note_objc_literal_method_param)
      << 2
      << DictionaryWithObjectsMethod->param_begin()[2]->getType()
      << "integral";
    return ExprError();
  }

  // Check that each of the keys and values provided is valid in a collection 
  // literal, performing conversions as necessary.
  bool HasPackExpansions = false;
  for (unsigned I = 0, N = NumElements; I != N; ++I) {
    // Check the key.
    ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, 
                                                       KeyT);
    if (Key.isInvalid())
      return ExprError();
    
    // Check the value.
    ExprResult Value
      = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT);
    if (Value.isInvalid())
      return ExprError();
    
    Elements[I].Key = Key.get();
    Elements[I].Value = Value.get();
    
    if (Elements[I].EllipsisLoc.isInvalid())
      continue;
    
    if (!Elements[I].Key->containsUnexpandedParameterPack() &&
        !Elements[I].Value->containsUnexpandedParameterPack()) {
      Diag(Elements[I].EllipsisLoc, 
           diag::err_pack_expansion_without_parameter_packs)
        << SourceRange(Elements[I].Key->getLocStart(),
                       Elements[I].Value->getLocEnd());
      return ExprError();
    }
    
    HasPackExpansions = true;
  }

  
  QualType Ty
    = Context.getObjCObjectPointerType(
                                Context.getObjCInterfaceType(NSDictionaryDecl));  
  return MaybeBindToTemporary(
           ObjCDictionaryLiteral::Create(Context, 
                                         llvm::makeArrayRef(Elements, 
                                                            NumElements),
                                         HasPackExpansions,
                                         Ty, 
                                         DictionaryWithObjectsMethod, SR));
}

ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
                                      TypeSourceInfo *EncodedTypeInfo,
                                      SourceLocation RParenLoc) {
  QualType EncodedType = EncodedTypeInfo->getType();
  QualType StrTy;
  if (EncodedType->isDependentType())
    StrTy = Context.DependentTy;
  else {
    if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
        !EncodedType->isVoidType()) // void is handled too.
      if (RequireCompleteType(AtLoc, EncodedType,
                         PDiag(diag::err_incomplete_type_objc_at_encode)
                             << EncodedTypeInfo->getTypeLoc().getSourceRange()))
        return ExprError();

    std::string Str;
    Context.getObjCEncodingForType(EncodedType, Str);

    // The type of @encode is the same as the type of the corresponding string,
    // which is an array type.
    StrTy = Context.CharTy;
    // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
    if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
      StrTy.addConst();
    StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
                                         ArrayType::Normal, 0);
  }

  return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
}

ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
                                           SourceLocation EncodeLoc,
                                           SourceLocation LParenLoc,
                                           ParsedType ty,
                                           SourceLocation RParenLoc) {
  // FIXME: Preserve type source info ?
  TypeSourceInfo *TInfo;
  QualType EncodedType = GetTypeFromParser(ty, &TInfo);
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
                                             PP.getLocForEndOfToken(LParenLoc));

  return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
}

ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
                                             SourceLocation AtLoc,
                                             SourceLocation SelLoc,
                                             SourceLocation LParenLoc,
                                             SourceLocation RParenLoc) {
  ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
                             SourceRange(LParenLoc, RParenLoc), false, false);
  if (!Method)
    Method = LookupFactoryMethodInGlobalPool(Sel,
                                          SourceRange(LParenLoc, RParenLoc));
  if (!Method)
    Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
  
  if (!Method ||
      Method->getImplementationControl() != ObjCMethodDecl::Optional) {
    llvm::DenseMap<Selector, SourceLocation>::iterator Pos
      = ReferencedSelectors.find(Sel);
    if (Pos == ReferencedSelectors.end())
      ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
  }

  // In ARC, forbid the user from using @selector for 
  // retain/release/autorelease/dealloc/retainCount.
  if (getLangOpts().ObjCAutoRefCount) {
    switch (Sel.getMethodFamily()) {
    case OMF_retain:
    case OMF_release:
    case OMF_autorelease:
    case OMF_retainCount:
    case OMF_dealloc:
      Diag(AtLoc, diag::err_arc_illegal_selector) << 
        Sel << SourceRange(LParenLoc, RParenLoc);
      break;

    case OMF_None:
    case OMF_alloc:
    case OMF_copy:
    case OMF_finalize:
    case OMF_init:
    case OMF_mutableCopy:
    case OMF_new:
    case OMF_self:
    case OMF_performSelector:
      break;
    }
  }
  QualType Ty = Context.getObjCSelType();
  return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
}

ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
                                             SourceLocation AtLoc,
                                             SourceLocation ProtoLoc,
                                             SourceLocation LParenLoc,
                                             SourceLocation RParenLoc) {
  ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc);
  if (!PDecl) {
    Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
    return true;
  }

  QualType Ty = Context.getObjCProtoType();
  if (Ty.isNull())
    return true;
  Ty = Context.getObjCObjectPointerType(Ty);
  return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc);
}

/// Try to capture an implicit reference to 'self'.
ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
  DeclContext *DC = getFunctionLevelDeclContext();

  // If we're not in an ObjC method, error out.  Note that, unlike the
  // C++ case, we don't require an instance method --- class methods
  // still have a 'self', and we really do still need to capture it!
  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
  if (!method)
    return 0;

  tryCaptureVariable(method->getSelfDecl(), Loc);

  return method;
}

static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
  if (T == Context.getObjCInstanceType())
    return Context.getObjCIdType();
  
  return T;
}

QualType Sema::getMessageSendResultType(QualType ReceiverType,
                                        ObjCMethodDecl *Method,
                                    bool isClassMessage, bool isSuperMessage) {
  assert(Method && "Must have a method");
  if (!Method->hasRelatedResultType())
    return Method->getSendResultType();
  
  // If a method has a related return type:
  //   - if the method found is an instance method, but the message send
  //     was a class message send, T is the declared return type of the method
  //     found
  if (Method->isInstanceMethod() && isClassMessage)
    return stripObjCInstanceType(Context, Method->getSendResultType());
  
  //   - if the receiver is super, T is a pointer to the class of the 
  //     enclosing method definition
  if (isSuperMessage) {
    if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
      if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
        return Context.getObjCObjectPointerType(
                                        Context.getObjCInterfaceType(Class));
  }
    
  //   - if the receiver is the name of a class U, T is a pointer to U
  if (ReceiverType->getAs<ObjCInterfaceType>() ||
      ReceiverType->isObjCQualifiedInterfaceType())
    return Context.getObjCObjectPointerType(ReceiverType);
  //   - if the receiver is of type Class or qualified Class type, 
  //     T is the declared return type of the method.
  if (ReceiverType->isObjCClassType() ||
      ReceiverType->isObjCQualifiedClassType())
    return stripObjCInstanceType(Context, Method->getSendResultType());
  
  //   - if the receiver is id, qualified id, Class, or qualified Class, T
  //     is the receiver type, otherwise
  //   - T is the type of the receiver expression.
  return ReceiverType;
}

void Sema::EmitRelatedResultTypeNote(const Expr *E) {
  E = E->IgnoreParenImpCasts();
  const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
  if (!MsgSend)
    return;
  
  const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
  if (!Method)
    return;
  
  if (!Method->hasRelatedResultType())
    return;
  
  if (Context.hasSameUnqualifiedType(Method->getResultType()
                                                        .getNonReferenceType(),
                                     MsgSend->getType()))
    return;
  
  if (!Context.hasSameUnqualifiedType(Method->getResultType(), 
                                      Context.getObjCInstanceType()))
    return;
  
  Diag(Method->getLocation(), diag::note_related_result_type_inferred)
    << Method->isInstanceMethod() << Method->getSelector()
    << MsgSend->getType();
}

bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
                                     Expr **Args, unsigned NumArgs,
                                     Selector Sel, ObjCMethodDecl *Method,
                                     bool isClassMessage, bool isSuperMessage,
                                     SourceLocation lbrac, SourceLocation rbrac,
                                     QualType &ReturnType, ExprValueKind &VK) {
  if (!Method) {
    // Apply default argument promotion as for (C99 6.5.2.2p6).
    for (unsigned i = 0; i != NumArgs; i++) {
      if (Args[i]->isTypeDependent())
        continue;

      ExprResult Result = DefaultArgumentPromotion(Args[i]);
      if (Result.isInvalid())
        return true;
      Args[i] = Result.take();
    }

    unsigned DiagID;
    if (getLangOpts().ObjCAutoRefCount)
      DiagID = diag::err_arc_method_not_found;
    else
      DiagID = isClassMessage ? diag::warn_class_method_not_found
                              : diag::warn_inst_method_not_found;
    if (!getLangOpts().DebuggerSupport)
      Diag(lbrac, DiagID)
        << Sel << isClassMessage << SourceRange(lbrac, rbrac);

    // In debuggers, we want to use __unknown_anytype for these
    // results so that clients can cast them.
    if (getLangOpts().DebuggerSupport) {
      ReturnType = Context.UnknownAnyTy;
    } else {
      ReturnType = Context.getObjCIdType();
    }
    VK = VK_RValue;
    return false;
  }

  ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 
                                        isSuperMessage);
  VK = Expr::getValueKindForType(Method->getResultType());

  unsigned NumNamedArgs = Sel.getNumArgs();
  // Method might have more arguments than selector indicates. This is due
  // to addition of c-style arguments in method.
  if (Method->param_size() > Sel.getNumArgs())
    NumNamedArgs = Method->param_size();
  // FIXME. This need be cleaned up.
  if (NumArgs < NumNamedArgs) {
    Diag(lbrac, diag::err_typecheck_call_too_few_args)
      << 2 << NumNamedArgs << NumArgs;
    return false;
  }

  bool IsError = false;
  for (unsigned i = 0; i < NumNamedArgs; i++) {
    // We can't do any type-checking on a type-dependent argument.
    if (Args[i]->isTypeDependent())
      continue;

    Expr *argExpr = Args[i];

    ParmVarDecl *param = Method->param_begin()[i];
    assert(argExpr && "CheckMessageArgumentTypes(): missing expression");

    // Strip the unbridged-cast placeholder expression off unless it's
    // a consumed argument.
    if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
        !param->hasAttr<CFConsumedAttr>())
      argExpr = stripARCUnbridgedCast(argExpr);

    if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
                            param->getType(),
                            PDiag(diag::err_call_incomplete_argument)
                              << argExpr->getSourceRange()))
      return true;

    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
                                                                      param);
    ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
    if (ArgE.isInvalid())
      IsError = true;
    else
      Args[i] = ArgE.takeAs<Expr>();
  }

  // Promote additional arguments to variadic methods.
  if (Method->isVariadic()) {
    for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
      if (Args[i]->isTypeDependent())
        continue;

      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
      IsError |= Arg.isInvalid();
      Args[i] = Arg.take();
    }
  } else {
    // Check for extra arguments to non-variadic methods.
    if (NumArgs != NumNamedArgs) {
      Diag(Args[NumNamedArgs]->getLocStart(),
           diag::err_typecheck_call_too_many_args)
        << 2 /*method*/ << NumNamedArgs << NumArgs
        << Method->getSourceRange()
        << SourceRange(Args[NumNamedArgs]->getLocStart(),
                       Args[NumArgs-1]->getLocEnd());
    }
  }

  DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);

  // Do additional checkings on method.
  IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs);

  return IsError;
}

bool Sema::isSelfExpr(Expr *receiver) {
  // 'self' is objc 'self' in an objc method only.
  ObjCMethodDecl *method =
    dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
  if (!method) return false;

  receiver = receiver->IgnoreParenLValueCasts();
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
    if (DRE->getDecl() == method->getSelfDecl())
      return true;
  return false;
}

// Helper method for ActOnClassMethod/ActOnInstanceMethod.
// Will search "local" class/category implementations for a method decl.
// If failed, then we search in class's root for an instance method.
// Returns 0 if no method is found.
ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel,
                                          ObjCInterfaceDecl *ClassDecl) {
  ObjCMethodDecl *Method = 0;
  // lookup in class and all superclasses
  while (ClassDecl && !Method) {
    if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
      Method = ImpDecl->getClassMethod(Sel);

    // Look through local category implementations associated with the class.
    if (!Method)
      Method = ClassDecl->getCategoryClassMethod(Sel);

    // Before we give up, check if the selector is an instance method.
    // But only in the root. This matches gcc's behaviour and what the
    // runtime expects.
    if (!Method && !ClassDecl->getSuperClass()) {
      Method = ClassDecl->lookupInstanceMethod(Sel);
      // Look through local category implementations associated
      // with the root class.
      if (!Method)
        Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
    }

    ClassDecl = ClassDecl->getSuperClass();
  }
  return Method;
}

ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel,
                                              ObjCInterfaceDecl *ClassDecl) {
  if (!ClassDecl->hasDefinition())
    return 0;

  ObjCMethodDecl *Method = 0;
  while (ClassDecl && !Method) {
    // If we have implementations in scope, check "private" methods.
    if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
      Method = ImpDecl->getInstanceMethod(Sel);

    // Look through local category implementations associated with the class.
    if (!Method)
      Method = ClassDecl->getCategoryInstanceMethod(Sel);
    ClassDecl = ClassDecl->getSuperClass();
  }
  return Method;
}

/// LookupMethodInType - Look up a method in an ObjCObjectType.
ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
                                               bool isInstance) {
  const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
  if (ObjCInterfaceDecl *iface = objType->getInterface()) {
    // Look it up in the main interface (and categories, etc.)
    if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
      return method;

    // Okay, look for "private" methods declared in any
    // @implementations we've seen.
    if (isInstance) {
      if (ObjCMethodDecl *method = LookupPrivateInstanceMethod(sel, iface))
        return method;
    } else {
      if (ObjCMethodDecl *method = LookupPrivateClassMethod(sel, iface))
        return method;
    }
  }

  // Check qualifiers.
  for (ObjCObjectType::qual_iterator
         i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i)
    if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance))
      return method;

  return 0;
}

/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 
/// list of a qualified objective pointer type.
ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
                                              const ObjCObjectPointerType *OPT,
                                              bool Instance)
{
  ObjCMethodDecl *MD = 0;
  for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
       E = OPT->qual_end(); I != E; ++I) {
    ObjCProtocolDecl *PROTO = (*I);
    if ((MD = PROTO->lookupMethod(Sel, Instance))) {
      return MD;
    }
  }
  return 0;
}

/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
/// objective C interface.  This is a property reference expression.
ExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
                          Expr *BaseExpr, SourceLocation OpLoc,
                          DeclarationName MemberName,
                          SourceLocation MemberLoc,
                          SourceLocation SuperLoc, QualType SuperType,
                          bool Super) {
  const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
  ObjCInterfaceDecl *IFace = IFaceT->getDecl();
  
  if (MemberName.getNameKind() != DeclarationName::Identifier) {
    Diag(MemberLoc, diag::err_invalid_property_name)
      << MemberName << QualType(OPT, 0);
    return ExprError();
  }
  
  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
  SourceRange BaseRange = Super? SourceRange(SuperLoc)
                               : BaseExpr->getSourceRange();
  if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 
                          PDiag(diag::err_property_not_found_forward_class)
                            << MemberName << BaseRange))
    return ExprError();
  
  // Search for a declared property first.
  if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
    // Check whether we can reference this property.
    if (DiagnoseUseOfDecl(PD, MemberLoc))
      return ExprError();
             
    if (Super)
      return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
                                                     VK_LValue, OK_ObjCProperty,
                                                     MemberLoc, 
                                                     SuperLoc, SuperType));
    else
      return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
                                                     VK_LValue, OK_ObjCProperty,
                                                     MemberLoc, BaseExpr));
  }
  // Check protocols on qualified interfaces.
  for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
       E = OPT->qual_end(); I != E; ++I)
    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
      // Check whether we can reference this property.
      if (DiagnoseUseOfDecl(PD, MemberLoc))
        return ExprError();
      
      if (Super)
        return Owned(new (Context) ObjCPropertyRefExpr(PD,
                                                       Context.PseudoObjectTy,
                                                       VK_LValue,
                                                       OK_ObjCProperty,
                                                       MemberLoc, 
                                                       SuperLoc, SuperType));
      else
        return Owned(new (Context) ObjCPropertyRefExpr(PD,
                                                       Context.PseudoObjectTy,
                                                       VK_LValue,
                                                       OK_ObjCProperty,
                                                       MemberLoc,
                                                       BaseExpr));
    }
  // If that failed, look for an "implicit" property by seeing if the nullary
  // selector is implemented.

  // FIXME: The logic for looking up nullary and unary selectors should be
  // shared with the code in ActOnInstanceMessage.

  Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
  ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
  
  // May be founf in property's qualified list.
  if (!Getter)
    Getter = LookupMethodInQualifiedType(Sel, OPT, true);

  // If this reference is in an @implementation, check for 'private' methods.
  if (!Getter)
    Getter = IFace->lookupPrivateMethod(Sel);

  // Look through local category implementations associated with the class.
  if (!Getter)
    Getter = IFace->getCategoryInstanceMethod(Sel);
  if (Getter) {
    // Check if we can reference this property.
    if (DiagnoseUseOfDecl(Getter, MemberLoc))
      return ExprError();
  }
  // If we found a getter then this may be a valid dot-reference, we
  // will look for the matching setter, in case it is needed.
  Selector SetterSel =
    SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                       PP.getSelectorTable(), Member);
  ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
  
  // May be founf in property's qualified list.
  if (!Setter)
    Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
  
  if (!Setter) {
    // If this reference is in an @implementation, also check for 'private'
    // methods.
    Setter = IFace->lookupPrivateMethod(SetterSel);
  }
  // Look through local category implementations associated with the class.
  if (!Setter)
    Setter = IFace->getCategoryInstanceMethod(SetterSel);
    
  if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
    return ExprError();

  if (Getter || Setter) {
    if (Super)
      return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
                                                     Context.PseudoObjectTy,
                                                     VK_LValue, OK_ObjCProperty,
                                                     MemberLoc,
                                                     SuperLoc, SuperType));
    else
      return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
                                                     Context.PseudoObjectTy,
                                                     VK_LValue, OK_ObjCProperty,
                                                     MemberLoc, BaseExpr));

  }

  // Attempt to correct for typos in property names.
  DeclFilterCCC<ObjCPropertyDecl> Validator;
  if (TypoCorrection Corrected = CorrectTypo(
      DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL,
      NULL, Validator, IFace, false, OPT)) {
    ObjCPropertyDecl *Property =
        Corrected.getCorrectionDeclAs<ObjCPropertyDecl>();
    DeclarationName TypoResult = Corrected.getCorrection();
    Diag(MemberLoc, diag::err_property_not_found_suggest)
      << MemberName << QualType(OPT, 0) << TypoResult
      << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
    Diag(Property->getLocation(), diag::note_previous_decl)
      << Property->getDeclName();
    return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
                                     TypoResult, MemberLoc,
                                     SuperLoc, SuperType, Super);
  }
  ObjCInterfaceDecl *ClassDeclared;
  if (ObjCIvarDecl *Ivar = 
      IFace->lookupInstanceVariable(Member, ClassDeclared)) {
    QualType T = Ivar->getType();
    if (const ObjCObjectPointerType * OBJPT = 
        T->getAsObjCInterfacePointerType()) {
      if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 
                              PDiag(diag::err_property_not_as_forward_class)
                                << MemberName << BaseExpr->getSourceRange()))
        return ExprError();
    }
    Diag(MemberLoc, 
         diag::err_ivar_access_using_property_syntax_suggest)
    << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
    << FixItHint::CreateReplacement(OpLoc, "->");
    return ExprError();
  }
  
  Diag(MemberLoc, diag::err_property_not_found)
    << MemberName << QualType(OPT, 0);
  if (Setter)
    Diag(Setter->getLocation(), diag::note_getter_unavailable)
          << MemberName << BaseExpr->getSourceRange();
  return ExprError();
}



ExprResult Sema::
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
                          IdentifierInfo &propertyName,
                          SourceLocation receiverNameLoc,
                          SourceLocation propertyNameLoc) {

  IdentifierInfo *receiverNamePtr = &receiverName;
  ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
                                                  receiverNameLoc);

  bool IsSuper = false;
  if (IFace == 0) {
    // If the "receiver" is 'super' in a method, handle it as an expression-like
    // property reference.
    if (receiverNamePtr->isStr("super")) {
      IsSuper = true;

      if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
        if (CurMethod->isInstanceMethod()) {
          QualType T = 
            Context.getObjCInterfaceType(CurMethod->getClassInterface());
          T = Context.getObjCObjectPointerType(T);
        
          return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
                                           /*BaseExpr*/0, 
                                           SourceLocation()/*OpLoc*/, 
                                           &propertyName,
                                           propertyNameLoc,
                                           receiverNameLoc, T, true);
        }

        // Otherwise, if this is a class method, try dispatching to our
        // superclass.
        IFace = CurMethod->getClassInterface()->getSuperClass();
      }
    }
    
    if (IFace == 0) {
      Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
      return ExprError();
    }
  }

  // Search for a declared property first.
  Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
  ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);

  // If this reference is in an @implementation, check for 'private' methods.
  if (!Getter)
    if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
        if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
          Getter = ImpDecl->getClassMethod(Sel);

  if (Getter) {
    // FIXME: refactor/share with ActOnMemberReference().
    // Check if we can reference this property.
    if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
      return ExprError();
  }

  // Look for the matching setter, in case it is needed.
  Selector SetterSel =
    SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                       PP.getSelectorTable(), &propertyName);

  ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
  if (!Setter) {
    // If this reference is in an @implementation, also check for 'private'
    // methods.
    if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
        if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
          Setter = ImpDecl->getClassMethod(SetterSel);
  }
  // Look through local category implementations associated with the class.
  if (!Setter)
    Setter = IFace->getCategoryClassMethod(SetterSel);

  if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
    return ExprError();

  if (Getter || Setter) {
    if (IsSuper)
    return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
                                                   Context.PseudoObjectTy,
                                                   VK_LValue, OK_ObjCProperty,
                                                   propertyNameLoc,
                                                   receiverNameLoc, 
                                          Context.getObjCInterfaceType(IFace)));

    return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
                                                   Context.PseudoObjectTy,
                                                   VK_LValue, OK_ObjCProperty,
                                                   propertyNameLoc,
                                                   receiverNameLoc, IFace));
  }
  return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
                     << &propertyName << Context.getObjCInterfaceType(IFace));
}

namespace {

class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback {
 public:
  ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
    // Determine whether "super" is acceptable in the current context.
    if (Method && Method->getClassInterface())
      WantObjCSuper = Method->getClassInterface()->getSuperClass();
  }

  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
        candidate.isKeyword("super");
  }
};

}

Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
                                               IdentifierInfo *Name,
                                               SourceLocation NameLoc,
                                               bool IsSuper,
                                               bool HasTrailingDot,
                                               ParsedType &ReceiverType) {
  ReceiverType = ParsedType();

  // If the identifier is "super" and there is no trailing dot, we're
  // messaging super. If the identifier is "super" and there is a
  // trailing dot, it's an instance message.
  if (IsSuper && S->isInObjcMethodScope())
    return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
  
  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
  LookupName(Result, S);
  
  switch (Result.getResultKind()) {
  case LookupResult::NotFound:
    // Normal name lookup didn't find anything. If we're in an
    // Objective-C method, look for ivars. If we find one, we're done!
    // FIXME: This is a hack. Ivar lookup should be part of normal
    // lookup.
    if (ObjCMethodDecl *Method = getCurMethodDecl()) {
      if (!Method->getClassInterface()) {
        // Fall back: let the parser try to parse it as an instance message.
        return ObjCInstanceMessage;
      }

      ObjCInterfaceDecl *ClassDeclared;
      if (Method->getClassInterface()->lookupInstanceVariable(Name, 
                                                              ClassDeclared))
        return ObjCInstanceMessage;
    }
  
    // Break out; we'll perform typo correction below.
    break;

  case LookupResult::NotFoundInCurrentInstantiation:
  case LookupResult::FoundOverloaded:
  case LookupResult::FoundUnresolvedValue:
  case LookupResult::Ambiguous:
    Result.suppressDiagnostics();
    return ObjCInstanceMessage;

  case LookupResult::Found: {
    // If the identifier is a class or not, and there is a trailing dot,
    // it's an instance message.
    if (HasTrailingDot)
      return ObjCInstanceMessage;
    // We found something. If it's a type, then we have a class
    // message. Otherwise, it's an instance message.
    NamedDecl *ND = Result.getFoundDecl();
    QualType T;
    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
      T = Context.getObjCInterfaceType(Class);
    else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
      T = Context.getTypeDeclType(Type);
    else 
      return ObjCInstanceMessage;

    //  We have a class message, and T is the type we're
    //  messaging. Build source-location information for it.
    TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
    ReceiverType = CreateParsedType(T, TSInfo);
    return ObjCClassMessage;
  }
  }

  ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl());
  if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
                                             Result.getLookupKind(), S, NULL,
                                             Validator)) {
    if (Corrected.isKeyword()) {
      // If we've found the keyword "super" (the only keyword that would be
      // returned by CorrectTypo), this is a send to super.
      Diag(NameLoc, diag::err_unknown_receiver_suggest)
        << Name << Corrected.getCorrection()
        << FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
      return ObjCSuperMessage;
    } else if (ObjCInterfaceDecl *Class =
               Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
      // If we found a declaration, correct when it refers to an Objective-C
      // class.
      Diag(NameLoc, diag::err_unknown_receiver_suggest)
        << Name << Corrected.getCorrection()
        << FixItHint::CreateReplacement(SourceRange(NameLoc),
                                        Class->getNameAsString());
      Diag(Class->getLocation(), diag::note_previous_decl)
        << Corrected.getCorrection();

      QualType T = Context.getObjCInterfaceType(Class);
      TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
      ReceiverType = CreateParsedType(T, TSInfo);
      return ObjCClassMessage;
    }
  }
  
  // Fall back: let the parser try to parse it as an instance message.
  return ObjCInstanceMessage;
}

ExprResult Sema::ActOnSuperMessage(Scope *S, 
                                   SourceLocation SuperLoc,
                                   Selector Sel,
                                   SourceLocation LBracLoc,
                                   ArrayRef<SourceLocation> SelectorLocs,
                                   SourceLocation RBracLoc,
                                   MultiExprArg Args) {
  // Determine whether we are inside a method or not.
  ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
  if (!Method) {
    Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
    return ExprError();
  }

