Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp |
//===--------------------- SemaLookup.cpp - Name Lookup ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements name lookup for C, C++, Objective-C, and // Objective-C++. // //===----------------------------------------------------------------------===// #include "clang/Sema/Sema.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Overload.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/TypoCorrection.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclLookups.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/LangOptions.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/edit_distance.h" #include "llvm/Support/ErrorHandling.h" #include <algorithm> #include <iterator> #include <limits> #include <list> #include <map> #include <set> #include <utility> #include <vector> using namespace clang; using namespace sema; namespace { class UnqualUsingEntry { const DeclContext *Nominated; const DeclContext *CommonAncestor; public: UnqualUsingEntry(const DeclContext *Nominated, const DeclContext *CommonAncestor) : Nominated(Nominated), CommonAncestor(CommonAncestor) { } const DeclContext *getCommonAncestor() const { return CommonAncestor; } const DeclContext *getNominatedNamespace() const { return Nominated; } // Sort by the pointer value of the common ancestor. struct Comparator { bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { return L.getCommonAncestor() < R.getCommonAncestor(); } bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { return E.getCommonAncestor() < DC; } bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { return DC < E.getCommonAncestor(); } }; }; /// A collection of using directives, as used by C++ unqualified /// lookup. class UnqualUsingDirectiveSet { typedef SmallVector<UnqualUsingEntry, 8> ListTy; ListTy list; llvm::SmallPtrSet<DeclContext*, 8> visited; public: UnqualUsingDirectiveSet() {} void visitScopeChain(Scope *S, Scope *InnermostFileScope) { // C++ [namespace.udir]p1: // During unqualified name lookup, the names appear as if they // were declared in the nearest enclosing namespace which contains // both the using-directive and the nominated namespace. DeclContext *InnermostFileDC = static_cast<DeclContext*>(InnermostFileScope->getEntity()); assert(InnermostFileDC && InnermostFileDC->isFileContext()); for (; S; S = S->getParent()) { // C++ [namespace.udir]p1: // A using-directive shall not appear in class scope, but may // appear in namespace scope or in block scope. DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()); if (Ctx && Ctx->isFileContext()) { visit(Ctx, Ctx); } else if (!Ctx || Ctx->isFunctionOrMethod()) { Scope::udir_iterator I = S->using_directives_begin(), End = S->using_directives_end(); for (; I != End; ++I) visit(*I, InnermostFileDC); } } } // Visits a context and collect all of its using directives // recursively. Treats all using directives as if they were // declared in the context. // // A given context is only every visited once, so it is important // that contexts be visited from the inside out in order to get // the effective DCs right. void visit(DeclContext *DC, DeclContext *EffectiveDC) { if (!visited.insert(DC)) return; addUsingDirectives(DC, EffectiveDC); } // Visits a using directive and collects all of its using // directives recursively. Treats all using directives as if they // were declared in the effective DC. void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { DeclContext *NS = UD->getNominatedNamespace(); if (!visited.insert(NS)) return; addUsingDirective(UD, EffectiveDC); addUsingDirectives(NS, EffectiveDC); } // Adds all the using directives in a context (and those nominated // by its using directives, transitively) as if they appeared in // the given effective context. void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { SmallVector<DeclContext*,4> queue; while (true) { DeclContext::udir_iterator I, End; for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { UsingDirectiveDecl *UD = *I; DeclContext *NS = UD->getNominatedNamespace(); if (visited.insert(NS)) { addUsingDirective(UD, EffectiveDC); queue.push_back(NS); } } if (queue.empty()) return; DC = queue.back(); queue.pop_back(); } } // Add a using directive as if it had been declared in the given // context. This helps implement C++ [namespace.udir]p3: // The using-directive is transitive: if a scope contains a // using-directive that nominates a second namespace that itself // contains using-directives, the effect is as if the // using-directives from the second namespace also appeared in // the first. void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { // Find the common ancestor between the effective context and // the nominated namespace. DeclContext *Common = UD->getNominatedNamespace(); while (!Common->Encloses(EffectiveDC)) Common = Common->getParent(); Common = Common->getPrimaryContext(); list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); } void done() { std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); } typedef ListTy::const_iterator const_iterator; const_iterator begin() const { return list.begin(); } const_iterator end() const { return list.end(); } std::pair<const_iterator,const_iterator> getNamespacesFor(DeclContext *DC) const { return std::equal_range(begin(), end(), DC->getPrimaryContext(), UnqualUsingEntry::Comparator()); } }; } // Retrieve the set of identifier namespaces that correspond to a // specific kind of name lookup. static inline unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration) { unsigned IDNS = 0; switch (NameKind) { case Sema::LookupObjCImplicitSelfParam: case Sema::LookupOrdinaryName: case Sema::LookupRedeclarationWithLinkage: IDNS = Decl::IDNS_Ordinary; if (CPlusPlus) { IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; } break; case Sema::LookupOperatorName: // Operator lookup is its own crazy thing; it is not the same // as (e.g.) looking up an operator name for redeclaration. assert(!Redeclaration && "cannot do redeclaration operator lookup"); IDNS = Decl::IDNS_NonMemberOperator; break; case Sema::LookupTagName: if (CPlusPlus) { IDNS = Decl::IDNS_Type; // When looking for a redeclaration of a tag name, we add: // 1) TagFriend to find undeclared friend decls // 2) Namespace because they can't "overload" with tag decls. // 3) Tag because it includes class templates, which can't // "overload" with tag decls. if (Redeclaration) IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; } else { IDNS = Decl::IDNS_Tag; } break; case Sema::LookupLabel: IDNS = Decl::IDNS_Label; break; case Sema::LookupMemberName: IDNS = Decl::IDNS_Member; if (CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; break; case Sema::LookupNestedNameSpecifierName: IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; break; case Sema::LookupNamespaceName: IDNS = Decl::IDNS_Namespace; break; case Sema::LookupUsingDeclName: IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Using; break; case Sema::LookupObjCProtocolName: IDNS = Decl::IDNS_ObjCProtocol; break; case Sema::LookupAnyName: IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol | Decl::IDNS_Type; break; } return IDNS; } void LookupResult::configure() { IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus, isForRedeclaration()); // If we're looking for one of the allocation or deallocation // operators, make sure that the implicitly-declared new and delete // operators can be found. if (!isForRedeclaration()) { switch (NameInfo.getName().getCXXOverloadedOperator()) { case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: SemaRef.DeclareGlobalNewDelete(); break; default: break; } } } void LookupResult::sanityImpl() const { // Note that this function is never called by NDEBUG builds. See // LookupResult::sanity(). assert(ResultKind != NotFound || Decls.size() == 0); assert(ResultKind != Found || Decls.size() == 1); assert(ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()); assert(ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))); assert((Paths != NULL) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))); } // Necessary because CXXBasePaths is not complete in Sema.h void LookupResult::deletePaths(CXXBasePaths *Paths) { delete Paths; } static NamedDecl *getVisibleDecl(NamedDecl *D); NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { return getVisibleDecl(D); } /// Resolves the result kind of this lookup. void LookupResult::resolveKind() { unsigned N = Decls.size(); // Fast case: no possible ambiguity. if (N == 0) { assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation); return; } // If there's a single decl, we need to examine it to decide what // kind of lookup this is. if (N == 1) { NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); if (isa<FunctionTemplateDecl>(D)) ResultKind = FoundOverloaded; else if (isa<UnresolvedUsingValueDecl>(D)) ResultKind = FoundUnresolvedValue; return; } // Don't do any extra resolution if we've already resolved as ambiguous. if (ResultKind == Ambiguous) return; llvm::SmallPtrSet<NamedDecl*, 16> Unique; llvm::SmallPtrSet<QualType, 16> UniqueTypes; bool Ambiguous = false; bool HasTag = false, HasFunction = false, HasNonFunction = false; bool HasFunctionTemplate = false, HasUnresolved = false; unsigned UniqueTagIndex = 0; unsigned I = 0; while (I < N) { NamedDecl *D = Decls[I]->getUnderlyingDecl(); D = cast<NamedDecl>(D->getCanonicalDecl()); // Redeclarations of types via typedef can occur both within a scope // and, through using declarations and directives, across scopes. There is // no ambiguity if they all refer to the same type, so unique based on the // canonical type. if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { if (!TD->getDeclContext()->isRecord()) { QualType T = SemaRef.Context.getTypeDeclType(TD); if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) { // The type is not unique; pull something off the back and continue // at this index. Decls[I] = Decls[--N]; continue; } } } if (!Unique.insert(D)) { // If it's not unique, pull something off the back (and // continue at this index). Decls[I] = Decls[--N]; continue; } // Otherwise, do some decl type analysis and then continue. if (isa<UnresolvedUsingValueDecl>(D)) { HasUnresolved = true; } else if (isa<TagDecl>(D)) { if (HasTag) Ambiguous = true; UniqueTagIndex = I; HasTag = true; } else if (isa<FunctionTemplateDecl>(D)) { HasFunction = true; HasFunctionTemplate = true; } else if (isa<FunctionDecl>(D)) { HasFunction = true; } else { if (HasNonFunction) Ambiguous = true; HasNonFunction = true; } I++; } // C++ [basic.scope.hiding]p2: // A class name or enumeration name can be hidden by the name of // an object, function, or enumerator declared in the same // scope. If a class or enumeration name and an object, function, // or enumerator are declared in the same scope (in any order) // with the same name, the class or enumeration name is hidden // wherever the object, function, or enumerator name is visible. // But it's still an error if there are distinct tag types found, // even if they're not visible. (ref?) if (HideTags && HasTag && !Ambiguous && (HasFunction || HasNonFunction || HasUnresolved)) { if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals( Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext())) Decls[UniqueTagIndex] = Decls[--N]; else Ambiguous = true; } Decls.set_size(N); if (HasNonFunction && (HasFunction || HasUnresolved)) Ambiguous = true; if (Ambiguous) setAmbiguous(LookupResult::AmbiguousReference); else if (HasUnresolved) ResultKind = LookupResult::FoundUnresolvedValue; else if (N > 1 || HasFunctionTemplate) ResultKind = LookupResult::FoundOverloaded; else ResultKind = LookupResult::Found; } void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { CXXBasePaths::const_paths_iterator I, E; DeclContext::lookup_iterator DI, DE; for (I = P.begin(), E = P.end(); I != E; ++I) for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) addDecl(*DI); } void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { Paths = new CXXBasePaths; Paths->swap(P); addDeclsFromBasePaths(*Paths); resolveKind(); setAmbiguous(AmbiguousBaseSubobjects); } void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { Paths = new CXXBasePaths; Paths->swap(P); addDeclsFromBasePaths(*Paths); resolveKind(); setAmbiguous(AmbiguousBaseSubobjectTypes); } void LookupResult::print(raw_ostream &Out) { Out << Decls.size() << " result(s)"; if (isAmbiguous()) Out << ", ambiguous"; if (Paths) Out << ", base paths present"; for (iterator I = begin(), E = end(); I != E; ++I) { Out << "\n"; (*I)->print(Out, 2); } } /// \brief Lookup a builtin function, when name lookup would otherwise /// fail. static bool LookupBuiltin(Sema &S, LookupResult &R) { Sema::LookupNameKind NameKind = R.getLookupKind(); // If we didn't find a use of this identifier, and if the identifier // corresponds to a compiler builtin, create the decl object for the builtin // now, injecting it into translation unit scope, and return it. if (NameKind == Sema::LookupOrdinaryName || NameKind == Sema::LookupRedeclarationWithLinkage) { IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); if (II) { // If this is a builtin on this (or all) targets, create the decl. if (unsigned BuiltinID = II->getBuiltinID()) { // In C++, we don't have any predefined library functions like // 'malloc'. Instead, we'll just error. if (S.getLangOpts().CPlusPlus && S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return false; if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S.TUScope, R.isForRedeclaration(), R.getNameLoc())) { R.addDecl(D); return true; } if (R.isForRedeclaration()) { // If we're redeclaring this function anyway, forget that // this was a builtin at all. S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents); } return false; } } } return false; } /// \brief Determine whether we can declare a special member function within /// the class at this point. static bool CanDeclareSpecialMemberFunction(ASTContext &Context, const CXXRecordDecl *Class) { // We need to have a definition for the class. if (!Class->getDefinition() || Class->isDependentContext()) return false; // We can't be in the middle of defining the class. if (const RecordType *RecordTy = Context.getTypeDeclType(Class)->getAs<RecordType>()) return !RecordTy->isBeingDefined(); return false; } void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { if (!CanDeclareSpecialMemberFunction(Context, Class)) return; // If the default constructor has not yet been declared, do so now. if (Class->needsImplicitDefaultConstructor()) DeclareImplicitDefaultConstructor(Class); // If the copy constructor has not yet been declared, do so now. if (!Class->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(Class); // If the copy assignment operator has not yet been declared, do so now. if (!Class->hasDeclaredCopyAssignment()) DeclareImplicitCopyAssignment(Class); if (getLangOpts().CPlusPlus0x) { // If the move constructor has not yet been declared, do so now. if (Class->needsImplicitMoveConstructor()) DeclareImplicitMoveConstructor(Class); // might not actually do it // If the move assignment operator has not yet been declared, do so now. if (Class->needsImplicitMoveAssignment()) DeclareImplicitMoveAssignment(Class); // might not actually do it } // If the destructor has not yet been declared, do so now. if (!Class->hasDeclaredDestructor()) DeclareImplicitDestructor(Class); } /// \brief Determine whether this is the name of an implicitly-declared /// special member function. static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: return true; case DeclarationName::CXXOperatorName: return Name.getCXXOverloadedOperator() == OO_Equal; default: break; } return false; } /// \brief If there are any implicit member functions with the given name /// that need to be declared in the given declaration context, do so. static void DeclareImplicitMemberFunctionsWithName(Sema &S, DeclarationName Name, const DeclContext *DC) { if (!DC) return; switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) if (Record->getDefinition() && CanDeclareSpecialMemberFunction(S.Context, Record)) { CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); if (Record->needsImplicitDefaultConstructor()) S.DeclareImplicitDefaultConstructor(Class); if (!Record->hasDeclaredCopyConstructor()) S.DeclareImplicitCopyConstructor(Class); if (S.getLangOpts().CPlusPlus0x && Record->needsImplicitMoveConstructor()) S.DeclareImplicitMoveConstructor(Class); } break; case DeclarationName::CXXDestructorName: if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) if (Record->getDefinition() && !Record->hasDeclaredDestructor() && CanDeclareSpecialMemberFunction(S.Context, Record)) S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); break; case DeclarationName::CXXOperatorName: if (Name.getCXXOverloadedOperator() != OO_Equal) break; if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { if (Record->getDefinition() && CanDeclareSpecialMemberFunction(S.Context, Record)) { CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); if (!Record->hasDeclaredCopyAssignment()) S.DeclareImplicitCopyAssignment(Class); if (S.getLangOpts().CPlusPlus0x && Record->needsImplicitMoveAssignment()) S.DeclareImplicitMoveAssignment(Class); } } break; default: break; } } // Adds all qualifying matches for a name within a decl context to the // given lookup result. Returns true if any matches were found. static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { bool Found = false; // Lazily declare C++ special member functions. if (S.getLangOpts().CPlusPlus) DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC); // Perform lookup into this declaration context. DeclContext::lookup_const_iterator I, E; for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) { NamedDecl *D = *I; if ((D = R.getAcceptableDecl(D))) { R.addDecl(D); Found = true; } } if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R)) return true; if (R.getLookupName().getNameKind() != DeclarationName::CXXConversionFunctionName || R.getLookupName().getCXXNameType()->isDependentType() || !isa<CXXRecordDecl>(DC)) return Found; // C++ [temp.mem]p6: // A specialization of a conversion function template is not found by // name lookup. Instead, any conversion function templates visible in the // context of the use are considered. [...] const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); if (!Record->isCompleteDefinition()) return Found; const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions(); for (UnresolvedSetImpl::iterator U = Unresolved->begin(), UEnd = Unresolved->end(); U != UEnd; ++U) { FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); if (!ConvTemplate) continue; // When we're performing lookup for the purposes of redeclaration, just // add the conversion function template. When we deduce template // arguments for specializations, we'll end up unifying the return // type of the new declaration with the type of the function template. if (R.isForRedeclaration()) { R.addDecl(ConvTemplate); Found = true; continue; } // C++ [temp.mem]p6: // [...] For each such operator, if argument deduction succeeds // (14.9.2.3), the resulting specialization is used as if found by // name lookup. // // When referencing a conversion function for any purpose other than // a redeclaration (such that we'll be building an expression with the // result), perform template argument deduction and place the // specialization into the result set. We do this to avoid forcing all // callers to perform special deduction for conversion functions. TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc()); FunctionDecl *Specialization = 0; const FunctionProtoType *ConvProto = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); assert(ConvProto && "Nonsensical conversion function template type"); // Compute the type of the function that we would expect the conversion // function to have, if it were to match the name given. // FIXME: Calling convention! FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default); EPI.ExceptionSpecType = EST_None; EPI.NumExceptions = 0; QualType ExpectedType = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), 0, 0, EPI); // Perform template argument deduction against the type that we would // expect the function to have. if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType, Specialization, Info) == Sema::TDK_Success) { R.addDecl(Specialization); Found = true; } } return Found; } // Performs C++ unqualified lookup into the given file context. static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); // Perform direct name lookup into the LookupCtx. bool Found = LookupDirect(S, R, NS); // Perform direct name lookup into the namespaces nominated by the // using directives whose common ancestor is this namespace. UnqualUsingDirectiveSet::const_iterator UI, UEnd; llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); for (; UI != UEnd; ++UI) if (LookupDirect(S, R, UI->getNominatedNamespace())) Found = true; R.resolveKind(); return Found; } static bool isNamespaceOrTranslationUnitScope(Scope *S) { if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) return Ctx->isFileContext(); return false; } // Find the next outer declaration context from this scope. This // routine actually returns the semantic outer context, which may // differ from the lexical context (encoded directly in the Scope // stack) when we are parsing a member of a class template. In this // case, the second element of the pair will be true, to indicate that // name lookup should continue searching in this semantic context when // it leaves the current template parameter scope. static std::pair<DeclContext *, bool> findOuterContext(Scope *S) { DeclContext *DC = static_cast<DeclContext *>(S->getEntity()); DeclContext *Lexical = 0; for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) { if (OuterS->getEntity()) { Lexical = static_cast<DeclContext *>(OuterS->getEntity()); break; } } // C++ [temp.local]p8: // In the definition of a member of a class template that appears // outside of the namespace containing the class template // definition, the name of a template-parameter hides the name of // a member of this namespace. // // Example: // // namespace N { // class C { }; // // template<class T> class B { // void f(T); // }; // } // // template<class C> void N::B<C>::f(C) { // C b; // C is the template parameter, not N::C // } // // In this example, the lexical context we return is the // TranslationUnit, while the semantic context is the namespace N. if (!Lexical || !DC || !S->getParent() || !S->getParent()->isTemplateParamScope()) return std::make_pair(Lexical, false); // Find the outermost template parameter scope. // For the example, this is the scope for the template parameters of // template<class C>. Scope *OutermostTemplateScope = S->getParent(); while (OutermostTemplateScope->getParent() && OutermostTemplateScope->getParent()->isTemplateParamScope()) OutermostTemplateScope = OutermostTemplateScope->getParent(); // Find the namespace context in which the original scope occurs. In // the example, this is namespace N. DeclContext *Semantic = DC; while (!Semantic->isFileContext()) Semantic = Semantic->getParent(); // Find the declaration context just outside of the template // parameter scope. This is the context in which the template is // being lexically declaration (a namespace context). In the // example, this is the global scope. if (Lexical->isFileContext() && !Lexical->Equals(Semantic) && Lexical->Encloses(Semantic)) return std::make_pair(Semantic, true); return std::make_pair(Lexical, false); } bool Sema::CppLookupName(LookupResult &R, Scope *S) { assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); DeclarationName Name = R.getLookupName(); // If this is the name of an implicitly-declared special member function, // go through the scope stack to implicitly declare if (isImplicitlyDeclaredMemberFunctionName(Name)) { for (Scope *PreS = S; PreS; PreS = PreS->getParent()) if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity())) DeclareImplicitMemberFunctionsWithName(*this, Name, DC); } // Implicitly declare member functions with the name we're looking for, if in // fact we are in a scope where it matters. Scope *Initial = S; IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); // First we lookup local scope. // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] // ...During unqualified name lookup (3.4.1), the names appear as if // they were declared in the nearest enclosing namespace which contains // both the using-directive and the nominated namespace. // [Note: in this context, "contains" means "contains directly or // indirectly". // // For example: // namespace A { int i; } // void foo() { // int i; // { // using namespace A; // ++i; // finds local 'i', A::i appears at global scope // } // } // DeclContext *OutsideOfTemplateParamDC = 0; for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()); // Check whether the IdResolver has anything in this scope. bool Found = false; for (; I != IEnd && S->isDeclScope(*I); ++I) { if (NamedDecl *ND = R.getAcceptableDecl(*I)) { Found = true; R.addDecl(ND); } } if (Found) { R.resolveKind(); if (S->isClassScope()) if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx)) R.setNamingClass(Record); return true; } if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && S->getParent() && !S->getParent()->isTemplateParamScope()) { // We've just searched the last template parameter scope and // found nothing, so look into the the contexts between the // lexical and semantic declaration contexts returned by // findOuterContext(). This implements the name lookup behavior // of C++ [temp.local]p8. Ctx = OutsideOfTemplateParamDC; OutsideOfTemplateParamDC = 0; } if (Ctx) { DeclContext *OuterCtx; bool SearchAfterTemplateScope; llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); if (SearchAfterTemplateScope) OutsideOfTemplateParamDC = OuterCtx; for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { // We do not directly look into transparent contexts, since // those entities will be found in the nearest enclosing // non-transparent context. if (Ctx->isTransparentContext()) continue; // We do not look directly into function or method contexts, // since all of the local variables and parameters of the // function/method are present within the Scope. if (Ctx->isFunctionOrMethod()) { // If we have an Objective-C instance method, look for ivars // in the corresponding interface. if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( Name.getAsIdentifierInfo(), ClassDeclared)) { if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { R.addDecl(ND); R.resolveKind(); return true; } } } } continue; } // Perform qualified name lookup into this context. // FIXME: In some cases, we know that every name that could be found by // this qualified name lookup will also be on the identifier chain. For // example, inside a class without any base classes, we never need to // perform qualified lookup because all of the members are on top of the // identifier chain. if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) return true; } } } // Stop if we ran out of scopes. // FIXME: This really, really shouldn't be happening. if (!S) return false; // If we are looking for members, no need to look into global/namespace scope. if (R.getLookupKind() == LookupMemberName) return false; // Collect UsingDirectiveDecls in all scopes, and recursively all // nominated namespaces by those using-directives. // // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we // don't build it for each lookup! UnqualUsingDirectiveSet UDirs; UDirs.visitScopeChain(Initial, S); UDirs.done(); // Lookup namespace scope, and global scope. // Unqualified name lookup in C++ requires looking into scopes // that aren't strictly lexical, and therefore we walk through the // context as well as walking through the scopes. for (; S; S = S->getParent()) { // Check whether the IdResolver has anything in this scope. bool Found = false; for (; I != IEnd && S->isDeclScope(*I); ++I) { if (NamedDecl *ND = R.getAcceptableDecl(*I)) { // We found something. Look for anything else in our scope // with this same name and in an acceptable identifier // namespace, so that we can construct an overload set if we // need to. Found = true; R.addDecl(ND); } } if (Found && S->isTemplateParamScope()) { R.resolveKind(); return true; } DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && S->getParent() && !S->getParent()->isTemplateParamScope()) { // We've just searched the last template parameter scope and // found nothing, so look into the the contexts between the // lexical and semantic declaration contexts returned by // findOuterContext(). This implements the name lookup behavior // of C++ [temp.local]p8. Ctx = OutsideOfTemplateParamDC; OutsideOfTemplateParamDC = 0; } if (Ctx) { DeclContext *OuterCtx; bool SearchAfterTemplateScope; llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); if (SearchAfterTemplateScope) OutsideOfTemplateParamDC = OuterCtx; for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { // We do not directly look into transparent contexts, since // those entities will be found in the nearest enclosing // non-transparent context. if (Ctx->isTransparentContext()) continue; // If we have a context, and it's not a context stashed in the // template parameter scope for an out-of-line definition, also // look into that context. if (!