Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/clang/lib/Sema/SemaPseudoObject.cpp |
//===--- SemaPseudoObject.cpp - Semantic Analysis for Pseudo-Objects ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for expressions involving // pseudo-object references. Pseudo-objects are conceptual objects // whose storage is entirely abstract and all accesses to which are // translated through some sort of abstraction barrier. // // For example, Objective-C objects can have "properties", either // declared or undeclared. A property may be accessed by writing // expr.prop // where 'expr' is an r-value of Objective-C pointer type and 'prop' // is the name of the property. If this expression is used in a context // needing an r-value, it is treated as if it were a message-send // of the associated 'getter' selector, typically: // [expr prop] // If it is used as the LHS of a simple assignment, it is treated // as a message-send of the associated 'setter' selector, typically: // [expr setProp: RHS] // If it is used as the LHS of a compound assignment, or the operand // of a unary increment or decrement, both are required; for example, // 'expr.prop *= 100' would be translated to: // [expr setProp: [expr prop] * 100] // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Initialization.h" #include "clang/AST/ExprObjC.h" #include "clang/Lex/Preprocessor.h" using namespace clang; using namespace sema; namespace { // Basically just a very focused copy of TreeTransform. template <class T> struct Rebuilder { Sema &S; Rebuilder(Sema &S) : S(S) {} T &getDerived() { return static_cast<T&>(*this); } Expr *rebuild(Expr *e) { // Fast path: nothing to look through. if (typename T::specific_type *specific = dyn_cast<typename T::specific_type>(e)) return getDerived().rebuildSpecific(specific); // Otherwise, we should look through and rebuild anything that // IgnoreParens would. if (ParenExpr *parens = dyn_cast<ParenExpr>(e)) { e = rebuild(parens->getSubExpr()); return new (S.Context) ParenExpr(parens->getLParen(), parens->getRParen(), e); } if (UnaryOperator *uop = dyn_cast<UnaryOperator>(e)) { assert(uop->getOpcode() == UO_Extension); e = rebuild(uop->getSubExpr()); return new (S.Context) UnaryOperator(e, uop->getOpcode(), uop->getType(), uop->getValueKind(), uop->getObjectKind(), uop->getOperatorLoc()); } if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { assert(!gse->isResultDependent()); unsigned resultIndex = gse->getResultIndex(); unsigned numAssocs = gse->getNumAssocs(); SmallVector<Expr*, 8> assocs(numAssocs); SmallVector<TypeSourceInfo*, 8> assocTypes(numAssocs); for (unsigned i = 0; i != numAssocs; ++i) { Expr *assoc = gse->getAssocExpr(i); if (i == resultIndex) assoc = rebuild(assoc); assocs[i] = assoc; assocTypes[i] = gse->getAssocTypeSourceInfo(i); } return new (S.Context) GenericSelectionExpr(S.Context, gse->getGenericLoc(), gse->getControllingExpr(), assocTypes.data(), assocs.data(), numAssocs, gse->getDefaultLoc(), gse->getRParenLoc(), gse->containsUnexpandedParameterPack(), resultIndex); } llvm_unreachable("bad expression to rebuild!"); } }; struct ObjCPropertyRefRebuilder : Rebuilder<ObjCPropertyRefRebuilder> { Expr *NewBase; ObjCPropertyRefRebuilder(Sema &S, Expr *newBase) : Rebuilder<ObjCPropertyRefRebuilder>(S), NewBase(newBase) {} typedef ObjCPropertyRefExpr specific_type; Expr *rebuildSpecific(ObjCPropertyRefExpr *refExpr) { // Fortunately, the constraint that we're rebuilding something // with a base limits the number of cases here. assert(refExpr->getBase()); if (refExpr->isExplicitProperty()) { return new (S.Context) ObjCPropertyRefExpr(refExpr->getExplicitProperty(), refExpr->getType(), refExpr->getValueKind(), refExpr->getObjectKind(), refExpr->getLocation(), NewBase); } return new (S.Context) ObjCPropertyRefExpr(refExpr->getImplicitPropertyGetter(), refExpr->getImplicitPropertySetter(), refExpr->getType(), refExpr->getValueKind(), refExpr->getObjectKind(),refExpr->getLocation(), NewBase); } }; struct ObjCSubscriptRefRebuilder : Rebuilder<ObjCSubscriptRefRebuilder> { Expr *NewBase; Expr *NewKeyExpr; ObjCSubscriptRefRebuilder(Sema &S, Expr *newBase, Expr *newKeyExpr) : Rebuilder<ObjCSubscriptRefRebuilder>(S), NewBase(newBase), NewKeyExpr(newKeyExpr) {} typedef ObjCSubscriptRefExpr specific_type; Expr *rebuildSpecific(ObjCSubscriptRefExpr *refExpr) { assert(refExpr->getBaseExpr()); assert(refExpr->getKeyExpr()); return new (S.Context) ObjCSubscriptRefExpr(NewBase, NewKeyExpr, refExpr->getType(), refExpr->getValueKind(), refExpr->getObjectKind(),refExpr->getAtIndexMethodDecl(), refExpr->setAtIndexMethodDecl(), refExpr->getRBracket()); } }; class PseudoOpBuilder { public: Sema &S; unsigned ResultIndex; SourceLocation GenericLoc; SmallVector<Expr *, 4> Semantics; PseudoOpBuilder(Sema &S, SourceLocation genericLoc) : S(S), ResultIndex(PseudoObjectExpr::NoResult), GenericLoc(genericLoc) {} virtual ~PseudoOpBuilder() {} /// Add a normal semantic expression. void addSemanticExpr(Expr *semantic) { Semantics.push_back(semantic); } /// Add the 'result' semantic expression. void addResultSemanticExpr(Expr *resultExpr) { assert(ResultIndex == PseudoObjectExpr::NoResult); ResultIndex = Semantics.size(); Semantics.push_back(resultExpr); } ExprResult