  ObjCInterfaceDecl *Class = Method->getClassInterface();
  if (!Class) {
    Diag(SuperLoc, diag::error_no_super_class_message)
      << Method->getDeclName();
    return ExprError();
  }

  ObjCInterfaceDecl *Super = Class->getSuperClass();
  if (!Super) {
    // The current class does not have a superclass.
    Diag(SuperLoc, diag::error_root_class_cannot_use_super)
      << Class->getIdentifier();
    return ExprError();
  }

  // We are in a method whose class has a superclass, so 'super'
  // is acting as a keyword.
  if (Method->isInstanceMethod()) {
    if (Sel.getMethodFamily() == OMF_dealloc)
      ObjCShouldCallSuperDealloc = false;
    if (Sel.getMethodFamily() == OMF_finalize)
      ObjCShouldCallSuperFinalize = false;

    // Since we are in an instance method, this is an instance
    // message to the superclass instance.
    QualType SuperTy = Context.getObjCInterfaceType(Super);
    SuperTy = Context.getObjCObjectPointerType(SuperTy);
    return BuildInstanceMessage(0, SuperTy, SuperLoc,
                                Sel, /*Method=*/0,
                                LBracLoc, SelectorLocs, RBracLoc, move(Args));
  }
  
  // Since we are in a class method, this is a class message to
  // the superclass.
  return BuildClassMessage(/*ReceiverTypeInfo=*/0,
                           Context.getObjCInterfaceType(Super),
                           SuperLoc, Sel, /*Method=*/0,
                           LBracLoc, SelectorLocs, RBracLoc, move(Args));
}


ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
                                           bool isSuperReceiver,
                                           SourceLocation Loc,
                                           Selector Sel,
                                           ObjCMethodDecl *Method,
                                           MultiExprArg Args) {
  TypeSourceInfo *receiverTypeInfo = 0;
  if (!ReceiverType.isNull())
    receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);

  return BuildClassMessage(receiverTypeInfo, ReceiverType,
                          /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
                           Sel, Method, Loc, Loc, Loc, Args,
                           /*isImplicit=*/true);

}

static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
                               unsigned DiagID,
                               bool (*refactor)(const ObjCMessageExpr *,
                                              const NSAPI &, edit::Commit &)) {
  SourceLocation MsgLoc = Msg->getExprLoc();
  if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored)
    return;

  SourceManager &SM = S.SourceMgr;
  edit::Commit ECommit(SM, S.LangOpts);
  if (refactor(Msg,*S.NSAPIObj, ECommit)) {
    DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
                        << Msg->getSelector() << Msg->getSourceRange();
    // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
    if (!ECommit.isCommitable())
      return;
    for (edit::Commit::edit_iterator
           I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
      const edit::Commit::Edit &Edit = *I;
      switch (Edit.Kind) {
      case edit::Commit::Act_Insert:
        Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
                                                        Edit.Text,
                                                        Edit.BeforePrev));
        break;
      case edit::Commit::Act_InsertFromRange:
        Builder.AddFixItHint(
            FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
                                                Edit.getInsertFromRange(SM),
                                                Edit.BeforePrev));
        break;
      case edit::Commit::Act_Remove:
        Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
        break;
      }
    }
  }
}

static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
  applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
                     edit::rewriteObjCRedundantCallWithLiteral);
}

/// \brief Build an Objective-C class message expression.
///
/// This routine takes care of both normal class messages and
/// class messages to the superclass.
///
/// \param ReceiverTypeInfo Type source information that describes the
/// receiver of this message. This may be NULL, in which case we are
/// sending to the superclass and \p SuperLoc must be a valid source
/// location.

/// \param ReceiverType The type of the object receiving the
/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
/// type as that refers to. For a superclass send, this is the type of
/// the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this class message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
                                   QualType ReceiverType,
                                   SourceLocation SuperLoc,
                                   Selector Sel,
                                   ObjCMethodDecl *Method,
                                   SourceLocation LBracLoc, 
                                   ArrayRef<SourceLocation> SelectorLocs,
                                   SourceLocation RBracLoc,
                                   MultiExprArg ArgsIn,
                                   bool isImplicit) {
  SourceLocation Loc = SuperLoc.isValid()? SuperLoc
    : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
  if (LBracLoc.isInvalid()) {
    Diag(Loc, diag::err_missing_open_square_message_send)
      << FixItHint::CreateInsertion(Loc, "[");
    LBracLoc = Loc;
  }
  
  if (ReceiverType->isDependentType()) {
    // If the receiver type is dependent, we can't type-check anything
    // at this point. Build a dependent expression.
    unsigned NumArgs = ArgsIn.size();
    Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
    assert(SuperLoc.isInvalid() && "Message to super with dependent type");
    return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
                                         VK_RValue, LBracLoc, ReceiverTypeInfo,
                                         Sel, SelectorLocs, /*Method=*/0,
                                         makeArrayRef(Args, NumArgs),RBracLoc,
                                         isImplicit));
  }
  
  // Find the class to which we are sending this message.
  ObjCInterfaceDecl *Class = 0;
  const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
  if (!ClassType || !(Class = ClassType->getInterface())) {
    Diag(Loc, diag::err_invalid_receiver_class_message)
      << ReceiverType;
    return ExprError();
  }
  assert(Class && "We don't know which class we're messaging?");
  // objc++ diagnoses during typename annotation.
  if (!getLangOpts().CPlusPlus)
    (void)DiagnoseUseOfDecl(Class, Loc);
  // Find the method we are messaging.
  if (!Method) {
    SourceRange TypeRange 
      = SuperLoc.isValid()? SourceRange(SuperLoc)
                          : ReceiverTypeInfo->getTypeLoc().getSourceRange();
    if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 
                            (getLangOpts().ObjCAutoRefCount
                               ? PDiag(diag::err_arc_receiver_forward_class)
                               : PDiag(diag::warn_receiver_forward_class))
                                   << TypeRange)) {
      // A forward class used in messaging is treated as a 'Class'
      Method = LookupFactoryMethodInGlobalPool(Sel, 
                                               SourceRange(LBracLoc, RBracLoc));
      if (Method && !getLangOpts().ObjCAutoRefCount)
        Diag(Method->getLocation(), diag::note_method_sent_forward_class)
          << Method->getDeclName();
    }
    if (!Method)
      Method = Class->lookupClassMethod(Sel);

    // If we have an implementation in scope, check "private" methods.
    if (!Method)
      Method = LookupPrivateClassMethod(Sel, Class);

    if (Method && DiagnoseUseOfDecl(Method, Loc))
      return ExprError();
  }

  // Check the argument types and determine the result type.
  QualType ReturnType;
  ExprValueKind VK = VK_RValue;

  unsigned NumArgs = ArgsIn.size();
  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
  if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true,
                                SuperLoc.isValid(), LBracLoc, RBracLoc, 
                                ReturnType, VK))
    return ExprError();

  if (Method && !Method->getResultType()->isVoidType() &&
      RequireCompleteType(LBracLoc, Method->getResultType(), 
                          diag::err_illegal_message_expr_incomplete_type))
    return ExprError();

  // Construct the appropriate ObjCMessageExpr.
  ObjCMessageExpr *Result;
  if (SuperLoc.isValid())
    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 
                                     SuperLoc, /*IsInstanceSuper=*/false, 
                                     ReceiverType, Sel, SelectorLocs,
                                     Method, makeArrayRef(Args, NumArgs),
                                     RBracLoc, isImplicit);
  else {
    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 
                                     ReceiverTypeInfo, Sel, SelectorLocs,
                                     Method, makeArrayRef(Args, NumArgs),
                                     RBracLoc, isImplicit);
    if (!isImplicit)
      checkCocoaAPI(*this, Result);
  }
  return MaybeBindToTemporary(Result);
}

// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnClassMessage(Scope *S, 
                                   ParsedType Receiver,
                                   Selector Sel,
                                   SourceLocation LBracLoc,
                                   ArrayRef<SourceLocation> SelectorLocs,
                                   SourceLocation RBracLoc,
                                   MultiExprArg Args) {
  TypeSourceInfo *ReceiverTypeInfo;
  QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
  if (ReceiverType.isNull())
    return ExprError();


  if (!ReceiverTypeInfo)
    ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);

  return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 
                           /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
                           LBracLoc, SelectorLocs, RBracLoc, move(Args));
}

ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
                                              QualType ReceiverType,
                                              SourceLocation Loc,
                                              Selector Sel,
                                              ObjCMethodDecl *Method,
                                              MultiExprArg Args) {
  return BuildInstanceMessage(Receiver, ReceiverType,
                              /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
                              Sel, Method, Loc, Loc, Loc, Args,
                              /*isImplicit=*/true);
}