(Found && S && S->isTemplateParamScope())) { assert(Ctx->isFileContext() && "We should have been looking only at file context here already."); // Look into context considering using-directives. if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) Found = true; } if (Found) { R.resolveKind(); return true; } if (R.isForRedeclaration() && !Ctx->isTransparentContext()) return false; } } if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) return false; } return !R.empty(); } /// \brief Retrieve the visible declaration corresponding to D, if any. /// /// This routine determines whether the declaration D is visible in the current /// module, with the current imports. If not, it checks whether any /// redeclaration of D is visible, and if so, returns that declaration. /// /// \returns D, or a visible previous declaration of D, whichever is more recent /// and visible. If no declaration of D is visible, returns null. static NamedDecl *getVisibleDecl(NamedDecl *D) { if (LookupResult::isVisible(D)) return D; for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end(); RD != RDEnd; ++RD) { if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) { if (LookupResult::isVisible(ND)) return ND; } } return 0; } /// @brief Perform unqualified name lookup starting from a given /// scope. /// /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is /// used to find names within the current scope. For example, 'x' in /// @code /// int x; /// int f() { /// return x; // unqualified name look finds 'x' in the global scope /// } /// @endcode /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// @param S The scope from which unqualified name lookup will /// begin. If the lookup criteria permits, name lookup may also search /// in the parent scopes. /// /// @param Name The name of the entity that we are searching for. /// /// @param Loc If provided, the source location where we're performing /// name lookup. At present, this is only used to produce diagnostics when /// C library functions (like "malloc") are implicitly declared. /// /// @returns The result of name lookup, which includes zero or more /// declarations and possibly additional information used to diagnose /// ambiguities. bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { DeclarationName Name = R.getLookupName(); if (!Name) return false; LookupNameKind NameKind = R.getLookupKind(); if (!getLangOpts().CPlusPlus) { // Unqualified name lookup in C/Objective-C is purely lexical, so // search in the declarations attached to the name. if (NameKind == Sema::LookupRedeclarationWithLinkage) { // Find the nearest non-transparent declaration scope. while (!(S->getFlags() & Scope::DeclScope) || (S->getEntity() && static_cast<DeclContext *>(S->getEntity()) ->isTransparentContext())) S = S->getParent(); } unsigned IDNS = R.getIdentifierNamespace(); // Scan up the scope chain looking for a decl that matches this // identifier that is in the appropriate namespace. This search // should not take long, as shadowing of names is uncommon, and // deep shadowing is extremely uncommon. bool LeftStartingScope = false; for (IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); I != IEnd; ++I) if ((*I)->isInIdentifierNamespace(IDNS)) { if (NameKind == LookupRedeclarationWithLinkage) { // Determine whether this (or a previous) declaration is // out-of-scope. if (!LeftStartingScope && !S->isDeclScope(*I)) LeftStartingScope = true; // If we found something outside of our starting scope that // does not have linkage, skip it. if (LeftStartingScope && !((*I)->hasLinkage())) continue; } else if (NameKind == LookupObjCImplicitSelfParam && !isa<ImplicitParamDecl>(*I)) continue; // If this declaration is module-private and it came from an AST // file, we can't see it. NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I); if (!D) continue; R.addDecl(D); // Check whether there are any other declarations with the same name // and in the same scope. if (I != IEnd) { // Find the scope in which this declaration was declared (if it // actually exists in a Scope). while (S && !S->isDeclScope(D)) S = S->getParent(); // If the scope containing the declaration is the translation unit, // then we'll need to perform our checks based on the matching // DeclContexts rather than matching scopes. if (S && isNamespaceOrTranslationUnitScope(S)) S = 0; // Compute the DeclContext, if we need it. DeclContext *DC = 0; if (!S) DC = (*I)->getDeclContext()->getRedeclContext(); IdentifierResolver::iterator LastI = I; for (++LastI; LastI != IEnd; ++LastI) { if (S) { // Match based on scope. if (!S->isDeclScope(*LastI)) break; } else { // Match based on DeclContext. DeclContext *LastDC = (*LastI)->getDeclContext()->getRedeclContext(); if (!LastDC->Equals(DC)) break; } // If the declaration isn't in the right namespace, skip it. if (!(*LastI)->isInIdentifierNamespace(IDNS)) continue; D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI); if (D) R.addDecl(D); } R.resolveKind(); } return true; } } else { // Perform C++ unqualified name lookup. if (CppLookupName(R, S)) return true; } // If we didn't find a use of this identifier, and if the identifier // corresponds to a compiler builtin, create the decl object for the builtin // now, injecting it into translation unit scope, and return it. if (AllowBuiltinCreation && LookupBuiltin(*this, R)) return true; // If we didn't find a use of this identifier, the ExternalSource // may be able to handle the situation. // Note: some lookup failures are expected! // See e.g. R.isForRedeclaration(). return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); } /// @brief Perform qualified name lookup in the namespaces nominated by /// using directives by the given context. /// /// C++98 [namespace.qual]p2: /// Given X::m (where X is a user-declared namespace), or given ::m /// (where X is the global namespace), let S be the set of all /// declarations of m in X and in the transitive closure of all /// namespaces nominated by using-directives in X and its used /// namespaces, except that using-directives are ignored in any /// namespace, including X, directly containing one or more /// declarations of m. No namespace is searched more than once in /// the lookup of a name. If S is the empty set, the program is /// ill-formed. Otherwise, if S has exactly one member, or if the /// context of the reference is a using-declaration /// (namespace.udecl), S is the required set of declarations of /// m. Otherwise if the use of m is not one that allows a unique /// declaration to be chosen from S, the program is ill-formed. /// C++98 [namespace.qual]p5: /// During the lookup of a qualified namespace member name, if the /// lookup finds more than one declaration of the member, and if one /// declaration introduces a class name or enumeration name and the /// other declarations either introduce the same object, the same /// enumerator or a set of functions, the non-type name hides the /// class or enumeration name if and only if the declarations are /// from the same namespace; otherwise (the declarations are from /// different namespaces), the program is ill-formed. static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC) { assert(StartDC->isFileContext() && "start context is not a file context"); DeclContext::udir_iterator I = StartDC->using_directives_begin(); DeclContext::udir_iterator E = StartDC->using_directives_end(); if (I == E) return false; // We have at least added all these contexts to the queue. llvm::SmallPtrSet<DeclContext*, 8> Visited; Visited.insert(StartDC); // We have not yet looked into these namespaces, much less added // their "using-children" to the queue. SmallVector<NamespaceDecl*, 8> Queue; // We have already looked into the initial namespace; seed the queue // with its using-children. for (; I != E; ++I) { NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); if (Visited.insert(ND)) Queue.push_back(ND); } // The easiest way to implement the restriction in [namespace.qual]p5 // is to check whether any of the individual results found a tag // and, if so, to declare an ambiguity if the final result is not // a tag. bool FoundTag = false; bool FoundNonTag = false; LookupResult LocalR(LookupResult::Temporary, R); bool Found = false; while (!Queue.empty()) { NamespaceDecl *ND = Queue.back(); Queue.pop_back(); // We go through some convolutions here to avoid copying results // between LookupResults. bool UseLocal = !R.empty(); LookupResult &DirectR = UseLocal ? LocalR : R; bool FoundDirect = LookupDirect(S, DirectR, ND); if (FoundDirect) { // First do any local hiding. DirectR.resolveKind(); // If the local result is a tag, remember that. if (DirectR.isSingleTagDecl()) FoundTag = true; else FoundNonTag = true; // Append the local results to the total results if necessary. if (UseLocal) { R.addAllDecls(LocalR); LocalR.clear(); } } // If we find names in this namespace, ignore its using directives. if (FoundDirect) { Found = true; continue; } for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { NamespaceDecl *Nom = (*I)->getNominatedNamespace(); if (Visited.insert(Nom)) Queue.push_back(Nom); } } if (Found) { if (FoundTag && FoundNonTag) R.setAmbiguousQualifiedTagHiding(); else R.resolveKind(); } return Found; } /// \brief Callback that looks for any member of a class with the given name. static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name) { RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); DeclarationName N = DeclarationName::getFromOpaquePtr(Name); Path.Decls = BaseRecord->lookup(N); return Path.Decls.first != Path.Decls.second; } /// \brief Determine whether the given set of member declarations contains only /// static members, nested types, and enumerators. template<typename InputIterator> static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) { Decl *D = (*First)->getUnderlyingDecl(); if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D)) return true; if (isa<CXXMethodDecl>(D)) { // Determine whether all of the methods are static. bool AllMethodsAreStatic = true; for(; First != Last; ++First) { D = (*First)->getUnderlyingDecl(); if (!isa<CXXMethodDecl>(D)) { assert(isa<TagDecl>(D) && "Non-function must be a tag decl"); break; } if (!cast<CXXMethodDecl>(D)->isStatic()) { AllMethodsAreStatic = false; break; } } if (AllMethodsAreStatic) return true; } return false; } /// \brief Perform qualified name lookup into a given context. /// /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find /// names when the context of those names is explicit specified, e.g., /// "std::vector" or "x->member", or as part of unqualified name lookup. /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// \param R captures both the lookup criteria and any lookup results found. /// /// \param LookupCtx The context in which qualified name lookup will /// search. If the lookup criteria permits, name lookup may also search /// in the parent contexts or (for C++ classes) base classes. /// /// \param InUnqualifiedLookup true if this is qualified name lookup that /// occurs as part of unqualified name lookup. /// /// \returns true if lookup succeeded, false if it failed. bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup) { assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); if (!R.getLookupName()) return false; // Make sure that the declaration context is complete. assert((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && "Declaration context must already be complete!"); // Perform qualified name lookup into the LookupCtx. if (LookupDirect(*this, R, LookupCtx)) { R.resolveKind(); if (isa<CXXRecordDecl>(LookupCtx)) R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); return true; } // Don't descend into implied contexts for redeclarations. // C++98 [namespace.qual]p6: // In a declaration for a namespace member in which the // declarator-id is a qualified-id, given that the qualified-id // for the namespace member has the form // nested-name-specifier unqualified-id // the unqualified-id shall name a member of the namespace // designated by the nested-name-specifier. // See also [class.mfct]p5 and [class.static.data]p2. if (R.isForRedeclaration()) return false; // If this is a namespace, look it up in the implied namespaces. if (LookupCtx->isFileContext()) return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); // If this isn't a C++ class, we aren't allowed to look into base // classes, we're done. CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); if (!LookupRec || !LookupRec->getDefinition()) return false; // If we're performing qualified name lookup into a dependent class, // then we are actually looking into a current instantiation. If we have any // dependent base classes, then we either have to delay lookup until // template instantiation time (at which point all bases will be available) // or we have to fail. if (!InUnqualifiedLookup && LookupRec->isDependentContext() && LookupRec->hasAnyDependentBases()) { R.setNotFoundInCurrentInstantiation(); return false; } // Perform lookup into our base classes. CXXBasePaths Paths; Paths.setOrigin(LookupRec); // Look for this member in our base classes CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; switch (R.getLookupKind()) { case LookupObjCImplicitSelfParam: case LookupOrdinaryName: case LookupMemberName: case LookupRedeclarationWithLinkage: BaseCallback = &CXXRecordDecl::FindOrdinaryMember; break; case LookupTagName: BaseCallback = &CXXRecordDecl::FindTagMember; break; case LookupAnyName: BaseCallback = &LookupAnyMember; break; case LookupUsingDeclName: // This lookup is for redeclarations only. case LookupOperatorName: case LookupNamespaceName: case LookupObjCProtocolName: case LookupLabel: // These lookups will never find a member in a C++ class (or base class). return false; case LookupNestedNameSpecifierName: BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; break; } if (!LookupRec->lookupInBases(BaseCallback, R.getLookupName().getAsOpaquePtr(), Paths)) return false; R.setNamingClass(LookupRec); // C++ [class.member.lookup]p2: // [...] If the resulting set of declarations are not all from // sub-objects of the same type, or the set has a nonstatic member // and includes members from distinct sub-objects, there is an // ambiguity and the program is ill-formed. Otherwise that set is // the result of the lookup. QualType SubobjectType; int SubobjectNumber = 0; AccessSpecifier SubobjectAccess = AS_none; for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); Path != PathEnd; ++Path) { const CXXBasePathElement &PathElement = Path->back(); // Pick the best (i.e. most permissive i.e. numerically lowest) access // across all paths. SubobjectAccess = std::min(SubobjectAccess, Path->Access); // Determine whether we're looking at a distinct sub-object or not. if (SubobjectType.isNull()) { // This is the first subobject we've looked at. Record its type. SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); SubobjectNumber = PathElement.SubobjectNumber; continue; } if (SubobjectType != Context.getCanonicalType(PathElement.Base->getType())) { // We found members of the given name in two subobjects of // different types. If the declaration sets aren't the same, this // this lookup is ambiguous. if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) { CXXBasePaths::paths_iterator FirstPath = Paths.begin(); DeclContext::lookup_iterator FirstD = FirstPath->Decls.first; DeclContext::lookup_iterator CurrentD = Path->Decls.first; while (FirstD != FirstPath->Decls.second && CurrentD != Path->Decls.second) { if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() != (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl()) break; ++FirstD; ++CurrentD; } if (FirstD == FirstPath->Decls.second && CurrentD == Path->Decls.second) continue; } R.setAmbiguousBaseSubobjectTypes(Paths); return true; } if (SubobjectNumber != PathElement.SubobjectNumber) { // We have a different subobject of the same type. // C++ [class.member.lookup]p5: // A static member, a nested type or an enumerator defined in // a base class T can unambiguously be found even if an object // has more than one base class subobject of type T. if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) continue; // We have found a nonstatic member name in multiple, distinct // subobjects. Name lookup is ambiguous. R.setAmbiguousBaseSubobjects(Paths); return true; } } // Lookup in a base class succeeded; return these results. DeclContext::lookup_iterator I, E; for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) { NamedDecl *D = *I; AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, D->getAccess()); R.addDecl(D, AS); } R.resolveKind(); return true; } /// @brief Performs name lookup for a name that was parsed in the /// source code, and may contain a C++ scope specifier. /// /// This routine is a convenience routine meant to be called from /// contexts that receive a name and an optional C++ scope specifier /// (e.g., "N::M::x"). It will then perform either qualified or /// unqualified name lookup (with LookupQualifiedName or LookupName, /// respectively) on the given name and return those results. /// /// @param S The scope from which unqualified name lookup will /// begin. /// /// @param SS An optional C++ scope-specifier, e.g., "::N::M". /// /// @param EnteringContext Indicates whether we are going to enter the /// context of the scope-specifier SS (if present). /// /// @returns True if any decls were found (but possibly ambiguous) bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation, bool EnteringContext) { if (SS && SS->isInvalid()) { // When the scope specifier is invalid, don't even look for // anything. return false; } if (SS && SS->isSet()) { if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { // We have resolved the scope specifier to a particular declaration // contex, and will perform name lookup in that context. if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) return false; R.setContextRange(SS->getRange()); return LookupQualifiedName(R, DC); } // We could not resolve the scope specified to a specific declaration // context, which means that SS refers to an unknown specialization. // Name lookup can't find anything in this case. R.setNotFoundInCurrentInstantiation(); R.setContextRange(SS->getRange()); return false; } // Perform unqualified name lookup starting in the given scope. return LookupName(R, S, AllowBuiltinCreation); } /// @brief Produce a diagnostic describing the ambiguity that resulted /// from name lookup. /// /// @param Result The ambiguous name lookup result. /// /// @param Name The name of the entity that name lookup was /// searching for. /// /// @param NameLoc The location of the name within the source code. /// /// @param LookupRange A source range that provides more /// source-location information concerning the lookup itself. For /// example, this range might highlight a nested-name-specifier that /// precedes the name. /// /// @returns true bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); DeclarationName Name = Result.getLookupName(); SourceLocation NameLoc = Result.getNameLoc(); SourceRange LookupRange = Result.getContextRange(); switch (Result.getAmbiguityKind()) { case LookupResult::AmbiguousBaseSubobjects: { CXXBasePaths *Paths = Result.getBasePaths(); QualType SubobjectType = Paths->front().back().Base->getType(); Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) << LookupRange; DeclContext::lookup_iterator Found = Paths->front().Decls.first; while (isa<CXXMethodDecl>(*Found) && cast<CXXMethodDecl>(*Found)->isStatic()) ++Found; Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); return true; } case LookupResult::AmbiguousBaseSubobjectTypes: { Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) << Name << LookupRange; CXXBasePaths *Paths = Result.getBasePaths(); std::set<Decl *> DeclsPrinted; for (CXXBasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end(); Path != PathEnd; ++Path) { Decl *D = *Path->Decls.first; if (DeclsPrinted.insert(D).second) Diag(D->getLocation(), diag::note_ambiguous_member_found); } return true; } case LookupResult::AmbiguousTagHiding: { Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; llvm::SmallPtrSet<NamedDecl*,8> TagDecls; LookupResult::iterator DI, DE = Result.end(); for (DI = Result.begin(); DI != DE; ++DI) if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) { TagDecls.insert(TD); Diag(TD->getLocation(), diag::note_hidden_tag); } for (DI = Result.begin(); DI != DE; ++DI) if (!isa<TagDecl>(*DI)) Diag((*DI)->getLocation(), diag::note_hiding_object); // For recovery purposes, go ahead and implement the hiding. LookupResult::Filter F = Result.makeFilter(); while (F.hasNext()) { if (TagDecls.count(F.next())) F.erase(); } F.done(); return true; } case LookupResult::AmbiguousReference: { Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; LookupResult::iterator DI = Result.begin(), DE = Result.end(); for (; DI != DE; ++DI) Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; return true; } } llvm_unreachable("unknown ambiguity kind"); } namespace { struct AssociatedLookup { AssociatedLookup(Sema &S, Sema::AssociatedNamespaceSet &Namespaces, Sema::AssociatedClassSet &Classes) : S(S), Namespaces(Namespaces), Classes(Classes) { } Sema &S; Sema::AssociatedNamespaceSet &Namespaces; Sema::AssociatedClassSet &Classes; }; } static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, DeclContext *Ctx) { // Add the associated namespace for this class. // We don't use DeclContext::getEnclosingNamespaceContext() as this may // be a locally scoped record. // We skip out of inline namespaces. The innermost non-inline namespace // contains all names of all its nested inline namespaces anyway, so we can // replace the entire inline namespace tree with its root. while (Ctx->isRecord() || Ctx->isTransparentContext() || Ctx->isInlineNamespace()) Ctx = Ctx->getParent(); if (Ctx->isFileContext()) Namespaces.insert(Ctx->getPrimaryContext()); } // \brief Add the associated classes and namespaces for argument-dependent // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, const TemplateArgument &Arg) { // C++ [basic.lookup.koenig]p2, last bullet: // -- [...] ; switch (Arg.getKind()) { case TemplateArgument::Null: break; case TemplateArgument::Type: // [...] the namespaces and classes associated with the types of the // template arguments provided for template type parameters (excluding // template template parameters) addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); break; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: { // [...] the namespaces in which any template template arguments are // defined; and the classes in which any member templates used as // template template arguments are defined. TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { DeclContext *Ctx = ClassTemplate->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) Result.Classes.insert(EnclosingClass); // Add the associated namespace for this class. CollectEnclosingNamespace(Result.Namespaces, Ctx); } break; } case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::Expression: // [Note: non-type template arguments do not contribute to the set of // associated namespaces. ] break; case TemplateArgument::Pack: for (TemplateArgument::pack_iterator P = Arg.pack_begin(), PEnd = Arg.pack_end(); P != PEnd; ++P) addAssociatedClassesAndNamespaces(Result, *P); break; } } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of class type // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, CXXRecordDecl *Class) { // Just silently ignore anything whose name is __va_list_tag. if (Class->getDeclName() == Result.S.VAListTagName) return; // C++ [basic.lookup.koenig]p2: // [...] // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. // Add the class of which it is a member, if any. DeclContext *Ctx = Class->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) Result.Classes.insert(EnclosingClass); // Add the associated namespace for this class. CollectEnclosingNamespace(Result.Namespaces, Ctx); // Add the class itself. If we've already seen this class, we don't // need to visit base classes. if (!Result.Classes.insert(Class)) return; // -- If T is a template-id, its associated namespaces and classes are // the namespace in which the template is defined; for member // templates, the member template's class; the namespaces and classes // associated with the types of the template arguments provided for // template type parameters (excluding template template parameters); the // namespaces in which any template template arguments are defined; and // the classes in which any member templates used as template template // arguments are defined. [Note: non-type template arguments do not // contribute to the set of associated namespaces. ] if (ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) Result.Classes.insert(EnclosingClass); // Add the associated namespace for this class. CollectEnclosingNamespace(Result.Namespaces, Ctx); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); } // Only recurse into base classes for complete types. if (!Class->hasDefinition()) { // FIXME: we might need to instantiate templates here return; } // Add direct and indirect base classes along with their associated // namespaces. SmallVector<CXXRecordDecl *, 32> Bases; Bases.push_back(Class); while (!Bases.empty()) { // Pop this class off the stack. Class = Bases.back(); Bases.pop_back(); // Visit the base classes. for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), BaseEnd = Class->bases_end(); Base != BaseEnd; ++Base) { const RecordType *BaseType = Base->getType()->getAs<RecordType>(); // In dependent contexts, we do ADL twice, and the first time around, // the base type might be a dependent TemplateSpecializationType, or a // TemplateTypeParmType. If that happens, simply ignore it. // FIXME: If we want to support export, we probably need to add the // namespace of the template in a TemplateSpecializationType, or even // the classes and namespaces of known non-dependent arguments. if (!BaseType) continue; CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); if (Result.Classes.insert(BaseDecl)) { // Find the associated namespace for this base class. DeclContext *BaseCtx = BaseDecl->getDeclContext(); CollectEnclosingNamespace(Result.Namespaces, BaseCtx); // Make sure we visit the bases of this base class. if (BaseDecl->bases_begin() != BaseDecl->bases_end()) Bases.push_back(BaseDecl); } } } } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of type T // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { // C++ [basic.lookup.koenig]p2: // // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). Typedef names and using-declarations used to specify // the types do not contribute to this set. The sets of namespaces // and classes are determined in the following way: SmallVector<const Type *, 16> Queue; const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); while (true) { switch (T->getTypeClass()) { #define TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" // T is canonical. We can also ignore dependent types because // we don't need to do ADL at the definition point, but if we // wanted to implement template export (or if we find some other // use for associated classes and namespaces...) this would be // wrong. break; // -- If T is a pointer to U or an array of U, its associated // namespaces and classes are those associated with U. case Type::Pointer: T = cast<PointerType>(T)->getPointeeType().getTypePtr(); continue; case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: T = cast<ArrayType>(T)->getElementType().getTypePtr(); continue; // -- If T is a fundamental type, its associated sets of // namespaces and classes are both empty. case Type::Builtin: break; // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. case Type::Record: { CXXRecordDecl *Class = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); addAssociatedClassesAndNamespaces(Result, Class); break; } // -- If T is an enumeration type, its associated namespace is // the namespace in which it is defined. If it is class // member, its associated class is the member's class; else // it has no associated class. case Type::Enum: { EnumDecl *Enum = cast<EnumType>(T)->getDecl(); DeclContext *Ctx = Enum->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) Result.Classes.insert(EnclosingClass); // Add the associated namespace for this class. CollectEnclosingNamespace(Result.Namespaces, Ctx); break; } // -- If T is a function type, its associated namespaces and // classes are those associated with the function parameter // types and those associated with the return type. case Type::FunctionProto: { const FunctionProtoType *Proto = cast<FunctionProtoType>(T); for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), ArgEnd = Proto->arg_type_end(); Arg != ArgEnd; ++Arg) Queue.push_back(Arg->getTypePtr()); // fallthrough } case Type::FunctionNoProto: { const FunctionType *FnType = cast<FunctionType>(T); T = FnType->getResultType().getTypePtr(); continue; } // -- If T is a pointer to a member function of a class X, its // associated namespaces and classes are those associated // with the function parameter types and return type, // together with those associated with X. // // -- If T is a pointer to a data member of class X, its // associated namespaces and classes are those associated // with the member type together with those associated with // X. case Type::MemberPointer: { const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); // Queue up the class type into which this points. Queue.push_back(MemberPtr->getClass()); // And directly continue with the pointee type. T = MemberPtr->getPointeeType().getTypePtr(); continue; } // As an extension, treat this like a normal pointer. case Type::BlockPointer: T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); continue; // References aren't covered by the standard, but that's such an // obvious defect that we cover them anyway. case Type::LValueReference: case Type::RValueReference: T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); continue; // These