buildRValueOperation(Expr *op); ExprResult buildAssignmentOperation(Scope *Sc, SourceLocation opLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS); ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc, UnaryOperatorKind opcode, Expr *op); ExprResult complete(Expr *syntacticForm); OpaqueValueExpr *capture(Expr *op); OpaqueValueExpr *captureValueAsResult(Expr *op); void setResultToLastSemantic() { assert(ResultIndex == PseudoObjectExpr::NoResult); ResultIndex = Semantics.size() - 1; } /// Return true if assignments have a non-void result. virtual bool assignmentsHaveResult() { return true; } virtual Expr *rebuildAndCaptureObject(Expr *) = 0; virtual ExprResult buildGet() = 0; virtual ExprResult buildSet(Expr *, SourceLocation, bool captureSetValueAsResult) = 0; }; /// A PseudoOpBuilder for Objective-C @properties. class ObjCPropertyOpBuilder : public PseudoOpBuilder { ObjCPropertyRefExpr *RefExpr; ObjCPropertyRefExpr *SyntacticRefExpr; OpaqueValueExpr *InstanceReceiver; ObjCMethodDecl *Getter; ObjCMethodDecl *Setter; Selector SetterSelector; Selector GetterSelector; public: ObjCPropertyOpBuilder(Sema &S, ObjCPropertyRefExpr *refExpr) : PseudoOpBuilder(S, refExpr->getLocation()), RefExpr(refExpr), SyntacticRefExpr(0), InstanceReceiver(0), Getter(0), Setter(0) { } ExprResult buildRValueOperation(Expr *op); ExprResult buildAssignmentOperation(Scope *Sc, SourceLocation opLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS); ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc, UnaryOperatorKind opcode, Expr *op); bool tryBuildGetOfReference(Expr *op, ExprResult &result); bool findSetter(); bool findGetter(); Expr *rebuildAndCaptureObject(Expr *syntacticBase); ExprResult buildGet(); ExprResult buildSet(Expr *op, SourceLocation, bool); }; /// A PseudoOpBuilder for Objective-C array/dictionary indexing. class ObjCSubscriptOpBuilder : public PseudoOpBuilder { ObjCSubscriptRefExpr *RefExpr; OpaqueValueExpr *InstanceBase; OpaqueValueExpr *InstanceKey; ObjCMethodDecl *AtIndexGetter; Selector AtIndexGetterSelector; ObjCMethodDecl *AtIndexSetter; Selector AtIndexSetterSelector; public: ObjCSubscriptOpBuilder(Sema &S, ObjCSubscriptRefExpr *refExpr) : PseudoOpBuilder(S, refExpr->getSourceRange().getBegin()), RefExpr(refExpr), InstanceBase(0), InstanceKey(0), AtIndexGetter(0), AtIndexSetter(0) { } ExprResult buildRValueOperation(Expr *op); ExprResult buildAssignmentOperation(Scope *Sc, SourceLocation opLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS); Expr *rebuildAndCaptureObject(Expr *syntacticBase); bool findAtIndexGetter(); bool findAtIndexSetter(); ExprResult buildGet(); ExprResult buildSet(Expr *op, SourceLocation, bool); }; } /// Capture the given expression in an OpaqueValueExpr. OpaqueValueExpr *PseudoOpBuilder::capture(Expr *e) { // Make a new OVE whose source is the given expression. OpaqueValueExpr *captured = new (S.Context) OpaqueValueExpr(GenericLoc, e->getType(), e->getValueKind(), e->getObjectKind(), e); // Make sure we bind that in the semantics. addSemanticExpr(captured); return captured; } /// Capture the given expression as the result of this pseudo-object /// operation. This routine is safe against expressions which may /// already be captured. /// /// \param Returns the captured expression, which will be the /// same as the input if the input was already captured OpaqueValueExpr *PseudoOpBuilder::captureValueAsResult(Expr *e) { assert(ResultIndex == PseudoObjectExpr::NoResult); // If the expression hasn't already been captured, just capture it // and set the new semantic if (!isa<OpaqueValueExpr>(e)) { OpaqueValueExpr *cap = capture(e); setResultToLastSemantic(); return cap; } // Otherwise, it must already be one of our semantic expressions; // set ResultIndex to its index. unsigned index = 0; for (;; ++index) { assert(index < Semantics.size() && "captured expression not found in semantics!"); if (e == Semantics[index]) break; } ResultIndex = index; return cast<OpaqueValueExpr>(e); } /// The routine which creates the final PseudoObjectExpr. ExprResult PseudoOpBuilder::complete(Expr *syntactic) { return PseudoObjectExpr::Create(S.Context, syntactic, Semantics, ResultIndex); } /// The main skeleton for building an r-value operation. ExprResult PseudoOpBuilder::buildRValueOperation(Expr *op) { Expr *syntacticBase = rebuildAndCaptureObject(op); ExprResult getExpr = buildGet(); if (getExpr.isInvalid()) return ExprError(); addResultSemanticExpr(getExpr.take()); return complete(syntacticBase); } /// The basic skeleton for building a simple or compound /// assignment operation. ExprResult PseudoOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS) { assert(BinaryOperator::isAssignmentOp(opcode)); Expr *syntacticLHS = rebuildAndCaptureObject(LHS); OpaqueValueExpr *capturedRHS = capture(RHS); Expr *syntactic; ExprResult result; if (opcode == BO_Assign) { result = capturedRHS; syntactic = new (S.Context) BinaryOperator(syntacticLHS, capturedRHS, opcode, capturedRHS->getType(), capturedRHS->getValueKind(), OK_Ordinary, opcLoc); } else { ExprResult opLHS = buildGet(); if (opLHS.isInvalid()) return ExprError(); // Build an ordinary, non-compound operation. BinaryOperatorKind nonCompound = BinaryOperator::getOpForCompoundAssignment(opcode); result = S.BuildBinOp(Sc, opcLoc, nonCompound, opLHS.take(), capturedRHS); if (result.isInvalid()) return ExprError(); syntactic = new (S.Context) CompoundAssignOperator(syntacticLHS, capturedRHS, opcode, result.get()->getType(), result.get()->getValueKind(), OK_Ordinary, opLHS.get()->getType(), result.get()->getType(), opcLoc); } // The result of the assignment, if not void, is the value set into // the l-value. result = buildSet(result.take(), opcLoc, assignmentsHaveResult()); if (result.isInvalid()) return ExprError(); addSemanticExpr(result.take()); return complete(syntactic); } /// The basic skeleton for building an increment or decrement /// operation. ExprResult PseudoOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc, UnaryOperatorKind opcode, Expr *op) { assert(UnaryOperator::isIncrementDecrementOp(opcode)); Expr *syntacticOp = rebuildAndCaptureObject(op); // Load the value. ExprResult result = buildGet(); if (result.isInvalid()) return ExprError(); QualType resultType = result.get()->getType(); // That's the postfix result. if (UnaryOperator::isPostfix(opcode) && assignmentsHaveResult()) { result = capture(result.take()); setResultToLastSemantic(); } // Add or subtract a literal 1. llvm::APInt oneV(S.Context.getTypeSize(S.Context.IntTy), 1); Expr *one = IntegerLiteral::Create(S.Context, oneV, S.Context.IntTy, GenericLoc); if (UnaryOperator::isIncrementOp(opcode)) { result = S.BuildBinOp(Sc, opcLoc, BO_Add, result.take(), one); } else { result = S.BuildBinOp(Sc, opcLoc, BO_Sub, result.take(), one); } if (result.isInvalid()) return ExprError(); // Store that back into the result. The value stored is the result // of a prefix operation. result = buildSet(result.take(), opcLoc, UnaryOperator::isPrefix(opcode) && assignmentsHaveResult()); if (result.isInvalid()) return ExprError(); addSemanticExpr(result.take()); UnaryOperator *syntactic = new (S.Context) UnaryOperator(syntacticOp, opcode, resultType, VK_LValue, OK_Ordinary, opcLoc); return complete(syntactic); } //===----------------------------------------------------------------------===// // Objective-C @property and implicit property references //===----------------------------------------------------------------------===// /// Look up a method in the receiver type of an Objective-C property /// reference. static ObjCMethodDecl *LookupMethodInReceiverType(Sema &S, Selector sel, const ObjCPropertyRefExpr *PRE) { if (PRE->isObjectReceiver()) { const ObjCObjectPointerType *PT = PRE->getBase()->getType()->castAs<ObjCObjectPointerType>(); // Special case for 'self' in class method implementations. if (PT->isObjCClassType() && S.isSelfExpr(const_cast<Expr*>(PRE->getBase()))) { // This cast is safe because isSelfExpr is only true within // methods. ObjCMethodDecl *method = cast<ObjCMethodDecl>(S.CurContext->getNonClosureAncestor()); return S.LookupMethodInObjectType(sel, S.Context.getObjCInterfaceType(method->getClassInterface()), /*instance*/ false); } return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true); } if (PRE->isSuperReceiver()) { if (const ObjCObjectPointerType *PT = PRE->getSuperReceiverType()->getAs<ObjCObjectPointerType>()) return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true); return S.LookupMethodInObjectType(sel, PRE->getSuperReceiverType(), false); } assert(PRE->isClassReceiver() && "Invalid expression"); QualType IT = S.Context.getObjCInterfaceType(PRE->getClassReceiver()); return S.LookupMethodInObjectType(sel, IT, false); } bool ObjCPropertyOpBuilder::findGetter() { if (Getter) return true; // For implicit properties, just trust the lookup we already did. if (RefExpr->isImplicitProperty()) { if ((Getter = RefExpr->getImplicitPropertyGetter())) { GetterSelector = Getter->getSelector(); return true; } else { // Must build the getter selector the hard way. ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter(); assert(setter && "both setter and getter are null - cannot happen"); IdentifierInfo *setterName = setter->getSelector().getIdentifierInfoForSlot(0); const char *compStr = setterName->getNameStart(); compStr += 3; IdentifierInfo *getterName = &S.Context.Idents.get(compStr); GetterSelector = S.PP.getSelectorTable().getNullarySelector(getterName); return false; } } ObjCPropertyDecl *prop = RefExpr->getExplicitProperty(); Getter = LookupMethodInReceiverType(S, prop->getGetterName(), RefExpr); return (Getter != 0); } /// Try to find the most accurate setter declaration for the property /// reference. /// /// \return true if a setter was found, in which case Setter bool ObjCPropertyOpBuilder::findSetter() { // For implicit properties, just trust the lookup we already did. if (RefExpr->isImplicitProperty()) { if (ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter()) { Setter = setter; SetterSelector = setter->getSelector(); return true; } else { IdentifierInfo *getterName = RefExpr->getImplicitPropertyGetter()->getSelector() .getIdentifierInfoForSlot(0); SetterSelector = SelectorTable::constructSetterName(S.PP.getIdentifierTable(), S.PP.getSelectorTable(), getterName); return false; } } // For explicit properties, this is more involved. ObjCPropertyDecl *prop = RefExpr->getExplicitProperty(); SetterSelector = prop->getSetterName(); // Do a normal method lookup first. if (ObjCMethodDecl *setter = LookupMethodInReceiverType(S, SetterSelector, RefExpr)) { Setter = setter; return true; } // That can fail in the somewhat crazy situation that we're // type-checking a message send within the @interface declaration // that declared the @property. But it's not clear that that's // valuable to support. return false; } /// Capture the base object of an Objective-C property expression. Expr *ObjCPropertyOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) { assert(InstanceReceiver == 0); // If we have a base, capture it in an OVE and rebuild the syntactic // form to use the OVE as its base. if (RefExpr->isObjectReceiver()) { InstanceReceiver = capture(RefExpr->getBase()); syntacticBase = ObjCPropertyRefRebuilder(S, InstanceReceiver).rebuild(syntacticBase); } if (ObjCPropertyRefExpr * refE = dyn_cast<ObjCPropertyRefExpr>(syntacticBase->IgnoreParens())) SyntacticRefExpr = refE; return syntacticBase; } /// Load from an Objective-C property reference. ExprResult ObjCPropertyOpBuilder::buildGet() { findGetter(); assert(Getter); if (SyntacticRefExpr) SyntacticRefExpr->setIsMessagingGetter(); QualType receiverType; if (RefExpr->isClassReceiver()) { receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver()); } else if (RefExpr->isSuperReceiver()) { receiverType = RefExpr->getSuperReceiverType(); } else { assert(InstanceReceiver); receiverType = InstanceReceiver->getType(); } // Build a message-send. ExprResult msg; if (Getter->isInstanceMethod() || RefExpr->isObjectReceiver()) { assert(InstanceReceiver || RefExpr->isSuperReceiver()); msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType, GenericLoc, Getter->getSelector(), Getter, MultiExprArg()); } else { msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(), GenericLoc, Getter->getSelector(), Getter, MultiExprArg()); } return msg; } /// Store to an Objective-C property reference. /// /// \param bindSetValueAsResult - If true, capture the actual /// value being set as the value of the property operation. ExprResult ObjCPropertyOpBuilder::buildSet(Expr *op, SourceLocation opcLoc, bool captureSetValueAsResult) { bool hasSetter = findSetter(); assert(hasSetter); (void) hasSetter; if (SyntacticRefExpr) SyntacticRefExpr->setIsMessagingSetter(); QualType receiverType; if (RefExpr->isClassReceiver()) { receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver()); } else if (RefExpr->isSuperReceiver()) { receiverType = RefExpr->getSuperReceiverType(); } else { assert(InstanceReceiver); receiverType = InstanceReceiver->getType(); } // Use assignment constraints when possible; they give us better // diagnostics. "When possible" basically means anything except a // C++ class type. if (!S.getLangOpts().CPlusPlus || !op->getType()->isRecordType()) { QualType paramType = (*Setter->param_begin())->getType(); if (!S.getLangOpts().CPlusPlus || !paramType->isRecordType()) { ExprResult opResult = op; Sema::AssignConvertType assignResult = S.CheckSingleAssignmentConstraints(paramType, opResult); if (S.DiagnoseAssignmentResult(assignResult, opcLoc, paramType, op->getType(), opResult.get(), Sema::AA_Assigning)) return ExprError(); op = opResult.take(); assert(op && "successful assignment left argument invalid?"); } } // Arguments. Expr *args[] = { op }; // Build a message-send. ExprResult msg; if (Setter->isInstanceMethod() || RefExpr->isObjectReceiver()) { msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType, GenericLoc, SetterSelector, Setter, MultiExprArg(args, 1)); } else { msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(), GenericLoc, SetterSelector, Setter, MultiExprArg(args, 1)); } if (!msg.isInvalid() && captureSetValueAsResult) { ObjCMessageExpr *msgExpr = cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit()); Expr *arg = msgExpr->getArg(0); msgExpr->setArg(0, captureValueAsResult(arg)); } return msg; } /// @property-specific behavior for doing lvalue-to-rvalue conversion. ExprResult ObjCPropertyOpBuilder::buildRValueOperation(Expr *op) { // Explicit properties always have getters, but implicit ones don't. // Check that before proceeding. if (RefExpr->isImplicitProperty() && !RefExpr->getImplicitPropertyGetter()) { S.Diag(RefExpr->getLocation(), diag::err_getter_not_found) << RefExpr->getBase()->getType(); return ExprError(); } ExprResult result = PseudoOpBuilder::buildRValueOperation(op); if (result.isInvalid()) return ExprError(); if (RefExpr->isExplicitProperty() && !Getter->hasRelatedResultType()) S.DiagnosePropertyAccessorMismatch(RefExpr->getExplicitProperty(), Getter, RefExpr->getLocation()); // As a special case, if the method returns 'id', try to get // a better type from the property. if (RefExpr->isExplicitProperty() && result.get()->isRValue() && result.get()->getType()->isObjCIdType()) { QualType propType = RefExpr->getExplicitProperty()->getType(); if (const ObjCObjectPointerType *ptr = propType->getAs<ObjCObjectPointerType>()) { if (!ptr->isObjCIdType()) result = S.ImpCastExprToType(result.get(), propType, CK_BitCast); } } return result; } /// Try to build this as a call to a getter that returns a reference. /// /// \return true if it was possible, whether or not it actually /// succeeded bool ObjCPropertyOpBuilder::tryBuildGetOfReference(Expr *op, ExprResult &result) { if (!S.getLangOpts().CPlusPlus) return false; findGetter(); assert(Getter && "property has no setter and no getter!"); // Only do this if the getter returns an l-value reference type. QualType resultType = Getter->getResultType(); if (!resultType->isLValueReferenceType()) return false; result = buildRValueOperation(op); return true; } /// @property-specific behavior for doing assignments. ExprResult ObjCPropertyOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS) { assert(BinaryOperator::isAssignmentOp(opcode)); // If there's no setter, we have no choice but to try to assign to // the result of the getter. if (!findSetter()) { ExprResult result; if (tryBuildGetOfReference(LHS, result)) { if (result.isInvalid()) return ExprError(); return S.BuildBinOp(Sc, opcLoc, opcode, result.take(), RHS); } // Otherwise, it's an error. S.Diag(opcLoc, diag::err_nosetter_property_assignment) << unsigned(RefExpr->isImplicitProperty()) << SetterSelector << LHS->getSourceRange() << RHS->getSourceRange(); return ExprError(); } // If there is a setter, we definitely want to use it. // Verify that we can do a compound assignment. if (opcode != BO_Assign && !findGetter()) { S.Diag(opcLoc, diag::err_nogetter_property_compound_assignment) << LHS->getSourceRange() << RHS->getSourceRange(); return ExprError(); } ExprResult result = PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS); if (result.isInvalid()) return ExprError(); // Various warnings about property assignments in ARC. if (S.getLangOpts().ObjCAutoRefCount && InstanceReceiver) { S.checkRetainCycles(InstanceReceiver->getSourceExpr(), RHS); S.checkUnsafeExprAssigns(opcLoc, LHS, RHS); } return result; } /// @property-specific behavior for doing increments and decrements. ExprResult ObjCPropertyOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc, UnaryOperatorKind opcode, Expr *op) { // If there's no setter, we have no choice but to try to assign to // the result of the getter. if (!findSetter()) { ExprResult result; if (tryBuildGetOfReference(op, result)) { if (result.isInvalid()) return ExprError(); return S.BuildUnaryOp(Sc, opcLoc, opcode, result.take()); } // Otherwise, it's an error. S.Diag(opcLoc, diag::err_nosetter_property_incdec) << unsigned(RefExpr->isImplicitProperty()) << unsigned(UnaryOperator::isDecrementOp(opcode)) << SetterSelector << op->getSourceRange(); return ExprError(); } // If there is a setter, we definitely want to use it. // We also need a getter. if (!findGetter()) { assert(RefExpr->isImplicitProperty()); S.Diag(opcLoc, diag::err_nogetter_property_incdec) << unsigned(UnaryOperator::isDecrementOp(opcode)) << GetterSelector << op->getSourceRange(); return ExprError(); } return PseudoOpBuilder::buildIncDecOperation(Sc, opcLoc, opcode, op); } // ObjCSubscript build stuff. // /// objective-c subscripting-specific behavior for doing lvalue-to-rvalue /// conversion. /// FIXME. Remove this routine if it is proven that no additional /// specifity is needed. ExprResult ObjCSubscriptOpBuilder::buildRValueOperation(Expr *op) { ExprResult result = PseudoOpBuilder::buildRValueOperation(op); if (result.isInvalid()) return ExprError(); return result; } /// objective-c subscripting-specific behavior for doing assignments. ExprResult ObjCSubscriptOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS) { assert(BinaryOperator::isAssignmentOp(opcode)); // There must be a method to do the Index'ed assignment. if (!findAtIndexSetter()) return ExprError(); // Verify that we can do a compound assignment. if (opcode != BO_Assign && !findAtIndexGetter()) return ExprError(); ExprResult result = PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS); if (result.isInvalid()) return ExprError(); // Various warnings about objc Index'ed assignments in ARC. if (S.getLangOpts().ObjCAutoRefCount && InstanceBase) { S.checkRetainCycles(InstanceBase->getSourceExpr(), RHS); S.checkUnsafeExprAssigns(opcLoc, LHS, RHS); } return result; } /// Capture the base object of an Objective-C Index'ed expression. Expr *ObjCSubscriptOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) { assert(InstanceBase == 0); // Capture base expression in an OVE and rebuild the syntactic // form to use the OVE as its base expression. InstanceBase = capture(RefExpr->getBaseExpr()); InstanceKey = capture(RefExpr->getKeyExpr()); syntacticBase = ObjCSubscriptRefRebuilder(S, InstanceBase, InstanceKey).rebuild(syntacticBase); return syntacticBase; } /// CheckSubscriptingKind - This routine decide what type /// of indexing represented by "FromE" is being done. Sema::ObjCSubscriptKind Sema::CheckSubscriptingKind(Expr *FromE) { // If the expression already has integral or enumeration type, we're golden. QualType T = FromE->getType(); if (T->isIntegralOrEnumerationType()) return OS_Array; // If we don't have a class type in C++, there's no way we can get an // expression of integral or enumeration type. const RecordType *RecordTy = T->getAs<RecordType>(); if (!RecordTy && T->isObjCObjectPointerType()) // All other scalar cases are assumed to be dictionary indexing which // caller handles, with diagnostics if needed. return OS_Dictionary; if (!getLangOpts().CPlusPlus || !RecordTy || RecordTy->isIncompleteType()) { // No indexing can be done. Issue diagnostics and quit. const Expr *IndexExpr = FromE->IgnoreParenImpCasts(); if (isa<StringLiteral>(IndexExpr)) Diag(FromE->getExprLoc(), diag::err_objc_subscript_pointer) << T << FixItHint::CreateInsertion(FromE->getExprLoc(), "@"); else Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion) << T; return OS_Error; } // We must have a complete class type. if (RequireCompleteType(FromE->getExprLoc(), T, PDiag(diag::err_objc_index_incomplete_class_type) << FromE->getSourceRange())) return OS_Error; // Look for a conversion to an integral, enumeration type, or // objective-C pointer type. UnresolvedSet<4> ViableConversions; UnresolvedSet<4> ExplicitConversions; const UnresolvedSetImpl *Conversions = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); int NoIntegrals=0, NoObjCIdPointers=0; SmallVector<CXXConversionDecl *, 4> ConversionDecls; for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) { QualType CT = Conversion->getConversionType().getNonReferenceType(); if (CT->isIntegralOrEnumerationType()) { ++NoIntegrals; ConversionDecls.push_back(Conversion); } else if (CT->isObjCIdType() ||CT->isBlockPointerType()) { ++NoObjCIdPointers; ConversionDecls.push_back(Conversion); } } } if (NoIntegrals ==1 && NoObjCIdPointers == 0) return OS_Array; if (NoIntegrals == 0 && NoObjCIdPointers == 1) return OS_Dictionary; if (NoIntegrals == 0 && NoObjCIdPointers == 0) { // No conversion function was found. Issue diagnostic and return. Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion) << FromE->getType(); return OS_Error; } Diag(FromE->getExprLoc(), diag::err_objc_multiple_subscript_type_conversion) << FromE->getType(); for (unsigned int i = 0; i < ConversionDecls.size(); i++) Diag(ConversionDecls[i]->getLocation(), diag::not_conv_function_declared_at); return OS_Error; } bool ObjCSubscriptOpBuilder::findAtIndexGetter() { if (AtIndexGetter) return true; Expr *BaseExpr = RefExpr->getBaseExpr(); QualType BaseT = BaseExpr->getType(); QualType ResultType; if (const ObjCObjectPointerType *PTy = BaseT->getAs<ObjCObjectPointerType>()) { ResultType = PTy->getPointeeType(); if (const ObjCObjectType *iQFaceTy = ResultType->getAsObjCQualifiedInterfaceType()) ResultType = iQFaceTy->getBaseType(); } Sema::ObjCSubscriptKind Res = S.CheckSubscriptingKind(RefExpr->getKeyExpr()); if (Res == Sema::OS_Error) return false; bool arrayRef = (Res == Sema::OS_Array); if (ResultType.isNull()) { S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type) << BaseExpr->getType() << arrayRef; return false; } if (!arrayRef) { // dictionary subscripting. // - (id)objectForKeyedSubscript:(id)key; IdentifierInfo *KeyIdents[] = { &S.Context.Idents.get("objectForKeyedSubscript") }; AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents); } else { // - (id)objectAtIndexedSubscript:(size_t)index; IdentifierInfo *KeyIdents[] = { &S.Context.Idents.get("objectAtIndexedSubscript") }; AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents); } AtIndexGetter = S.LookupMethodInObjectType(AtIndexGetterSelector, ResultType, true /*instance*/); bool receiverIdType = (BaseT->isObjCIdType() || BaseT->isObjCQualifiedIdType()); if (!AtIndexGetter && S.getLangOpts().DebuggerObjCLiteral) { AtIndexGetter = ObjCMethodDecl::Create(S.Context, SourceLocation(), SourceLocation(), AtIndexGetterSelector, S.Context.getObjCIdType() /*ReturnType*/, 0 /*TypeSourceInfo */, S.Context.getTranslationUnitDecl(), true /*Instance*/, false/*isVariadic*/, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required, false); ParmVarDecl *Argument = ParmVarDecl::Create(S.Context, AtIndexGetter, SourceLocation(), SourceLocation(), arrayRef ? &S.Context.Idents.get("index") : &S.Context.Idents.get("key"), arrayRef ? S.Context.UnsignedLongTy : S.Context.getObjCIdType(), /*TInfo=*/0, SC_None, SC_None, 0); AtIndexGetter->setMethodParams(S.Context, Argument, ArrayRef<SourceLocation>()); } if (!AtIndexGetter) { if (!receiverIdType) { S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_method_not_found) << BaseExpr->getType() << 0 << arrayRef; return false; } AtIndexGetter = S.LookupInstanceMethodInGlobalPool(AtIndexGetterSelector, RefExpr->getSourceRange(), true, false); } if (AtIndexGetter) { QualType T = AtIndexGetter->param_begin()[0]->getType(); if ((arrayRef && !T->isIntegralOrEnumerationType()) || (!arrayRef && !T->isObjCObjectPointerType())) { S.Diag(RefExpr->getKeyExpr()->getExprLoc(), arrayRef ? diag::err_objc_subscript_index_type : diag::err_objc_subscript_key_type) << T; S.Diag(AtIndexGetter->param_begin()[0]->getLocation(), diag::note_parameter_type) << T; return false; } QualType R = AtIndexGetter->getResultType(); if (!R->isObjCObjectPointerType()) { S.Diag(RefExpr->getKeyExpr()->getExprLoc(), diag::err_objc_indexing_method_result_type) << R << arrayRef; S.Diag(AtIndexGetter->getLocation(), diag::note_method_declared_at) << AtIndexGetter->getDeclName(); } } return true; } bool ObjCSubscriptOpBuilder::findAtIndexSetter() { if (AtIndexSetter) return true; Expr *BaseExpr = RefExpr->getBaseExpr(); QualType BaseT = BaseExpr->getType(); QualType ResultType; if (const ObjCObjectPointerType *PTy = BaseT->getAs<ObjCObjectPointerType>()) { ResultType = PTy->getPointeeType(); if (const ObjCObjectType *iQFaceTy = ResultType->getAsObjCQualifiedInterfaceType()) ResultType = iQFaceTy->getBaseType(); } Sema::ObjCSubscriptKind Res = S.CheckSubscriptingKind(RefExpr->getKeyExpr()); if (Res == Sema::OS_Error) return false; bool arrayRef = (Res == Sema::OS_Array); if (ResultType.isNull()) { S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type) << BaseExpr->getType() << arrayRef; return false; } if (!arrayRef) { // dictionary subscripting. // - (void)setObject:(id)object forKeyedSubscript:(id)key; IdentifierInfo *KeyIdents[] = { &S.Context.Idents.get("setObject"), &S.Context.Idents.get("forKeyedSubscript") }; AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents); } else { // - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index; IdentifierInfo *KeyIdents[] = { &S.Context.Idents.get("setObject"), &S.Context.Idents.get("atIndexedSubscript") }; AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents); } AtIndexSetter = S.LookupMethodInObjectType(AtIndexSetterSelector, ResultType, true /*instance*/); bool receiverIdType = (BaseT->isObjCIdType() || BaseT->isObjCQualifiedIdType()); if (!AtIndexSetter && S.getLangOpts().DebuggerObjCLiteral) { TypeSourceInfo *ResultTInfo = 0; QualType ReturnType = S.Context.VoidTy; AtIndexSetter = ObjCMethodDecl::Create(S.Context, SourceLocation(), SourceLocation(), AtIndexSetterSelector, ReturnType, ResultTInfo, S.Context.getTranslationUnitDecl(), true /*Instance*/, false/*isVariadic*/, /*isSynthesized=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCMethodDecl::Required, false); SmallVector<ParmVarDecl *, 2> Params; ParmVarDecl *object = ParmVarDecl::Create(S.Context, AtIndexSetter, SourceLocation(), SourceLocation(), &S.Context.Idents.get("object"), S.Context.getObjCIdType(), /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(object); ParmVarDecl *key = ParmVarDecl::Create(S.Context, AtIndexSetter, SourceLocation(), SourceLocation(), arrayRef ? &S.Context.Idents.get("index") : &S.Context.Idents.get("key"), arrayRef ? S.Context.UnsignedLongTy : S.Context.getObjCIdType(), /*TInfo=*/0, SC_None, SC_None, 0); Params.push_back(key); AtIndexSetter->setMethodParams(S.Context, Params, ArrayRef<SourceLocation>()); } if (!AtIndexSetter) { if (!receiverIdType) { S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_method_not_found) << BaseExpr->getType() << 1 << arrayRef; return false; } AtIndexSetter = S.LookupInstanceMethodInGlobalPool(AtIndexSetterSelector, RefExpr->getSourceRange(), true, false); } bool err = false; if (AtIndexSetter && arrayRef) { QualType T = AtIndexSetter->param_begin()[1]->getType(); if (!T->isIntegralOrEnumerationType()) { S.Diag(RefExpr->getKeyExpr()->getExprLoc(), diag::err_objc_subscript_index_type) << T; S.Diag(AtIndexSetter->param_begin()[1]->getLocation(), diag::note_parameter_type) << T; err = true; } T = AtIndexSetter->param_begin()[0]->getType(); if (!T->isObjCObjectPointerType()) { S.Diag(RefExpr->getBaseExpr()->getExprLoc(), diag::err_objc_subscript_object_type) << T << arrayRef; S.Diag(AtIndexSetter->param_begin()[0]->getLocation(), diag::note_parameter_type) << T; err = true; } } else if (AtIndexSetter && !arrayRef) for (unsigned i=0; i <2; i++) { QualType T = AtIndexSetter->param_begin()[i]->getType(); if (!T->isObjCObjectPointerType()) { if (i == 1) S.Diag(RefExpr->getKeyExpr()->getExprLoc(), diag::err_objc_subscript_key_type) << T; else S.Diag(RefExpr->getBaseExpr()->getExprLoc(), diag::err_objc_subscript_dic_object_type) << T; S.Diag(AtIndexSetter->param_begin()[i]->getLocation(), diag::note_parameter_type) << T; err = true; } } return !err; } // Get the object at "Index" position in the container. // [BaseExpr objectAtIndexedSubscript : IndexExpr]; ExprResult ObjCSubscriptOpBuilder::buildGet() { if (!findAtIndexGetter()) return ExprError(); QualType receiverType = InstanceBase->getType(); // Build a message-send. ExprResult msg; Expr *Index = InstanceKey; // Arguments. Expr *args[] = { Index }; assert(InstanceBase); msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType, GenericLoc, AtIndexGetterSelector, AtIndexGetter, MultiExprArg(args, 1)); return msg; } /// Store into the container the "op" object at "Index"'ed location /// by building this messaging expression: /// - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index; /// \param bindSetValueAsResult - If true, capture the actual /// value being set as the value of the property operation. ExprResult ObjCSubscriptOpBuilder::buildSet(Expr *op, SourceLocation opcLoc, bool captureSetValueAsResult) { if (!findAtIndexSetter()) return ExprError(); QualType receiverType = InstanceBase->getType(); Expr *Index = InstanceKey; // Arguments. Expr *args[] = { op, Index }; // Build a message-send. ExprResult msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType, GenericLoc, AtIndexSetterSelector, AtIndexSetter, MultiExprArg(args, 2)); if (!msg.isInvalid() && captureSetValueAsResult) { ObjCMessageExpr *msgExpr = cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit()); Expr *arg = msgExpr->getArg(0); msgExpr->setArg(0, captureValueAsResult(arg)); } return msg; } //===----------------------------------------------------------------------===// // General