/// \brief Build an Objective-C instance message expression.
///
/// This routine takes care of both normal instance messages and
/// instance messages to the superclass instance.
///
/// \param Receiver The expression that computes the object that will
/// receive this message. This may be empty, in which case we are
/// sending to the superclass instance and \p SuperLoc must be a valid
/// source location.
///
/// \param ReceiverType The (static) type of the object receiving the
/// message. When a \p Receiver expression is provided, this is the
/// same type as that expression. For a superclass instance send, this
/// is a pointer to the type of the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass instance message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this instance message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
                                      QualType ReceiverType,
                                      SourceLocation SuperLoc,
                                      Selector Sel,
                                      ObjCMethodDecl *Method,
                                      SourceLocation LBracLoc, 
                                      ArrayRef<SourceLocation> SelectorLocs,
                                      SourceLocation RBracLoc,
                                      MultiExprArg ArgsIn,
                                      bool isImplicit) {
  // The location of the receiver.
  SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
  
  if (LBracLoc.isInvalid()) {
    Diag(Loc, diag::err_missing_open_square_message_send)
      << FixItHint::CreateInsertion(Loc, "[");
    LBracLoc = Loc;
  }

  // If we have a receiver expression, perform appropriate promotions
  // and determine receiver type.
  if (Receiver) {
    if (Receiver->hasPlaceholderType()) {
      ExprResult Result;
      if (Receiver->getType() == Context.UnknownAnyTy)
        Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
      else
        Result = CheckPlaceholderExpr(Receiver);
      if (Result.isInvalid()) return ExprError();
      Receiver = Result.take();
    }

    if (Receiver->isTypeDependent()) {
      // If the receiver is type-dependent, we can't type-check anything
      // at this point. Build a dependent expression.
      unsigned NumArgs = ArgsIn.size();
      Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
      assert(SuperLoc.isInvalid() && "Message to super with dependent type");
      return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
                                           VK_RValue, LBracLoc, Receiver, Sel, 
                                           SelectorLocs, /*Method=*/0,
                                           makeArrayRef(Args, NumArgs),
                                           RBracLoc, isImplicit));
    }

    // If necessary, apply function/array conversion to the receiver.
    // C99 6.7.5.3p[7,8].
    ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
    if (Result.isInvalid())
      return ExprError();
    Receiver = Result.take();
    ReceiverType = Receiver->getType();
  }

  if (!Method) {
    // Handle messages to id.
    bool receiverIsId = ReceiverType->isObjCIdType();
    if (receiverIsId || ReceiverType->isBlockPointerType() ||
        (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
      Method = LookupInstanceMethodInGlobalPool(Sel, 
                                                SourceRange(LBracLoc, RBracLoc),
                                                receiverIsId);
      if (!Method)
        Method = LookupFactoryMethodInGlobalPool(Sel, 
                                                 SourceRange(LBracLoc, RBracLoc),
                                                 receiverIsId);
    } else if (ReceiverType->isObjCClassType() ||
               ReceiverType->isObjCQualifiedClassType()) {
      // Handle messages to Class.
      // We allow sending a message to a qualified Class ("Class<foo>"), which 
      // is ok as long as one of the protocols implements the selector (if not, warn).
      if (const ObjCObjectPointerType *QClassTy 
            = ReceiverType->getAsObjCQualifiedClassType()) {
        // Search protocols for class methods.
        Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
        if (!Method) {
          Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
          // warn if instance method found for a Class message.
          if (Method) {
            Diag(Loc, diag::warn_instance_method_on_class_found)
              << Method->getSelector() << Sel;
            Diag(Method->getLocation(), diag::note_method_declared_at)
              << Method->getDeclName();
          }
        }
      } else {
        if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
            // First check the public methods in the class interface.
            Method = ClassDecl->lookupClassMethod(Sel);

            if (!Method)
              Method = LookupPrivateClassMethod(Sel, ClassDecl);
          }
          if (Method && DiagnoseUseOfDecl(Method, Loc))
            return ExprError();
        }
        if (!Method) {
          // If not messaging 'self', look for any factory method named 'Sel'.
          if (!Receiver || !isSelfExpr(Receiver)) {
            Method = LookupFactoryMethodInGlobalPool(Sel, 
                                                SourceRange(LBracLoc, RBracLoc),
                                                     true);
            if (!Method) {
              // If no class (factory) method was found, check if an _instance_
              // method of the same name exists in the root class only.
              Method = LookupInstanceMethodInGlobalPool(Sel,
                                               SourceRange(LBracLoc, RBracLoc),
                                                        true);
              if (Method)
                  if (const ObjCInterfaceDecl *ID =
                      dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
                    if (ID->getSuperClass())
                      Diag(Loc, diag::warn_root_inst_method_not_found)
                      << Sel << SourceRange(LBracLoc, RBracLoc);
                  }
            }
          }
        }
      }
    } else {
      ObjCInterfaceDecl* ClassDecl = 0;

      // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
      // long as one of the protocols implements the selector (if not, warn).
      if (const ObjCObjectPointerType *QIdTy 
                                   = ReceiverType->getAsObjCQualifiedIdType()) {
        // Search protocols for instance methods.
        Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
        if (!Method)
          Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
      } else if (const ObjCObjectPointerType *OCIType
                   = ReceiverType->getAsObjCInterfacePointerType()) {
        // We allow sending a message to a pointer to an interface (an object).
        ClassDecl = OCIType->getInterfaceDecl();

        // Try to complete the type. Under ARC, this is a hard error from which
        // we don't try to recover.
        const ObjCInterfaceDecl *forwardClass = 0;
        if (RequireCompleteType(Loc, OCIType->getPointeeType(),
              getLangOpts().ObjCAutoRefCount
                ? PDiag(diag::err_arc_receiver_forward_instance)
                    << (Receiver ? Receiver->getSourceRange() 
                                 : SourceRange(SuperLoc))
                : PDiag(diag::warn_receiver_forward_instance)
                    << (Receiver ? Receiver->getSourceRange() 
                                 : SourceRange(SuperLoc)))) {
          if (getLangOpts().ObjCAutoRefCount)
            return ExprError();
          
          forwardClass = OCIType->getInterfaceDecl();
          Diag(Receiver ? Receiver->getLocStart() 
                        : SuperLoc, diag::note_receiver_is_id);
          Method = 0;
        } else {
          Method = ClassDecl->lookupInstanceMethod(Sel);
        }

        if (!Method)
          // Search protocol qualifiers.
          Method = LookupMethodInQualifiedType(Sel, OCIType, true);
        
        if (!Method) {
          // If we have implementations in scope, check "private" methods.
          Method = LookupPrivateInstanceMethod(Sel, ClassDecl);

          if (!Method && getLangOpts().ObjCAutoRefCount) {
            Diag(Loc, diag::err_arc_may_not_respond)
              << OCIType->getPointeeType() << Sel;
            return ExprError();
          }

          if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
            // If we still haven't found a method, look in the global pool. This
            // behavior isn't very desirable, however we need it for GCC
            // compatibility. FIXME: should we deviate??
            if (OCIType->qual_empty()) {
              Method = LookupInstanceMethodInGlobalPool(Sel,
                                                 SourceRange(LBracLoc, RBracLoc));
              if (Method && !forwardClass)
                Diag(Loc, diag::warn_maynot_respond)
                  << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
            }
          }
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass))
          return ExprError();
      } else if (!getLangOpts().ObjCAutoRefCount &&
                 !Context.getObjCIdType().isNull() &&
                 (ReceiverType->isPointerType() || 
                  ReceiverType->isIntegerType())) {
        // Implicitly convert integers and pointers to 'id' but emit a warning.
        // But not in ARC.
        Diag(Loc, diag::warn_bad_receiver_type)
          << ReceiverType 
          << Receiver->getSourceRange();
        if (ReceiverType->isPointerType())
          Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 
                            CK_CPointerToObjCPointerCast).take();
        else {
          // TODO: specialized warning on null receivers?
          bool IsNull = Receiver->isNullPointerConstant(Context,
                                              Expr::NPC_ValueDependentIsNull);
          Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
                            IsNull ? CK_NullToPointer : CK_IntegralToPointer).take();
        }
        ReceiverType = Receiver->getType();
      } else {
        ExprResult ReceiverRes;
        if (getLangOpts().CPlusPlus)
          ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver);
        if (ReceiverRes.isUsable()) {
          Receiver = ReceiverRes.take();
          return BuildInstanceMessage(Receiver,
                                      ReceiverType,
                                      SuperLoc,
                                      Sel,
                                      Method,
                                      LBracLoc,
                                      SelectorLocs,
                                      RBracLoc,
                                      move(ArgsIn));
        } else {
          // Reject other random receiver types (e.g. structs).
          Diag(Loc, diag::err_bad_receiver_type)
            << ReceiverType << Receiver->getSourceRange();
          return ExprError();
        }
      }
    }
  }

  // Check the message arguments.
  unsigned NumArgs = ArgsIn.size();
  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
  QualType ReturnType;
  ExprValueKind VK = VK_RValue;
  bool ClassMessage = (ReceiverType->isObjCClassType() ||
                       ReceiverType->isObjCQualifiedClassType());
  if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, 
                                ClassMessage, SuperLoc.isValid(), 
                                LBracLoc, RBracLoc, ReturnType, VK))
    return ExprError();
  
  if (Method && !Method->getResultType()->isVoidType() &&
      RequireCompleteType(LBracLoc, Method->getResultType(), 
                          diag::err_illegal_message_expr_incomplete_type))
    return ExprError();