are fundamental types. case Type::Vector: case Type::ExtVector: case Type::Complex: break; // If T is an Objective-C object or interface type, or a pointer to an // object or interface type, the associated namespace is the global // namespace. case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); break; // Atomic types are just wrappers; use the associations of the // contained type. case Type::Atomic: T = cast<AtomicType>(T)->getValueType().getTypePtr(); continue; } if (Queue.empty()) break; T = Queue.back(); Queue.pop_back(); } } /// \brief Find the associated classes and namespaces for /// argument-dependent lookup for a call with the given set of /// arguments. /// /// This routine computes the sets of associated classes and associated /// namespaces searched by argument-dependent lookup /// (C++ [basic.lookup.argdep]) for a given set of arguments. void Sema::FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr *> Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses) { AssociatedNamespaces.clear(); AssociatedClasses.clear(); AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses); // C++ [basic.lookup.koenig]p2: // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { Expr *Arg = Args[ArgIdx]; if (Arg->getType() != Context.OverloadTy) { addAssociatedClassesAndNamespaces(Result, Arg->getType()); continue; } // [...] In addition, if the argument is the name or address of a // set of overloaded functions and/or function templates, its // associated classes and namespaces are the union of those // associated with each of the members of the set: the namespace // in which the function or function template is defined and the // classes and namespaces associated with its (non-dependent) // parameter types and return type. Arg = Arg->IgnoreParens(); if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) if (unaryOp->getOpcode() == UO_AddrOf) Arg = unaryOp->getSubExpr(); UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg); if (!ULE) continue; for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) { // Look through any using declarations to find the underlying function. NamedDecl *Fn = (*I)->getUnderlyingDecl(); FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn); if (!FDecl) FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl(); // Add the classes and namespaces associated with the parameter // types and return type of this function. addAssociatedClassesAndNamespaces(Result, FDecl->getType()); } } } /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is /// an acceptable non-member overloaded operator for a call whose /// arguments have types T1 (and, if non-empty, T2). This routine /// implements the check in C++ [over.match.oper]p3b2 concerning /// enumeration types. static bool IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, QualType T1, QualType T2, ASTContext &Context) { if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) return true; if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) return true; const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); if (Proto->getNumArgs() < 1) return false; if (T1->isEnumeralType()) { QualType ArgType = Proto->getArgType(0).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T1, ArgType)) return true; } if (Proto->getNumArgs() < 2) return false; if (!T2.isNull() && T2->isEnumeralType()) { QualType ArgType = Proto->getArgType(1).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T2, ArgType)) return true; } return false; } NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl) { LookupResult R(*this, Name, Loc, NameKind, Redecl); LookupName(R, S); return R.getAsSingle<NamedDecl>(); } /// \brief Find the protocol with the given name, if any. ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl) { Decl *D = LookupSingleName(TUScope, II, IdLoc, LookupObjCProtocolName, Redecl); return cast_or_null<ObjCProtocolDecl>(D); } void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, UnresolvedSetImpl &Functions) { // C++ [over.match.oper]p3: // -- The set of non-member candidates is the result of the // unqualified lookup of operator@ in the context of the // expression according to the usual rules for name lookup in // unqualified function calls (3.4.2) except that all member // functions are ignored. However, if no operand has a class // type, only those non-member functions in the lookup set // that have a first parameter of type T1 or "reference to // (possibly cv-qualified) T1", when T1 is an enumeration // type, or (if there is a right operand) a second parameter // of type T2 or "reference to (possibly cv-qualified) T2", // when T2 is an enumeration type, are candidate functions. DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); LookupName(Operators, S); assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); if (Operators.empty()) return; for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); Op != OpEnd; ++Op) { NamedDecl *Found = (*Op)->getUnderlyingDecl(); if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) { if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD } else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Found)) { // FIXME: friend operators? // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, // later? if (!FunTmpl->getDeclContext()->isRecord()) Functions.addDecl(*Op, Op.getAccess()); } } } Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis) { RD = RD->getDefinition(); assert((RD && !RD->isBeingDefined()) && "doing special member lookup into record that isn't fully complete"); if (RValueThis || ConstThis || VolatileThis) assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && "constructors and destructors always have unqualified lvalue this"); if (ConstArg || VolatileArg) assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"); llvm::FoldingSetNodeID ID; ID.AddPointer(RD); ID.AddInteger(SM); ID.AddInteger(ConstArg); ID.AddInteger(VolatileArg); ID.AddInteger(RValueThis); ID.AddInteger(ConstThis); ID.AddInteger(VolatileThis); void *InsertPoint; SpecialMemberOverloadResult *Result = SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); // This was already cached if (Result) return Result; Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>(); Result = new (Result) SpecialMemberOverloadResult(ID); SpecialMemberCache.InsertNode(Result, InsertPoint); if (SM == CXXDestructor) { if (!RD->hasDeclaredDestructor()) DeclareImplicitDestructor(RD); CXXDestructorDecl *DD = RD->getDestructor(); assert(DD && "record without a destructor"); Result->setMethod(DD); Result->setKind(DD->isDeleted() ? SpecialMemberOverloadResult::NoMemberOrDeleted : SpecialMemberOverloadResult::Success); return Result; } // Prepare for overload resolution. Here we construct a synthetic argument // if necessary and make sure that implicit functions are declared. CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); DeclarationName Name; Expr *Arg = 0; unsigned NumArgs; QualType ArgType = CanTy; ExprValueKind VK = VK_LValue; if (SM == CXXDefaultConstructor) { Name = Context.DeclarationNames.getCXXConstructorName(CanTy); NumArgs = 0; if (RD->needsImplicitDefaultConstructor()) DeclareImplicitDefaultConstructor(RD); } else { if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { Name = Context.DeclarationNames.getCXXConstructorName(CanTy); if (!RD->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(RD); if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor()) DeclareImplicitMoveConstructor(RD); } else { Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); if (!RD->hasDeclaredCopyAssignment()) DeclareImplicitCopyAssignment(RD); if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment()) DeclareImplicitMoveAssignment(RD); } if (ConstArg) ArgType.addConst(); if (VolatileArg) ArgType.addVolatile(); // This isn't /really/ specified by the standard, but it's implied // we should be working from an RValue in the case of move to ensure // that we prefer to bind to rvalue references, and an LValue in the // case of copy to ensure we don't bind to rvalue references. // Possibly an XValue is actually correct in the case of move, but // there is no semantic difference for class types in this restricted // case. if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) VK = VK_LValue; else VK = VK_RValue; } OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK); if (SM != CXXDefaultConstructor) { NumArgs = 1; Arg = &FakeArg; } // Create the object argument QualType ThisTy = CanTy; if (ConstThis) ThisTy.addConst(); if (VolatileThis) ThisTy.addVolatile(); Expr::Classification Classification = OpaqueValueExpr(SourceLocation(), ThisTy, RValueThis ? VK_RValue : VK_LValue).Classify(Context); // Now we perform lookup on the name we computed earlier and do overload // resolution. Lookup is only performed directly into the class since there // will always be a (possibly implicit) declaration to shadow any others. OverloadCandidateSet OCS((SourceLocation())); DeclContext::lookup_iterator I, E; llvm::tie(I, E) = RD->lookup(Name); assert((I != E) && "lookup for a constructor or assignment operator was empty"); for ( ; I != E; ++I) { Decl *Cand = *I; if (Cand->isInvalidDecl()) continue; if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) { // FIXME: [namespace.udecl]p15 says that we should only consider a // using declaration here if it does not match a declaration in the // derived class. We do not implement this correctly in other cases // either. Cand = U->getTargetDecl(); if (Cand->isInvalidDecl()) continue; } if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) { if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy, Classification, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); else AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public), llvm::makeArrayRef(&Arg, NumArgs), OCS, true); } else if (FunctionTemplateDecl *Tmpl = dyn_cast<FunctionTemplateDecl>(Cand)) { if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), RD, 0, ThisTy, Classification, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); else AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), 0, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); } else { assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl"); } } OverloadCandidateSet::iterator Best; switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) { case OR_Success: Result->setMethod(cast<CXXMethodDecl>(Best->Function)); Result->setKind(SpecialMemberOverloadResult::Success); break; case OR_Deleted: Result->setMethod(cast<CXXMethodDecl>(Best->Function)); Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); break; case OR_Ambiguous: Result->setMethod(0); Result->setKind(SpecialMemberOverloadResult::Ambiguous); break; case OR_No_Viable_Function: Result->setMethod(0); Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); break; } return Result; } /// \brief Look up the default constructor for the given class. CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { SpecialMemberOverloadResult *Result = LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, false, false); return cast_or_null<CXXConstructorDecl>(Result->getMethod()); } /// \brief Look up the copying constructor for the given class. CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals) { assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"); SpecialMemberOverloadResult *Result = LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, Quals & Qualifiers::Volatile, false, false, false); return cast_or_null<CXXConstructorDecl>(Result->getMethod()); } /// \brief Look up the moving constructor for the given class. CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) { SpecialMemberOverloadResult *Result = LookupSpecialMember(Class, CXXMoveConstructor, false, false, false, false, false); return cast_or_null<CXXConstructorDecl>(Result->getMethod()); } /// \brief Look up the constructors for the given class. DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { // If the implicit constructors have not yet been declared, do so now. if (CanDeclareSpecialMemberFunction(Context, Class)) { if (Class->needsImplicitDefaultConstructor()) DeclareImplicitDefaultConstructor(Class); if (!Class->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(Class); if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor()) DeclareImplicitMoveConstructor(Class); } CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); return Class->lookup(Name); } /// \brief Look up the copying assignment operator for the given class. CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals) { assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"); assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"); SpecialMemberOverloadResult *Result = LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, ThisQuals & Qualifiers::Volatile); return Result->getMethod(); } /// \brief Look up the moving assignment operator for the given class. CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, bool RValueThis, unsigned ThisQuals) { assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"); SpecialMemberOverloadResult *Result = LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis, ThisQuals & Qualifiers::Const, ThisQuals & Qualifiers::Volatile); return Result->getMethod(); } /// \brief Look for the destructor of the given class. /// /// During semantic analysis, this routine should be used in lieu of /// CXXRecordDecl::getDestructor(). /// /// \returns The destructor for this class. CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, false, false, false, false, false)->getMethod()); } /// LookupLiteralOperator - Determine which literal operator should be used for /// a user-defined literal, per C++11 [lex.ext]. /// /// Normal overload resolution is not used to select which literal operator to /// call for a user-defined literal. Look up the provided literal operator name, /// and filter the results to the appropriate set for the given argument types. Sema::LiteralOperatorLookupResult Sema::LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys, bool AllowRawAndTemplate) { LookupName(R, S); assert(R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"); // Filter the lookup results appropriately. LookupResult::Filter F = R.makeFilter(); bool FoundTemplate = false; bool FoundRaw = false; bool FoundExactMatch = false; while (F.hasNext()) { Decl *D = F.next(); if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) D = USD->getTargetDecl(); bool IsTemplate = isa<FunctionTemplateDecl>(D); bool IsRaw = false; bool IsExactMatch = false; if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { if (FD->getNumParams() == 1 && FD->getParamDecl(0)->getType()->getAs<PointerType>()) IsRaw = true; else { IsExactMatch = true; for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { IsExactMatch = false; break; } } } } if (IsExactMatch) { FoundExactMatch = true; AllowRawAndTemplate = false; if (FoundRaw || FoundTemplate) { // Go through again and remove the raw and template decls we've // already found. F.restart(); FoundRaw = FoundTemplate = false; } } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) { FoundTemplate |= IsTemplate; FoundRaw |= IsRaw; } else { F.erase(); } } F.done(); // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching // parameter type, that is used in preference to a raw literal operator // or literal operator template. if (FoundExactMatch) return LOLR_Cooked; // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal // operator template, but not both. if (FoundRaw && FoundTemplate) { Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { Decl *D = *I; if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) D = USD->getTargetDecl(); if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) D = FunTmpl->getTemplatedDecl(); NoteOverloadCandidate(cast<FunctionDecl>(D)); } return LOLR_Error; } if (FoundRaw) return LOLR_Raw; if (FoundTemplate) return LOLR_Template; // Didn't find anything we could use. Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate; return LOLR_Error; } void ADLResult::insert(NamedDecl *New) { NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; // If we haven't yet seen a decl for this key, or the last decl // was exactly this one, we're done. if (Old == 0 || Old == New) { Old = New; return; } // Otherwise, decide which is a more recent redeclaration. FunctionDecl *OldFD, *NewFD; if (isa<FunctionTemplateDecl>(New)) { OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl(); NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl(); } else { OldFD = cast<FunctionDecl>(Old); NewFD = cast<FunctionDecl>(New); } FunctionDecl *Cursor = NewFD; while (true) { Cursor = Cursor->getPreviousDecl(); // If we got to the end without finding OldFD, OldFD is the newer // declaration; leave things as they are. if (!Cursor) return; // If we do find OldFD, then NewFD is newer. if (Cursor == OldFD) break; // Otherwise, keep looking. } Old = New; } void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, SourceLocation Loc, llvm::ArrayRef<Expr *> Args, ADLResult &Result, bool StdNamespaceIsAssociated) { // Find all of the associated namespaces and classes based on the // arguments we have. AssociatedNamespaceSet AssociatedNamespaces; AssociatedClassSet AssociatedClasses; FindAssociatedClassesAndNamespaces(Args, AssociatedNamespaces, AssociatedClasses); if (StdNamespaceIsAssociated && StdNamespace) AssociatedNamespaces.insert(getStdNamespace()); QualType T1, T2; if (Operator) { T1 = Args[0]->getType(); if (Args.size() >= 2) T2 = Args[1]->getType(); } // Try to complete all associated classes, in case they contain a // declaration of a friend function. for (AssociatedClassSet::iterator C = AssociatedClasses.begin(), CEnd = AssociatedClasses.end(); C != CEnd; ++C) RequireCompleteType(Loc, Context.getRecordType(*C), 0); // C++ [basic.lookup.argdep]p3: // Let X be the lookup set produced by unqualified lookup (3.4.1) // and let Y be the lookup set produced by argument dependent // lookup (defined as follows). If X contains [...] then Y is // empty. Otherwise Y is the set of declarations found in the // namespaces associated with the argument types as described // below. The set of declarations found by the lookup of the name // is the union of X and Y. // // Here, we compute Y and add its members to the overloaded // candidate set. for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), NSEnd = AssociatedNamespaces.end(); NS != NSEnd; ++NS) { // When considering an associated namespace, the lookup is the // same as the lookup performed when the associated namespace is // used as a qualifier (3.4.3.2) except that: // // -- Any using-directives in the associated namespace are // ignored. // // -- Any namespace-scope friend functions declared in // associated classes are visible within their respective // namespaces even if they are not visible during an ordinary // lookup (11.4). DeclContext::lookup_iterator I, E; for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { NamedDecl *D = *I; // If the only declaration here is an ordinary friend, consider // it only if it was declared in an associated classes. if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { DeclContext *LexDC = D->getLexicalDeclContext(); if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) continue; } if (isa<UsingShadowDecl>(D)) D = cast<UsingShadowDecl>(D)->getTargetDecl(); if (isa<FunctionDecl>(D)) { if (Operator && !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D), T1, T2, Context)) continue; } else if (!isa<FunctionTemplateDecl>(D)) continue; Result.insert(D); } } } //---------------------------------------------------------------------------- // Search for all visible declarations. //---------------------------------------------------------------------------- VisibleDeclConsumer::~VisibleDeclConsumer() { } namespace { class ShadowContextRAII; class VisibleDeclsRecord { public: /// \brief An entry in the shadow map, which is optimized to store a /// single declaration (the common case) but can also store a list /// of declarations. typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; private: /// \brief A mapping from declaration names to the declarations that have /// this name within a particular scope. typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; /// \brief A list of shadow maps, which is used to model name hiding. std::list<ShadowMap> ShadowMaps; /// \brief The declaration contexts we have already visited. llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; friend class ShadowContextRAII; public: /// \brief Determine whether we have already visited this context /// (and, if not, note that we are going to visit that context now). bool visitedContext(DeclContext *Ctx) { return !VisitedContexts.insert(Ctx); } bool alreadyVisitedContext(DeclContext *Ctx) { return VisitedContexts.count(Ctx); } /// \brief Determine whether the given declaration is hidden in the /// current scope. /// /// \returns the declaration that hides the given declaration, or /// NULL if no such declaration exists. NamedDecl *checkHidden(NamedDecl *ND); /// \brief Add a declaration to the current shadow map. void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].push_back(ND); } }; /// \brief RAII object that records when we've entered a shadow context. class ShadowContextRAII { VisibleDeclsRecord &Visible; typedef VisibleDeclsRecord::ShadowMap ShadowMap; public: ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { Visible.ShadowMaps.push_back(ShadowMap()); } ~ShadowContextRAII() { Visible.ShadowMaps.pop_back(); } }; } // end anonymous namespace NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { // Look through using declarations. ND = ND->getUnderlyingDecl(); unsigned IDNS = ND->getIdentifierNamespace(); std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); SM != SMEnd; ++SM) { ShadowMap::iterator Pos = SM->find(ND->getDeclName()); if (Pos == SM->end()) continue; for (ShadowMapEntry::iterator I = Pos->second.begin(), IEnd = Pos->second.end(); I != IEnd; ++I) { // A tag declaration does not hide a non-tag declaration. if ((*I)->hasTagIdentifierNamespace() && (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | Decl::IDNS_ObjCProtocol))) continue; // Protocols are in distinct namespaces from everything else. if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || (IDNS & Decl::IDNS_ObjCProtocol)) && (*I)->getIdentifierNamespace() != IDNS) continue; // Functions and function templates in the same scope overload // rather than hide. FIXME: Look for hiding based on function // signatures! if ((*I)->isFunctionOrFunctionTemplate() && ND->isFunctionOrFunctionTemplate() && SM == ShadowMaps.rbegin()) continue; // We've found a declaration that hides this one. return *I; } } return 0; } static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, bool QualifiedNameLookup, bool InBaseClass, VisibleDeclConsumer &Consumer, VisibleDeclsRecord &Visited) { if (!Ctx) return; // Make sure we don't visit the same context twice. if (Visited.visitedContext(Ctx->getPrimaryContext())) return; if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) Result.getSema().ForceDeclarationOfImplicitMembers(Class); // Enumerate all of the results in this context. for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(), LEnd = Ctx->lookups_end(); L != LEnd; ++L) { for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) { if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) { if ((ND = Result.getAcceptableDecl(ND))) { Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); Visited.add(ND); } } } } // Traverse using directives for qualified name lookup. if (QualifiedNameLookup) { ShadowContextRAII Shadow(Visited); DeclContext::udir_iterator I, E; for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) { LookupVisibleDecls((*I)->getNominatedNamespace(), Result, QualifiedNameLookup, InBaseClass, Consumer, Visited); } } // Traverse the contexts of inherited C++ classes. if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { if (!Record->hasDefinition()) return; for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), BEnd = Record->bases_end(); B != BEnd; ++B) { QualType BaseType = B->getType(); // Don't look into dependent bases, because name lookup can't look // there anyway. if (BaseType->isDependentType()) continue; const RecordType *Record = BaseType->getAs<RecordType>(); if (!Record) continue; // FIXME: It would be nice to be able to determine whether referencing // a particular member would be ambiguous. For example, given // // struct A { int member; }; // struct B { int member; }; // struct C : A, B { }; // // void f(C *c) { c->### } // // accessing 'member' would result in an ambiguity. However, we // could be smart enough to qualify the member with the base // class, e.g., // // c->B::member // // or // // c->A::member // Find results in this base class (and its bases). ShadowContextRAII Shadow(Visited); LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup, true, Consumer, Visited); } } // Traverse the contexts of Objective-C classes. if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { // Traverse categories. for (ObjCCategoryDecl *Category = IFace->getCategoryList(); Category; Category = Category->getNextClassCategory()) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(Category, Result, QualifiedNameLookup, false, Consumer, Visited); } // Traverse protocols. for (ObjCInterfaceDecl::all_protocol_iterator I = IFace->all_referenced_protocol_begin(), E = IFace->all_referenced_protocol_end(); I != E; ++I) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, Visited); } // Traverse the superclass. if (IFace->getSuperClass()) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup, true, Consumer, Visited); } // If there is an implementation, traverse it. We do this to find // synthesized ivars. if (IFace->getImplementation()) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(IFace->getImplementation(), Result, QualifiedNameLookup, InBaseClass, Consumer, Visited); } } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(), E = Protocol->protocol_end(); I != E; ++I) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, Visited); } } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(), E = Category->protocol_end(); I != E; ++I) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, Visited); } // If there is an implementation, traverse it. if (Category->getImplementation()) { ShadowContextRAII Shadow(Visited); LookupVisibleDecls(Category->getImplementation(), Result, QualifiedNameLookup, true, Consumer, Visited); } } } static void LookupVisibleDecls(Scope *S, LookupResult &Result, UnqualUsingDirectiveSet &UDirs, VisibleDeclConsumer &Consumer, VisibleDeclsRecord &Visited) { if (!S) return; if (!S->getEntity() || (!S->getParent() && !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) || ((DeclContext *)S->getEntity())->isFunctionOrMethod()) { // Walk through the declarations in this Scope. for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) if ((ND = Result.getAcceptableDecl(ND))) { Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false); Visited.add(ND); } } } // FIXME: C++ [temp.local]p8 DeclContext *Entity = 0; if (S->getEntity()) { // Look into this scope's declaration context, along with any of its // parent lookup contexts (e.g., enclosing classes), up to the point // where we hit the context stored in the next outer scope. Entity = (DeclContext *)S->getEntity(); DeclContext *OuterCtx = findOuterContext(S).first; // FIXME for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { if (Method->isInstanceMethod()) { // For instance methods, look for ivars in the method's interface. LookupResult IvarResult(Result.getSema(), Result.getLookupName(), Result.getNameLoc(), Sema::LookupMemberName); if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false, /*InBaseClass=*/false, Consumer, Visited); } } // We've already performed all of the name lookup that we need // to for Objective-C methods; the next context will be the // outer scope. break; } if (Ctx->isFunctionOrMethod()) continue; LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, /*InBaseClass=*/false, Consumer, Visited); } } else if (!S->getParent()) { // Look into the translation unit scope. We walk through the translation // unit's declaration context, because the Scope itself won't have all of // the declarations if we loaded a precompiled header. // FIXME: We would like the translation unit's Scope object to point to the // translation unit, so we don't need this special "if" branch. However, // doing so would force the normal C++ name-lookup code to look into the // translation unit decl when the IdentifierInfo chains would suffice. // Once we fix that problem (which is part of a more general "don't look // in DeclContexts unless we have to" optimization), we can eliminate this. Entity = Result.getSema().Context.getTranslationUnitDecl(); LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, /*InBaseClass=*/false, Consumer, Visited); } if (Entity) { // Lookup visible declarations in any namespaces found by using // directives. UnqualUsingDirectiveSet::const_iterator UI, UEnd; llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity); for (; UI != UEnd; ++UI) LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()), Result, /*QualifiedNameLookup=*/false, /*InBaseClass=*/false, Consumer, Visited); } // Lookup names in the parent scope. ShadowContextRAII Shadow(Visited); LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited); } void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope) { // Determine the set of using directives available during // unqualified name lookup. Scope *Initial = S; UnqualUsingDirectiveSet UDirs; if (getLangOpts().CPlusPlus) { // Find the first namespace or translation-unit scope. while (S && !isNamespaceOrTranslationUnitScope(S)) S = S->getParent(); UDirs.visitScopeChain(Initial, S); } UDirs.done(); // Look for visible declarations. LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); VisibleDeclsRecord Visited; if (!IncludeGlobalScope) Visited.visitedContext(Context.getTranslationUnitDecl()); ShadowContextRAII Shadow(Visited); ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited); } void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope) { LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); VisibleDeclsRecord Visited; if (!IncludeGlobalScope) Visited.visitedContext(Context.getTranslationUnitDecl()); ShadowContextRAII Shadow(Visited); ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, /*InBaseClass=*/false, Consumer, Visited); } /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. /// If GnuLabelLoc is a valid source location, then this is a definition /// of an __label__ label name, otherwise it is a normal label definition /// or use. LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, SourceLocation GnuLabelLoc) { // Do a lookup to see if we have a label with this name already. NamedDecl *Res = 0; if (GnuLabelLoc.isValid()) { // Local label definitions always shadow existing labels. Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); Scope *S = CurScope; PushOnScopeChains(Res, S, true); return cast<LabelDecl>(Res); } // Not a GNU local label. Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); // If we found a label, check to see if it is in the same context as us. // When in a Block, we don't want to reuse a label in an enclosing function. if (Res && Res->getDeclContext() != CurContext) Res = 0; if (Res == 0) { // If not forward referenced or defined already, create the backing decl. Res = LabelDecl::Create(Context, CurContext, Loc, II); Scope *S = CurScope->getFnParent(); assert(S && "Not in a function?"); PushOnScopeChains(Res, S, true); } return cast<LabelDecl>(Res); } //===----------------------------------------------------------------------===// // Typo correction //===----------------------------------------------------------------------===// namespace { typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap; typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap; static const unsigned MaxTypoDistanceResultSets = 5; class TypoCorrectionConsumer : public VisibleDeclConsumer { /// \brief The name written that is a typo in the source. StringRef Typo; /// \brief The results found that have the smallest edit distance /// found (so far) with the typo name. /// /// The pointer value being set to the current DeclContext indicates /// whether there is a keyword with this name. TypoEditDistanceMap BestResults; Sema &SemaRef; public: explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo) : Typo(Typo->getName()), SemaRef(SemaRef) { } virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass); void FoundName(StringRef Name); void addKeywordResult(StringRef Keyword); void addName(StringRef Name, NamedDecl *ND, unsigned Distance, NestedNameSpecifier *NNS=NULL, bool isKeyword=false); void addCorrection(TypoCorrection Correction); typedef TypoResultsMap::iterator result_iterator; typedef TypoEditDistanceMap::iterator distance_iterator; distance_iterator begin() { return BestResults.begin(); } distance_iterator end() { return BestResults.end(); } void erase(distance_iterator I) { BestResults.erase(I); } unsigned size() const { return BestResults.size(); } bool empty() const { return BestResults.empty(); } TypoCorrection &operator[](StringRef Name) { return BestResults.begin()->second[Name]; } unsigned getBestEditDistance(bool Normalized) { if (BestResults.empty()) return (std::numeric_limits<unsigned>::max)(); unsigned BestED = BestResults.begin()->first; return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED; } }; } void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) { // Don't consider hidden names for typo correction. if (Hiding) return; // Only consider entities with identifiers for names, ignoring // special names (constructors, overloaded operators, selectors, // etc.). IdentifierInfo *Name = ND->getIdentifier(); if (!Name) return; FoundName(Name->getName()); } void TypoCorrectionConsumer::FoundName(StringRef Name) { // Use a simple length-based heuristic to determine the minimum possible // edit distance. If the minimum isn't good enough, bail out early. unsigned MinED = abs((int)Name.size() - (int)Typo.size()); if (MinED && Typo.size() / MinED < 3) return; // Compute an upper bound on the allowable edit distance, so that the // edit-distance algorithm can short-circuit. unsigned UpperBound = (Typo.size() + 2) / 3; // Compute the edit distance between the typo and the name of this // entity, and add the identifier to the list of results. addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound)); } void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { // Compute the edit distance between the typo and this keyword, // and add the keyword to the list of results. addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true); } void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, unsigned Distance, NestedNameSpecifier *NNS, bool isKeyword) { TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance); if (isKeyword) TC.makeKeyword(); addCorrection(TC); } void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); TypoResultsMap &Map = BestResults[Correction.getEditDistance(false)]; TypoCorrection &CurrentCorrection = Map[Name]; if (!CurrentCorrection || // FIXME: The following should be rolled up into an operator< on // TypoCorrection with a more principled definition. CurrentCorrection.isKeyword() < Correction.isKeyword() || Correction.getAsString(SemaRef.getLangOpts()) < CurrentCorrection.getAsString(SemaRef.getLangOpts())) CurrentCorrection = Correction; while (BestResults.size() > MaxTypoDistanceResultSets) erase(llvm::prior(BestResults.end())); } // Fill the supplied vector with the IdentifierInfo pointers for each piece of // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). static void getNestedNameSpecifierIdentifiers( NestedNameSpecifier *NNS, SmallVectorImpl<const IdentifierInfo*> &Identifiers) { if (NestedNameSpecifier *Prefix = NNS->getPrefix()) getNestedNameSpecifierIdentifiers(Prefix, Identifiers); else Identifiers.clear(); const IdentifierInfo *II = NULL; switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: II = NNS->getAsIdentifier(); break; case NestedNameSpecifier::Namespace: if (NNS->getAsNamespace()->isAnonymousNamespace()) return; II = NNS->getAsNamespace()->getIdentifier(); break; case NestedNameSpecifier::NamespaceAlias: II = NNS->getAsNamespaceAlias()->getIdentifier(); break; case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::TypeSpec: II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); break; case NestedNameSpecifier::Global: return; } if (II) Identifiers.push_back(II); } namespace { class SpecifierInfo { public: DeclContext* DeclCtx; NestedNameSpecifier* NameSpecifier; unsigned EditDistance; SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED) : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {} }; typedef SmallVector<DeclContext*, 4> DeclContextList; typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList; class NamespaceSpecifierSet { ASTContext &Context; DeclContextList CurContextChain; SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers; SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers; bool isSorted; SpecifierInfoList Specifiers; llvm::SmallSetVector<unsigned, 4> Distances; llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap; /// \brief Helper for building the list of DeclContexts between the current /// context and the top of the translation unit static DeclContextList BuildContextChain(DeclContext *Start); void SortNamespaces(); public: NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) : Context(Context), CurContextChain(BuildContextChain(CurContext)), isSorted(true) { if (CurScopeSpec && CurScopeSpec->getScopeRep()) getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(), CurNameSpecifierIdentifiers); // Build the list of identifiers that would be used for an absolute // (from the global context) NestedNameSpecifier refering to the current // context. for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(), CEnd = CurContextChain.rend(); C != CEnd; ++C) { if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) CurContextIdentifiers.push_back(ND->getIdentifier()); } } /// \brief Add the namespace to the set, computing the corresponding /// NestedNameSpecifier and its distance in the process. void AddNamespace(NamespaceDecl *ND); typedef SpecifierInfoList::iterator iterator; iterator begin() { if (!isSorted) SortNamespaces(); return Specifiers.begin(); } iterator end() { return Specifiers.end(); } }; } DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) { assert(Start && "Bulding a context chain from a null context"); DeclContextList Chain; for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL; DC = DC->getLookupParent()) { NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); if (!DC->isInlineNamespace() && !DC->isTransparentContext() && !(ND && ND->isAnonymousNamespace())) Chain.push_back(DC->getPrimaryContext()); } return Chain; } void NamespaceSpecifierSet::SortNamespaces() { SmallVector<unsigned, 4> sortedDistances; sortedDistances.append(Distances.begin(), Distances.end()); if (sortedDistances.size() > 1) std::sort(sortedDistances.begin(), sortedDistances.end()); Specifiers.clear(); for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(), DIEnd = sortedDistances.end(); DI != DIEnd; ++DI) { SpecifierInfoList &SpecList = DistanceMap[*DI]; Specifiers.append(SpecList.begin(), SpecList.end()); } isSorted = true; } void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) { DeclContext *Ctx = cast<DeclContext>(ND); NestedNameSpecifier *NNS = NULL; unsigned NumSpecifiers = 0; DeclContextList NamespaceDeclChain(BuildContextChain(Ctx)); DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); // Eliminate common elements from the two DeclContext chains. for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(), CEnd = CurContextChain.rend(); C != CEnd && !NamespaceDeclChain.empty() && NamespaceDeclChain.back() == *C; ++C) { NamespaceDeclChain.pop_back(); } // Add an explicit leading '::' specifier if needed. if (NamespaceDecl *ND = NamespaceDeclChain.empty() ? NULL : dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) { IdentifierInfo *Name = ND->getIdentifier(); if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(), Name) != CurContextIdentifiers.end() || std::find(CurNameSpecifierIdentifiers.begin(), CurNameSpecifierIdentifiers.end(), Name) != CurNameSpecifierIdentifiers.end()) { NamespaceDeclChain = FullNamespaceDeclChain; NNS = NestedNameSpecifier::GlobalSpecifier(Context); } } // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(), CEnd = NamespaceDeclChain.rend(); C != CEnd; ++C) { NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C); if (ND) { NNS = NestedNameSpecifier::Create(Context, NNS, ND); ++NumSpecifiers; } } // If the built NestedNameSpecifier would be replacing an existing // NestedNameSpecifier, use the number of component identifiers that // would need to be changed as the edit distance instead of the number // of components in the built NestedNameSpecifier. if (NNS && !CurNameSpecifierIdentifiers.empty()) { SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); NumSpecifiers = llvm::ComputeEditDistance( llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers), llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers)); } isSorted = false; Distances.insert(NumSpecifiers); DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers)); } /// \brief Perform name lookup for a possible result for typo correction. static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup) { Res.suppressDiagnostics(); Res.clear(); Res.setLookupName(Name); if (MemberContext) { if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { if (isObjCIvarLookup) { if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { Res.addDecl(Ivar); Res.resolveKind(); return; } } if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) { Res.addDecl(Prop); Res.resolveKind(); return; } } SemaRef.LookupQualifiedName(Res, MemberContext); return; } SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, EnteringContext); // Fake ivar lookup; this should really be part of // LookupParsedName. if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { if (Method->isInstanceMethod() && Method->getClassInterface() && (Res.empty() || (Res.isSingleResult() && Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { if (ObjCIvarDecl *IV = Method->getClassInterface()->lookupInstanceVariable(Name)) { Res.addDecl(IV); Res.resolveKind(); } } } } /// \brief Add keywords to the consumer as possible typo corrections. static void AddKeywordsToConsumer(Sema &SemaRef, TypoCorrectionConsumer &Consumer, Scope *S, CorrectionCandidateCallback &CCC) { if (CCC.WantObjCSuper) Consumer.addKeywordResult("super"); if (CCC.WantTypeSpecifiers) { // Add type-specifier keywords to the set of results. const char *CTypeSpecs[] = { "char", "const", "double", "enum", "float", "int", "long", "short", "signed", "struct", "union", "unsigned", "void", "volatile", "_Complex", "_Imaginary", // storage-specifiers as well "extern", "inline", "static", "typedef" }; const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]); for (unsigned I = 0; I != NumCTypeSpecs; ++I) Consumer.addKeywordResult(CTypeSpecs[I]); if (SemaRef.getLangOpts().C99) Consumer.addKeywordResult("restrict"); if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) Consumer.addKeywordResult("bool"); else if (SemaRef.getLangOpts().C99) Consumer.addKeywordResult("_Bool"); if (SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("class"); Consumer.addKeywordResult("typename"); Consumer.addKeywordResult("wchar_t"); if (SemaRef.getLangOpts().CPlusPlus0x) { Consumer.addKeywordResult("char16_t"); Consumer.addKeywordResult("char32_t"); Consumer.addKeywordResult("constexpr"); Consumer.addKeywordResult("decltype"); Consumer.addKeywordResult("thread_local"); } } if (SemaRef.getLangOpts().GNUMode) Consumer.addKeywordResult("typeof"); } if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("const_cast"); Consumer.addKeywordResult("dynamic_cast"); Consumer.addKeywordResult("reinterpret_cast"); Consumer.addKeywordResult("static_cast"); } if (CCC.WantExpressionKeywords) { Consumer.addKeywordResult("sizeof"); if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("false"); Consumer.addKeywordResult("true"); } if (SemaRef.getLangOpts().CPlusPlus) { const char *CXXExprs[] = { "delete", "new", "operator", "throw", "typeid" }; const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]); for (unsigned I = 0; I != NumCXXExprs; ++I) Consumer.addKeywordResult(CXXExprs[I]); if (isa<CXXMethodDecl>(SemaRef.CurContext) && cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) Consumer.addKeywordResult("this"); if (SemaRef.getLangOpts().CPlusPlus0x) { Consumer.addKeywordResult("alignof"); Consumer.addKeywordResult("nullptr"); } } } if (CCC.WantRemainingKeywords) { if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { // Statements. const char *CStmts[] = { "do", "else", "for", "goto", "if", "return", "switch", "while" }; const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]); for (unsigned I = 0; I != NumCStmts; ++I) Consumer.addKeywordResult(CStmts[I]); if (SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("catch"); Consumer.addKeywordResult("try"); } if (S && S->getBreakParent()) Consumer.addKeywordResult("break"); if (S && S->getContinueParent()) Consumer.addKeywordResult("continue"); if (!SemaRef.getCurFunction()->SwitchStack.empty()) { Consumer.addKeywordResult("case"); Consumer.addKeywordResult("default"); } } else { if (SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("namespace"); Consumer.addKeywordResult("template"); } if (S && S->isClassScope()) { Consumer.addKeywordResult("explicit"); Consumer.addKeywordResult("friend"); Consumer.addKeywordResult("mutable"); Consumer.addKeywordResult("private"); Consumer.addKeywordResult("protected"); Consumer.addKeywordResult("public"); Consumer.addKeywordResult("virtual"); } } if (SemaRef.getLangOpts().CPlusPlus) { Consumer.addKeywordResult("using"); if (SemaRef.getLangOpts().CPlusPlus0x) Consumer.addKeywordResult("static_assert"); } } } static bool isCandidateViable(CorrectionCandidateCallback &CCC, TypoCorrection &Candidate) { Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; } /// \brief Try to "correct" a typo in the source code by finding /// visible declarations whose names are similar to the name that was /// present in the source code. /// /// \param TypoName the \c DeclarationNameInfo structure that contains /// the name that was present in the source code along with its location. /// /// \param LookupKind the name-lookup criteria used to search for the name. /// /// \param S the scope in which name lookup occurs. /// /// \param SS the nested-name-specifier that precedes the name we're /// looking for, if present. /// /// \param CCC A CorrectionCandidateCallback object that provides further /// validation of typo correction candidates. It also provides flags for /// determining the set of keywords permitted. /// /// \param MemberContext if non-NULL, the context in which to look for /// a member access expression. /// /// \param EnteringContext whether we're entering the context described by /// the nested-name-specifier SS. /// /// \param OPT when non-NULL, the search for visible declarations will /// also walk the protocols in the qualified interfaces of \p OPT. /// /// \returns a \c TypoCorrection containing the corrected name if the typo /// along with information such as the \c NamedDecl where the corrected name /// was declared, and any additional \c NestedNameSpecifier needed to access /// it (C++ only). The \c TypoCorrection is empty if there is no correction. TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, DeclContext *MemberContext, bool EnteringContext, const ObjCObjectPointerType *OPT) { if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking) return TypoCorrection(); // In Microsoft mode, don't perform typo correction in a template member // function dependent context because it interferes with the "lookup into // dependent bases of class templates" feature. if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() && isa<CXXMethodDecl>(CurContext)) return TypoCorrection(); // We only attempt to correct typos for identifiers. IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); if (!Typo) return TypoCorrection(); // If the scope specifier itself was invalid, don't try to correct // typos. if (SS && SS->isInvalid()) return TypoCorrection(); // Never try to correct typos during template deduction or // instantiation. if (!ActiveTemplateInstantiations.empty()) return TypoCorrection(); NamespaceSpecifierSet Namespaces(Context, CurContext, SS); TypoCorrectionConsumer Consumer(*this, Typo); // If a callback object considers an empty typo correction candidate to be // viable, assume it does not do any actual validation of the candidates. TypoCorrection EmptyCorrection; bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection); // Perform name lookup to find visible, similarly-named entities. bool IsUnqualifiedLookup = false; DeclContext *QualifiedDC = MemberContext; if (MemberContext) { LookupVisibleDecls(MemberContext, LookupKind, Consumer); // Look in qualified interfaces. if (OPT) { for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), E = OPT->qual_end(); I != E; ++I) LookupVisibleDecls(*I, LookupKind, Consumer); } } else if (SS && SS->isSet()) { QualifiedDC = computeDeclContext(*SS, EnteringContext); if (!QualifiedDC) return TypoCorrection(); // Provide a stop gap for files that are just seriously broken. Trying // to correct all typos can turn into a HUGE performance penalty, causing // some files to take minutes to get rejected by the parser. if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) return TypoCorrection(); ++TyposCorrected; LookupVisibleDecls(QualifiedDC, LookupKind, Consumer); } else { IsUnqualifiedLookup = true; UnqualifiedTyposCorrectedMap::iterator Cached = UnqualifiedTyposCorrected.find(Typo); if (Cached != UnqualifiedTyposCorrected.end()) { // Add the cached value, unless it's a keyword or fails validation. In the // keyword case, we'll end up adding the keyword below. if (Cached->second) { if (!Cached->second.isKeyword() && isCandidateViable(CCC, Cached->second)) Consumer.addCorrection(Cached->second); } else { // Only honor no-correction cache hits when a callback that will validate // correction candidates is not being used. if (!ValidatingCallback) return TypoCorrection(); } } if (Cached == UnqualifiedTyposCorrected.end()) { // Provide a stop gap for files that are just seriously broken. Trying // to correct all typos can turn into a HUGE performance penalty, causing // some files to take minutes to get rejected by the parser. if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) return TypoCorrection(); } } // Determine whether we are going to search in the various namespaces for // corrections. bool SearchNamespaces = getLangOpts().CPlusPlus && (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace())); if (IsUnqualifiedLookup || SearchNamespaces) { // For unqualified lookup, look through all of the names that we have // seen in this translation unit. // FIXME: Re-add the ability to skip very unlikely potential corrections. for (IdentifierTable::iterator I = Context.Idents.begin(), IEnd = Context.Idents.end(); I != IEnd; ++I) Consumer.FoundName(I->getKey()); // Walk through identifiers in external identifier sources. // FIXME: Re-add the ability to skip very unlikely potential corrections. if (IdentifierInfoLookup *External = Context.Idents.getExternalIdentifierLookup()) { OwningPtr<IdentifierIterator> Iter(External->getIdentifiers()); do { StringRef Name = Iter->Next(); if (Name.empty()) break; Consumer.FoundName(Name); } while (true); } } AddKeywordsToConsumer(*this, Consumer, S, CCC); // If we haven't found anything, we're done. if (Consumer.empty()) { // If this was an unqualified lookup, note that no correction was found. if (IsUnqualifiedLookup) (void)UnqualifiedTyposCorrected[Typo]; return TypoCorrection(); } // Make sure that the user typed at least 3 characters for each correction // made. Otherwise, we don't even both looking at the results. unsigned ED = Consumer.getBestEditDistance(true); if (ED > 0 && Typo->getName().size() / ED < 3) { // If this was an unqualified lookup, note that no correction was found. if (IsUnqualifiedLookup) (void)UnqualifiedTyposCorrected[Typo]; return TypoCorrection(); } // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going // to search those namespaces. if (SearchNamespaces) { // Load any externally-known namespaces. if (ExternalSource && !LoadedExternalKnownNamespaces) { SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; LoadedExternalKnownNamespaces = true; ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I) KnownNamespaces[ExternalKnownNamespaces[I]] = true; } for (llvm::DenseMap<NamespaceDecl*, bool>::iterator KNI = KnownNamespaces.begin(), KNIEnd = KnownNamespaces.end(); KNI != KNIEnd; ++KNI) Namespaces.AddNamespace(KNI->first); } // Weed out any names that could not be found by name lookup or, if a // CorrectionCandidateCallback object was provided, failed validation. llvm::SmallVector<TypoCorrection, 16> QualifiedResults; LookupResult TmpRes(*this, TypoName, LookupKind); TmpRes.suppressDiagnostics(); while (!Consumer.empty()) { TypoCorrectionConsumer::distance_iterator DI = Consumer.begin(); unsigned ED = DI->first; for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(), IEnd = DI->second.end(); I != IEnd; /* Increment in loop. */) { // If the item already has been looked up or is a keyword, keep it. // If a validator callback object was given, drop the correction // unless it passes validation. if (I->second.isResolved()) { TypoCorrectionConsumer::result_iterator Prev = I; ++I; if (!isCandidateViable(CCC, Prev->second)) DI->second.erase(Prev); continue; } // Perform name lookup on this name. IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo(); LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext, EnteringContext, CCC.IsObjCIvarLookup); switch (TmpRes.getResultKind()) { case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::FoundUnresolvedValue: QualifiedResults.push_back(I->second); // We didn't find this name in our scope, or didn't like what we found; // ignore it. { TypoCorrectionConsumer::result_iterator Next = I; ++Next; DI->second.erase(I); I = Next; } break; case LookupResult::Ambiguous: // We don't deal with ambiguities. return TypoCorrection(); case LookupResult::FoundOverloaded: { TypoCorrectionConsumer::result_iterator Prev = I; // Store all of the Decls for overloaded symbols for (LookupResult::iterator TRD = TmpRes.begin(), TRDEnd = TmpRes.end(); TRD != TRDEnd; ++TRD) I->second.addCorrectionDecl(*TRD); ++I; if (!isCandidateViable(CCC, Prev->second)) DI->second.erase(Prev); break; } case LookupResult::Found: { TypoCorrectionConsumer::result_iterator Prev = I; I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>()); ++I; if (!isCandidateViable(CCC, Prev->second)) DI->second.erase(Prev); break; } } } if (DI->second.empty()) Consumer.erase(DI); else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED) // If there are results in the closest possible bucket, stop break; // Only perform the qualified lookups for C++ if (SearchNamespaces) { TmpRes.suppressDiagnostics(); for (llvm::SmallVector<TypoCorrection, 16>::iterator QRI = QualifiedResults.begin(), QRIEnd = QualifiedResults.end(); QRI != QRIEnd; ++QRI) { for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(), NIEnd = Namespaces.end(); NI != NIEnd; ++NI) { DeclContext *Ctx = NI->DeclCtx; // FIXME: Stop searching once the namespaces are too far away to create // acceptable corrections for this identifier (since the namespaces // are sorted in ascending order by edit distance). TmpRes.clear(); TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo()); if (!LookupQualifiedName(TmpRes, Ctx)) continue; // Any corrections added below will be validated in subsequent // iterations of the main while() loop over the Consumer's contents. switch (TmpRes.getResultKind()) { case LookupResult::Found: { TypoCorrection TC(*QRI); TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>()); TC.setCorrectionSpecifier(NI->NameSpecifier); TC.setQualifierDistance(NI->EditDistance); Consumer.addCorrection(TC); break; } case LookupResult::FoundOverloaded: { TypoCorrection TC(*QRI); TC.setCorrectionSpecifier(NI->NameSpecifier); TC.setQualifierDistance(NI->EditDistance); for (LookupResult::iterator TRD = TmpRes.begin(), TRDEnd = TmpRes.end(); TRD != TRDEnd; ++TRD) TC.addCorrectionDecl(*TRD); Consumer.addCorrection(TC); break; } case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::Ambiguous: case LookupResult::FoundUnresolvedValue: break; } } } } QualifiedResults.clear(); } // No corrections remain... if (Consumer.empty()) return TypoCorrection(); TypoResultsMap &BestResults = Consumer.begin()->second; ED = TypoCorrection::NormalizeEditDistance(Consumer.begin()->first); if (ED > 0 && Typo->getName().size() / ED < 3) { // If this was an unqualified lookup and we believe the callback // object wouldn't have filtered out possible corrections, note // that no correction was found. if (IsUnqualifiedLookup && !ValidatingCallback) (void)UnqualifiedTyposCorrected[Typo]; return TypoCorrection(); } // If only a single name remains, return that result. if (BestResults.size() == 1) { const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin()); const TypoCorrection &Result = Correction.second; // Don't correct to a keyword that's the same as the typo; the keyword // wasn't actually in scope. if (ED == 0 && Result.isKeyword()) return TypoCorrection(); // Record the correction for unqualified lookup. if (IsUnqualifiedLookup) UnqualifiedTyposCorrected[Typo] = Result; return Result; } else if (BestResults.size() > 1 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for // some instances of CTC_Unknown, while WantRemainingKeywords is true // for CTC_Unknown but not for CTC_ObjCMessageReceiver. && CCC.WantObjCSuper && !CCC.WantRemainingKeywords && BestResults["super"].isKeyword()) { // Prefer 'super' when we're completing in a message-receiver // context. // Don't correct to a keyword that's the same as the typo; the keyword // wasn't actually in scope. if (ED == 0) return TypoCorrection(); // Record the correction for unqualified lookup. if (IsUnqualifiedLookup) UnqualifiedTyposCorrected[Typo] = BestResults["super"]; return BestResults["super"]; } // If this was an unqualified lookup and we believe the callback object did // not filter out possible corrections, note that no correction was found. if (IsUnqualifiedLookup && !ValidatingCallback) (void)UnqualifiedTyposCorrected[Typo]; return TypoCorrection(); } void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { if (!CDecl) return; if (isKeyword()) CorrectionDecls.clear(); CorrectionDecls.push_back(CDecl); if (!CorrectionName) CorrectionName = CDecl->getDeclName(); } std::string TypoCorrection::getAsString(const LangOptions &LO) const { if (CorrectionNameSpec) { std::string tmpBuffer; llvm::raw_string_ostream PrefixOStream(tmpBuffer); CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); CorrectionName.printName(PrefixOStream); return PrefixOStream.str(); } return CorrectionName.getAsString(); }