Sema routines. //===----------------------------------------------------------------------===// ExprResult Sema::checkPseudoObjectRValue(Expr *E) { Expr *opaqueRef = E->IgnoreParens(); if (ObjCPropertyRefExpr *refExpr = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) { ObjCPropertyOpBuilder builder(*this, refExpr); return builder.buildRValueOperation(E); } else if (ObjCSubscriptRefExpr *refExpr = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) { ObjCSubscriptOpBuilder builder(*this, refExpr); return builder.buildRValueOperation(E); } else { llvm_unreachable("unknown pseudo-object kind!"); } } /// Check an increment or decrement of a pseudo-object expression. ExprResult Sema::checkPseudoObjectIncDec(Scope *Sc, SourceLocation opcLoc, UnaryOperatorKind opcode, Expr *op) { // Do nothing if the operand is dependent. if (op->isTypeDependent()) return new (Context) UnaryOperator(op, opcode, Context.DependentTy, VK_RValue, OK_Ordinary, opcLoc); assert(UnaryOperator::isIncrementDecrementOp(opcode)); Expr *opaqueRef = op->IgnoreParens(); if (ObjCPropertyRefExpr *refExpr = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) { ObjCPropertyOpBuilder builder(*this, refExpr); return builder.buildIncDecOperation(Sc, opcLoc, opcode, op); } else if (isa<ObjCSubscriptRefExpr>(opaqueRef)) { Diag(opcLoc, diag::err_illegal_container_subscripting_op); return ExprError(); } else { llvm_unreachable("unknown pseudo-object kind!"); } } ExprResult Sema::checkPseudoObjectAssignment(Scope *S, SourceLocation opcLoc, BinaryOperatorKind opcode, Expr *LHS, Expr *RHS) { // Do nothing if either argument is dependent. if (LHS->isTypeDependent() || RHS->isTypeDependent()) return new (Context) BinaryOperator(LHS, RHS, opcode, Context.DependentTy, VK_RValue, OK_Ordinary, opcLoc); // Filter out non-overload placeholder types in the RHS. if (RHS->getType()->isNonOverloadPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(RHS); if (result.isInvalid()) return ExprError(); RHS = result.take(); } Expr *opaqueRef = LHS->IgnoreParens(); if (ObjCPropertyRefExpr *refExpr = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) { ObjCPropertyOpBuilder builder(*this, refExpr); return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS); } else if (ObjCSubscriptRefExpr *refExpr = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) { ObjCSubscriptOpBuilder builder(*this, refExpr); return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS); } else { llvm_unreachable("unknown pseudo-object kind!"); } } /// Given a pseudo-object reference, rebuild it without the opaque /// values. Basically, undo the behavior of rebuildAndCaptureObject. /// This should never operate in-place. static Expr *stripOpaqueValuesFromPseudoObjectRef(Sema &S, Expr *E) { Expr *opaqueRef = E->IgnoreParens(); if (ObjCPropertyRefExpr *refExpr = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) { // Class and super property references don't have opaque values in them. if (refExpr->isClassReceiver() || refExpr->isSuperReceiver()) return E; assert(refExpr->isObjectReceiver() && "Unknown receiver kind?"); OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBase()); return ObjCPropertyRefRebuilder(S, baseOVE->getSourceExpr()).rebuild(E); } else if (ObjCSubscriptRefExpr *refExpr = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) { OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBaseExpr()); OpaqueValueExpr *keyOVE = cast<OpaqueValueExpr>(refExpr->getKeyExpr()); return ObjCSubscriptRefRebuilder(S, baseOVE->getSourceExpr(), keyOVE->getSourceExpr()).rebuild(E); } else { llvm_unreachable("unknown pseudo-object kind!"); } } /// Given a pseudo-object expression, recreate what it looks like /// syntactically without the attendant OpaqueValueExprs. /// /// This is a hack which should be removed when TreeTransform is /// capable of rebuilding a tree without stripping implicit /// operations. Expr *Sema::recreateSyntacticForm(PseudoObjectExpr *E) { Expr *syntax = E->getSyntacticForm(); if (UnaryOperator *uop = dyn_cast<UnaryOperator>(syntax)) { Expr *op = stripOpaqueValuesFromPseudoObjectRef(*this, uop->getSubExpr()); return new (Context) UnaryOperator(op, uop->getOpcode(), uop->getType(), uop->getValueKind(), uop->getObjectKind(), uop->getOperatorLoc()); } else if (CompoundAssignOperator *cop = dyn_cast<CompoundAssignOperator>(syntax)) { Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, cop->getLHS()); Expr *rhs = cast<OpaqueValueExpr>(cop->getRHS())->getSourceExpr(); return new (Context) CompoundAssignOperator(lhs, rhs, cop->getOpcode(), cop->getType(), cop->getValueKind(), cop->getObjectKind(), cop->getComputationLHSType(), cop->getComputationResultType(), cop->getOperatorLoc()); } else if (BinaryOperator *bop = dyn_cast<BinaryOperator>(syntax)) { Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, bop->getLHS()); Expr *rhs = cast<OpaqueValueExpr>(bop->getRHS())->getSourceExpr(); return new (Context) BinaryOperator(lhs, rhs, bop->getOpcode(), bop->getType(), bop->getValueKind(), bop->getObjectKind(), bop->getOperatorLoc()); } else { assert(syntax->hasPlaceholderType(BuiltinType::PseudoObject)); return stripOpaqueValuesFromPseudoObjectRef(*this, syntax); } }