  SourceLocation SelLoc = SelectorLocs.front();

  // In ARC, forbid the user from sending messages to 
  // retain/release/autorelease/dealloc/retainCount explicitly.
  if (getLangOpts().ObjCAutoRefCount) {
    ObjCMethodFamily family =
      (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
    switch (family) {
    case OMF_init:
      if (Method)
        checkInitMethod(Method, ReceiverType);

    case OMF_None:
    case OMF_alloc:
    case OMF_copy:
    case OMF_finalize:
    case OMF_mutableCopy:
    case OMF_new:
    case OMF_self:
      break;

    case OMF_dealloc:
    case OMF_retain:
    case OMF_release:
    case OMF_autorelease:
    case OMF_retainCount:
      Diag(Loc, diag::err_arc_illegal_explicit_message)
        << Sel << SelLoc;
      break;
    
    case OMF_performSelector:
      if (Method && NumArgs >= 1) {
        if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
          Selector ArgSel = SelExp->getSelector();
          ObjCMethodDecl *SelMethod = 
            LookupInstanceMethodInGlobalPool(ArgSel,
                                             SelExp->getSourceRange());
          if (!SelMethod)
            SelMethod =
              LookupFactoryMethodInGlobalPool(ArgSel,
                                              SelExp->getSourceRange());
          if (SelMethod) {
            ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
            switch (SelFamily) {
              case OMF_alloc:
              case OMF_copy:
              case OMF_mutableCopy:
              case OMF_new:
              case OMF_self:
              case OMF_init:
                // Issue error, unless ns_returns_not_retained.
                if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
                  // selector names a +1 method 
                  Diag(SelLoc, 
                       diag::err_arc_perform_selector_retains);
                  Diag(SelMethod->getLocation(), diag::note_method_declared_at)
                    << SelMethod->getDeclName();
                }
                break;
              default:
                // +0 call. OK. unless ns_returns_retained.
                if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
                  // selector names a +1 method
                  Diag(SelLoc, 
                       diag::err_arc_perform_selector_retains);
                  Diag(SelMethod->getLocation(), diag::note_method_declared_at)
                    << SelMethod->getDeclName();
                }
                break;
            }
          }
        } else {
          // error (may leak).
          Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
          Diag(Args[0]->getExprLoc(), diag::note_used_here);
        }
      }
      break;
    }
  }

  // Construct the appropriate ObjCMessageExpr instance.
  ObjCMessageExpr *Result;
  if (SuperLoc.isValid())
    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
                                     SuperLoc,  /*IsInstanceSuper=*/true,
                                     ReceiverType, Sel, SelectorLocs, Method, 
                                     makeArrayRef(Args, NumArgs), RBracLoc,
                                     isImplicit);
  else {
    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
                                     Receiver, Sel, SelectorLocs, Method,
                                     makeArrayRef(Args, NumArgs), RBracLoc,
                                     isImplicit);
    if (!isImplicit)
      checkCocoaAPI(*this, Result);
  }

  if (getLangOpts().ObjCAutoRefCount) {
    if (Receiver &&
        (Receiver->IgnoreParenImpCasts()->getType().getObjCLifetime() 
          == Qualifiers::OCL_Weak))
      Diag(Receiver->getLocStart(), diag::warn_receiver_is_weak);
    
    // In ARC, annotate delegate init calls.
    if (Result->getMethodFamily() == OMF_init &&
        (SuperLoc.isValid() || isSelfExpr(Receiver))) {
      // Only consider init calls *directly* in init implementations,
      // not within blocks.
      ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
      if (method && method->getMethodFamily() == OMF_init) {
        // The implicit assignment to self means we also don't want to
        // consume the result.
        Result->setDelegateInitCall(true);
        return Owned(Result);
      }
    }

    // In ARC, check for message sends which are likely to introduce
    // retain cycles.
    checkRetainCycles(Result);
  }
      
  return MaybeBindToTemporary(Result);
}

// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnInstanceMessage(Scope *S,
                                      Expr *Receiver, 
                                      Selector Sel,
                                      SourceLocation LBracLoc,
                                      ArrayRef<SourceLocation> SelectorLocs,
                                      SourceLocation RBracLoc,
                                      MultiExprArg Args) {
  if (!Receiver)
    return ExprError();

  return BuildInstanceMessage(Receiver, Receiver->getType(),
                              /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, 
                              LBracLoc, SelectorLocs, RBracLoc, move(Args));
}

enum ARCConversionTypeClass {
  /// int, void, struct A
  ACTC_none,

  /// id, void (^)()
  ACTC_retainable,

  /// id*, id***, void (^*)(),
  ACTC_indirectRetainable,

  /// void* might be a normal C type, or it might a CF type.
  ACTC_voidPtr,

  /// struct A*
  ACTC_coreFoundation
};
static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
  return (ACTC == ACTC_retainable ||
          ACTC == ACTC_coreFoundation ||
          ACTC == ACTC_voidPtr);
}
static bool isAnyCLike(ARCConversionTypeClass ACTC) {
  return ACTC == ACTC_none ||
         ACTC == ACTC_voidPtr ||
         ACTC == ACTC_coreFoundation;
}

static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
  bool isIndirect = false;
  
  // Ignore an outermost reference type.
  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
    type = ref->getPointeeType();
    isIndirect = true;
  }
  
  // Drill through pointers and arrays recursively.
  while (true) {
    if (const PointerType *ptr = type->getAs<PointerType>()) {
      type = ptr->getPointeeType();

      // The first level of pointer may be the innermost pointer on a CF type.
      if (!isIndirect) {
        if (type->isVoidType()) return ACTC_voidPtr;
        if (type->isRecordType()) return ACTC_coreFoundation;
      }
    } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
      type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
    } else {
      break;
    }
    isIndirect = true;
  }
  
  if (isIndirect) {
    if (type->isObjCARCBridgableType())
      return ACTC_indirectRetainable;
    return ACTC_none;
  }

  if (type->isObjCARCBridgableType())
    return ACTC_retainable;

  return ACTC_none;
}

namespace {
  /// A result from the cast checker.
  enum ACCResult {
    /// Cannot be casted.
    ACC_invalid,

    /// Can be safely retained or not retained.
    ACC_bottom,

    /// Can be casted at +0.
    ACC_plusZero,

    /// Can be casted at +1.
    ACC_plusOne
  };
  ACCResult merge(ACCResult left, ACCResult right) {
    if (left == right) return left;
    if (left == ACC_bottom) return right;
    if (right == ACC_bottom) return left;
    return ACC_invalid;
  }

  /// A checker which white-lists certain expressions whose conversion
  /// to or from retainable type would otherwise be forbidden in ARC.
  class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
    typedef StmtVisitor<ARCCastChecker, ACCResult> super;

    ASTContext &Context;
    ARCConversionTypeClass SourceClass;
    ARCConversionTypeClass TargetClass;

    static bool isCFType(QualType type) {
      // Someday this can use ns_bridged.  For now, it has to do this.
      return type->isCARCBridgableType();
    }

  public:
    ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
                   ARCConversionTypeClass target)
      : Context(Context), SourceClass(source), TargetClass(target) {}

    using super::Visit;
    ACCResult Visit(Expr *e) {
      return super::Visit(e->IgnoreParens());
    }

    ACCResult VisitStmt(Stmt *s) {
      return ACC_invalid;
    }

    /// Null pointer constants can be casted however you please.
    ACCResult VisitExpr(Expr *e) {
      if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
        return ACC_bottom;
      return ACC_invalid;
    }

    /// Objective-C string literals can be safely casted.
    ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
      // If we're casting to any retainable type, go ahead.  Global
      // strings are immune to retains, so this is bottom.
      if (isAnyRetainable(TargetClass)) return ACC_bottom;

      return ACC_invalid;
    }
    
    /// Look through certain implicit and explicit casts.
    ACCResult VisitCastExpr(CastExpr *e) {
      switch (e->getCastKind()) {
        case CK_NullToPointer:
          return ACC_bottom;

        case CK_NoOp:
        case CK_LValueToRValue:
        case CK_BitCast:
        case CK_CPointerToObjCPointerCast:
        case CK_BlockPointerToObjCPointerCast:
        case CK_AnyPointerToBlockPointerCast:
          return Visit(e->getSubExpr());

        default:
          return ACC_invalid;
      }
    }

    /// Look through unary extension.
    ACCResult VisitUnaryExtension(UnaryOperator *e) {
      return Visit(e->getSubExpr());
    }

    /// Ignore the LHS of a comma operator.
    ACCResult VisitBinComma(BinaryOperator *e) {
      return Visit(e->getRHS());
    }

    /// Conditional operators are okay if both sides are okay.
    ACCResult VisitConditionalOperator(ConditionalOperator *e) {
      ACCResult left = Visit(e->getTrueExpr());
      if (left == ACC_invalid) return ACC_invalid;
      return merge(left, Visit(e->getFalseExpr()));
    }

    /// Look through pseudo-objects.
    ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
      // If we're getting here, we should always have a result.
      return Visit(e->getResultExpr());
    }

    /// Statement expressions are okay if their result expression is okay.
    ACCResult VisitStmtExpr(StmtExpr *e) {
      return Visit(e->getSubStmt()->body_back());
    }

    /// Some declaration references are okay.
    ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
      // References to global constants from system headers are okay.
      // These are things like 'kCFStringTransformToLatin'.  They are
      // can also be assumed to be immune to retains.
      VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
      if (isAnyRetainable(TargetClass) &&
          isAnyRetainable(SourceClass) &&
          var &&
          var->getStorageClass() == SC_Extern &&
          var->getType().isConstQualified() &&
          Context.getSourceManager().isInSystemHeader(var->getLocation())) {
        return ACC_bottom;
      }

      // Nothing else.
      return ACC_invalid;
    }

    /// Some calls are okay.
    ACCResult VisitCallExpr(CallExpr *e) {
      if (FunctionDecl *fn = e->getDirectCallee())
        if (ACCResult result = checkCallToFunction(fn))
          return result;

      return super::VisitCallExpr(e);
    }

    ACCResult checkCallToFunction(FunctionDecl *fn) {
      // Require a CF*Ref return type.
      if (!isCFType(fn->getResultType()))
        return ACC_invalid;

      if (!isAnyRetainable(TargetClass))
        return ACC_invalid;

      // Honor an explicit 'not retained' attribute.
      if (fn->hasAttr<CFReturnsNotRetainedAttr>())
        return ACC_plusZero;

      // Honor an explicit 'retained' attribute, except that for
      // now we're not going to permit implicit handling of +1 results,
      // because it's a bit frightening.
      if (fn->hasAttr<CFReturnsRetainedAttr>())
        return ACC_invalid; // ACC_plusOne if we start accepting this

      // Recognize this specific builtin function, which is used by CFSTR.
      unsigned builtinID = fn->getBuiltinID();
      if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
        return ACC_bottom;

      // Otherwise, don't do anything implicit with an unaudited function.
      if (!fn->hasAttr<CFAuditedTransferAttr>())
        return ACC_invalid;

      // Otherwise, it's +0 unless it follows the create convention.
      if (ento::coreFoundation::followsCreateRule(fn))
        return ACC_invalid; // ACC_plusOne if we start accepting this

      return ACC_plusZero;
    }

    ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
      return checkCallToMethod(e->getMethodDecl());
    }

    ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
      ObjCMethodDecl *method;
      if (e->isExplicitProperty())
        method = e->getExplicitProperty()->getGetterMethodDecl();
      else
        method = e->getImplicitPropertyGetter();
      return checkCallToMethod(method);
    }

    ACCResult checkCallToMethod(ObjCMethodDecl *method) {
      if (!method) return ACC_invalid;

      // Check for message sends to functions returning CF types.  We
      // just obey the Cocoa conventions with these, even though the
      // return type is CF.
      if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType()))
        return ACC_invalid;
      
      // If the method is explicitly marked not-retained, it's +0.
      if (method->hasAttr<CFReturnsNotRetainedAttr>())
        return ACC_plusZero;

      // If the method is explicitly marked as returning retained, or its
      // selector follows a +1 Cocoa convention, treat it as +1.
      if (method->hasAttr<CFReturnsRetainedAttr>())
        return ACC_plusOne;

      switch (method->getSelector().getMethodFamily()) {
      case OMF_alloc:
      case OMF_copy:
      case OMF_mutableCopy:
      case OMF_new:
        return ACC_plusOne;

      default:
        // Otherwise, treat it as +0.
        return ACC_plusZero;
      }
    }
  };
}

static bool
KnownName(Sema &S, const char *name) {
  LookupResult R(S, &S.Context.Idents.get(name), SourceLocation(),
                 Sema::LookupOrdinaryName);
  return S.LookupName(R, S.TUScope, false);
}

static void addFixitForObjCARCConversion(Sema &S,
                                         DiagnosticBuilder &DiagB,
                                         Sema::CheckedConversionKind CCK,
                                         SourceLocation afterLParen,
                                         QualType castType,
                                         Expr *castExpr,
                                         const char *bridgeKeyword,
                                         const char *CFBridgeName) {
  // We handle C-style and implicit casts here.
  switch (CCK) {
  case Sema::CCK_ImplicitConversion:
  case Sema::CCK_CStyleCast:
    break;
  case Sema::CCK_FunctionalCast:
  case Sema::CCK_OtherCast:
    return;
  }

  if (CFBridgeName) {
    Expr *castedE = castExpr;
    if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
      castedE = CCE->getSubExpr();
    castedE = castedE->IgnoreImpCasts();
    SourceRange range = castedE->getSourceRange();
    if (isa<ParenExpr>(castedE)) {
      DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
                         CFBridgeName));
    } else {
      std::string namePlusParen = CFBridgeName;
      namePlusParen += "(";
      DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
                                                    namePlusParen));
      DiagB.AddFixItHint(FixItHint::CreateInsertion(
                                       S.PP.getLocForEndOfToken(range.getEnd()),
                                       ")"));
    }
    return;
  }

  if (CCK == Sema::CCK_CStyleCast) {
    DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
  } else {
    std::string castCode = "(";
    castCode += bridgeKeyword;
    castCode += castType.getAsString();
    castCode += ")";
    Expr *castedE = castExpr->IgnoreImpCasts();
    SourceRange range = castedE->getSourceRange();
    if (isa<ParenExpr>(castedE)) {
      DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
                         castCode));
    } else {
      castCode += "(";
      DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
                                                    castCode));
      DiagB.AddFixItHint(FixItHint::CreateInsertion(
                                       S.PP.getLocForEndOfToken(range.getEnd()),
                                       ")"));
    }
  }
}

static void
diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
                          QualType castType, ARCConversionTypeClass castACTC,
                          Expr *castExpr, ARCConversionTypeClass exprACTC,
                          Sema::CheckedConversionKind CCK) {
  SourceLocation loc =
    (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
  
  if (S.makeUnavailableInSystemHeader(loc,
                "converts between Objective-C and C pointers in -fobjc-arc"))
    return;

  QualType castExprType = castExpr->getType();
  
  unsigned srcKind = 0;
  switch (exprACTC) {
  case ACTC_none:
  case ACTC_coreFoundation:
  case ACTC_voidPtr:
    srcKind = (castExprType->isPointerType() ? 1 : 0);
    break;
  case ACTC_retainable:
    srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
    break;
  case ACTC_indirectRetainable:
    srcKind = 4;
    break;
  }
  
  // Check whether this could be fixed with a bridge cast.
  SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin());
  SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;

  // Bridge from an ARC type to a CF type.
  if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {

    S.Diag(loc, diag::err_arc_cast_requires_bridge)
      << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
      << 2 // of C pointer type
      << castExprType
      << unsigned(castType->isBlockPointerType()) // to ObjC|block type
      << castType
      << castRange
      << castExpr->getSourceRange();
    bool br = KnownName(S, "CFBridgingRelease");
    {
      DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
      addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
                                   castType, castExpr, "__bridge ", 0);
    }
    {
      DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_transfer)
        << castExprType << br;
      addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
                                   castType, castExpr, "__bridge_transfer ",
                                   br ? "CFBridgingRelease" : 0);
    }

    return;
  }
    
  // Bridge from a CF type to an ARC type.
  if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
    bool br = KnownName(S, "CFBridgingRetain");
    S.Diag(loc, diag::err_arc_cast_requires_bridge)
      << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
      << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
      << castExprType
      << 2 // to C pointer type
      << castType
      << castRange
      << castExpr->getSourceRange();

    {
      DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
      addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
                                   castType, castExpr, "__bridge ", 0);
    }
    {
      DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_retained)
        << castType << br;
      addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
                                   castType, castExpr, "__bridge_retained ",
                                   br ? "CFBridgingRetain" : 0);
    }

    return;
  }
  
  S.Diag(loc, diag::err_arc_mismatched_cast)
    << (CCK != Sema::CCK_ImplicitConversion)
    << srcKind << castExprType << castType
    << castRange << castExpr->getSourceRange();
}

Sema::ARCConversionResult
Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
                             Expr *&castExpr, CheckedConversionKind CCK) {
  QualType castExprType = castExpr->getType();

  // For the purposes of the classification, we assume reference types
  // will bind to temporaries.
  QualType effCastType = castType;
  if (const ReferenceType *ref = castType->getAs<ReferenceType>())
    effCastType = ref->getPointeeType();
  
  ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
  ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
  if (exprACTC == castACTC) {
    // check for viablity and report error if casting an rvalue to a
    // life-time qualifier.
    if ((castACTC == ACTC_retainable) &&
        (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
        (castType != castExprType)) {
      const Type *DT = castType.getTypePtr();
      QualType QDT = castType;
      // We desugar some types but not others. We ignore those
      // that cannot happen in a cast; i.e. auto, and those which
      // should not be de-sugared; i.e typedef.
      if (const ParenType *PT = dyn_cast<ParenType>(DT))
        QDT = PT->desugar();
      else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
        QDT = TP->desugar();
      else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
        QDT = AT->desugar();
      if (QDT != castType &&
          QDT.getObjCLifetime() !=  Qualifiers::OCL_None) {
        SourceLocation loc =
          (castRange.isValid() ? castRange.getBegin() 
                              : castExpr->getExprLoc());
        Diag(loc, diag::err_arc_nolifetime_behavior);
      }
    }
    return ACR_okay;
  }
  
  if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;

  // Allow all of these types to be cast to integer types (but not
  // vice-versa).
  if (castACTC == ACTC_none && castType->isIntegralType(Context))
    return ACR_okay;
  
  // Allow casts between pointers to lifetime types (e.g., __strong id*)
  // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
  // must be explicit.
  if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
    return ACR_okay;
  if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
      CCK != CCK_ImplicitConversion)
    return ACR_okay;

  switch (ARCCastChecker(Context, exprACTC, castACTC).Visit(castExpr)) {
  // For invalid casts, fall through.
  case ACC_invalid:
    break;

  // Do nothing for both bottom and +0.
  case ACC_bottom:
  case ACC_plusZero:
    return ACR_okay;

  // If the result is +1, consume it here.
  case ACC_plusOne:
    castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
                                        CK_ARCConsumeObject, castExpr,
                                        0, VK_RValue);
    ExprNeedsCleanups = true;
    return ACR_okay;
  }

  // If this is a non-implicit cast from id or block type to a
  // CoreFoundation type, delay complaining in case the cast is used
  // in an acceptable context.
  if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) &&
      CCK != CCK_ImplicitConversion)
    return ACR_unbridged;

  diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
                            castExpr, exprACTC, CCK);
  return ACR_okay;
}

/// Given that we saw an expression with the ARCUnbridgedCastTy
/// placeholder type, complain bitterly.
void Sema::diagnoseARCUnbridgedCast(Expr *e) {
  // We expect the spurious ImplicitCastExpr to already have been stripped.
  assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
  CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());

  SourceRange castRange;
  QualType castType;
  CheckedConversionKind CCK;

  if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
    castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
    castType = cast->getTypeAsWritten();
    CCK = CCK_CStyleCast;
  } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
    castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
    castType = cast->getTypeAsWritten();
    CCK = CCK_OtherCast;
  } else {
    castType = cast->getType();
    CCK = CCK_ImplicitConversion;
  }

  ARCConversionTypeClass castACTC =
    classifyTypeForARCConversion(castType.getNonReferenceType());

  Expr *castExpr = realCast->getSubExpr();
  assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);

  diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
                            castExpr, ACTC_retainable, CCK);
}

/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
/// type, remove the placeholder cast.
Expr *Sema::stripARCUnbridgedCast(Expr *e) {
  assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));

  if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
    Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
    return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
  } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
    assert(uo->getOpcode() == UO_Extension);
    Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
    return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(),
                                   sub->getValueKind(), sub->getObjectKind(),
                                       uo->getOperatorLoc());
  } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
    assert(!gse->isResultDependent());

    unsigned n = gse->getNumAssocs();
    SmallVector<Expr*, 4> subExprs(n);
    SmallVector<TypeSourceInfo*, 4> subTypes(n);
    for (unsigned i = 0; i != n; ++i) {
      subTypes[i] = gse->getAssocTypeSourceInfo(i);
      Expr *sub = gse->getAssocExpr(i);
      if (i == gse->getResultIndex())
        sub = stripARCUnbridgedCast(sub);
      subExprs[i] = sub;
    }

    return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(),
                                              gse->getControllingExpr(),
                                              subTypes.data(), subExprs.data(),
                                              n, gse->getDefaultLoc(),
                                              gse->getRParenLoc(),
                                       gse->containsUnexpandedParameterPack(),
                                              gse->getResultIndex());
  } else {
    assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
    return cast<ImplicitCastExpr>(e)->getSubExpr();
  }
}

bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
                                                 QualType exprType) {
  QualType canCastType = 
    Context.getCanonicalType(castType).getUnqualifiedType();
  QualType canExprType = 
    Context.getCanonicalType(exprType).getUnqualifiedType();
  if (isa<ObjCObjectPointerType>(canCastType) &&
      castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
      canExprType->isObjCObjectPointerType()) {
    if (const ObjCObjectPointerType *ObjT =
        canExprType->getAs<ObjCObjectPointerType>())
      if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable())
        return false;
  }
  return true;
}

/// Look for an ObjCReclaimReturnedObject cast and destroy it.
static Expr *maybeUndoReclaimObject(Expr *e) {
  // For now, we just undo operands that are *immediately* reclaim
  // expressions, which prevents the vast majority of potential
  // problems here.  To catch them all, we'd need to rebuild arbitrary
  // value-propagating subexpressions --- we can't reliably rebuild
  // in-place because of expression sharing.
  if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
    if (ice->getCastKind() == CK_ARCReclaimReturnedObject)
      return ice->getSubExpr();

  return e;
}

ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
                                      ObjCBridgeCastKind Kind,
                                      SourceLocation BridgeKeywordLoc,
                                      TypeSourceInfo *TSInfo,
                                      Expr *SubExpr) {
  ExprResult SubResult = UsualUnaryConversions(SubExpr);
  if (SubResult.isInvalid()) return ExprError();
  SubExpr = SubResult.take();

  QualType T = TSInfo->getType();
  QualType FromType = SubExpr->getType();

  CastKind CK;

  bool MustConsume = false;
  if (T->isDependentType() || SubExpr->isTypeDependent()) {
    // Okay: we'll build a dependent expression type.
    CK = CK_Dependent;
  } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
    // Casting CF -> id
    CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
                                  : CK_CPointerToObjCPointerCast);
    switch (Kind) {
    case OBC_Bridge:
      break;
      
    case OBC_BridgeRetained: {
      bool br = KnownName(*this, "CFBridgingRelease");
      Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
        << 2
        << FromType
        << (T->isBlockPointerType()? 1 : 0)
        << T
        << SubExpr->getSourceRange()
        << Kind;
      Diag(BridgeKeywordLoc, diag::note_arc_bridge)
        << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
      Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
        << FromType << br
        << FixItHint::CreateReplacement(BridgeKeywordLoc, 
                                        br ? "CFBridgingRelease " 
                                           : "__bridge_transfer ");

      Kind = OBC_Bridge;
      break;
    }
      
    case OBC_BridgeTransfer:
      // We must consume the Objective-C object produced by the cast.
      MustConsume = true;
      break;
    }
  } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
    // Okay: id -> CF
    CK = CK_BitCast;
    switch (Kind) {
    case OBC_Bridge:
      // Reclaiming a value that's going to be __bridge-casted to CF
      // is very dangerous, so we don't do it.
      SubExpr = maybeUndoReclaimObject(SubExpr);
      break;
      
    case OBC_BridgeRetained:        
      // Produce the object before casting it.
      SubExpr = ImplicitCastExpr::Create(Context, FromType,
                                         CK_ARCProduceObject,
                                         SubExpr, 0, VK_RValue);
      break;
      
    case OBC_BridgeTransfer: {
      bool br = KnownName(*this, "CFBridgingRetain");
      Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
        << (FromType->isBlockPointerType()? 1 : 0)
        << FromType
        << 2
        << T
        << SubExpr->getSourceRange()
        << Kind;
        
      Diag(BridgeKeywordLoc, diag::note_arc_bridge)
        << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
      Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
        << T << br
        << FixItHint::CreateReplacement(BridgeKeywordLoc, 
                          br ? "CFBridgingRetain " : "__bridge_retained");
        
      Kind = OBC_Bridge;
      break;
    }
    }
  } else {
    Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
      << FromType << T << Kind
      << SubExpr->getSourceRange()
      << TSInfo->getTypeLoc().getSourceRange();
    return ExprError();
  }

  Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
                                                   BridgeKeywordLoc,
                                                   TSInfo, SubExpr);
  
  if (MustConsume) {
    ExprNeedsCleanups = true;
    Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 
                                      0, VK_RValue);    
  }
  
  return Result;
}

ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
                                      SourceLocation LParenLoc,
                                      ObjCBridgeCastKind Kind,
                                      SourceLocation BridgeKeywordLoc,
                                      ParsedType Type,
                                      SourceLocation RParenLoc,
                                      Expr *SubExpr) {
  TypeSourceInfo *TSInfo = 0;
  QualType T = GetTypeFromParser(Type, &TSInfo);
  if (!TSInfo)
    TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
  return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 
                              SubExpr);
}

Man Man