Current Path : /compat/linux/proc/self/root/usr/src/contrib/llvm/tools/llvm-stress/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/llvm/tools/llvm-stress/llvm-stress.cpp |
//===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This program is a utility that generates random .ll files to stress-test // different components in LLVM. // //===----------------------------------------------------------------------===// #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Constants.h" #include "llvm/Instruction.h" #include "llvm/CallGraphSCCPass.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Support/PassNameParser.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/ToolOutputFile.h" #include <memory> #include <sstream> #include <set> #include <vector> #include <algorithm> using namespace llvm; static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"), cl::init(0)); static cl::opt<unsigned> SizeCL("size", cl::desc("The estimated size of the generated function (# of instrs)"), cl::init(100)); static cl::opt<std::string> OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename")); static cl::opt<bool> GenHalfFloat("generate-half-float", cl::desc("Generate half-length floating-point values"), cl::init(false)); static cl::opt<bool> GenX86FP80("generate-x86-fp80", cl::desc("Generate 80-bit X86 floating-point values"), cl::init(false)); static cl::opt<bool> GenFP128("generate-fp128", cl::desc("Generate 128-bit floating-point values"), cl::init(false)); static cl::opt<bool> GenPPCFP128("generate-ppc-fp128", cl::desc("Generate 128-bit PPC floating-point values"), cl::init(false)); static cl::opt<bool> GenX86MMX("generate-x86-mmx", cl::desc("Generate X86 MMX floating-point values"), cl::init(false)); /// A utility class to provide a pseudo-random number generator which is /// the same across all platforms. This is somewhat close to the libc /// implementation. Note: This is not a cryptographically secure pseudorandom /// number generator. class Random { public: /// C'tor Random(unsigned _seed):Seed(_seed) {} /// Return a random integer, up to a /// maximum of 2**19 - 1. uint32_t Rand() { uint32_t Val = Seed + 0x000b07a1; Seed = (Val * 0x3c7c0ac1); // Only lowest 19 bits are random-ish. return Seed & 0x7ffff; } /// Return a random 32 bit integer. uint32_t Rand32() { uint32_t Val = Rand(); Val &= 0xffff; return Val | (Rand() << 16); } /// Return a random 64 bit integer. uint64_t Rand64() { uint64_t Val = Rand32(); return Val | (uint64_t(Rand32()) << 32); } private: unsigned Seed; }; /// Generate an empty function with a default argument list. Function *GenEmptyFunction(Module *M) { // Type Definitions std::vector<Type*> ArgsTy; // Define a few arguments LLVMContext &Context = M->getContext(); ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0)); ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0)); ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0)); ArgsTy.push_back(IntegerType::getInt32Ty(Context)); ArgsTy.push_back(IntegerType::getInt64Ty(Context)); ArgsTy.push_back(IntegerType::getInt8Ty(Context)); FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0); // Pick a unique name to describe the input parameters std::stringstream ss; ss<<"autogen_SD"<<SeedCL; Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, ss.str(), M); Func->setCallingConv(CallingConv::C); return Func; } /// A base class, implementing utilities needed for /// modifying and adding new random instructions. struct Modifier { /// Used to store the randomly generated values. typedef std::vector<Value*> PieceTable; public: /// C'tor Modifier(BasicBlock *Block, PieceTable *PT, Random *R): BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {} /// Add a new instruction. virtual void Act() = 0; /// Add N new instructions, virtual void ActN(unsigned n) { for (unsigned i=0; i<n; ++i) Act(); } protected: /// Return a random value from the list of known values. Value *getRandomVal() { assert(PT->size()); return PT->at(Ran->Rand() % PT->size()); } Constant *getRandomConstant(Type *Tp) { if (Tp->isIntegerTy()) { if (Ran->Rand() & 1) return ConstantInt::getAllOnesValue(Tp); return ConstantInt::getNullValue(Tp); } else if (Tp->isFloatingPointTy()) { if (Ran->Rand() & 1) return ConstantFP::getAllOnesValue(Tp); return ConstantFP::getNullValue(Tp); } return UndefValue::get(Tp); } /// Return a random value with a known type. Value *getRandomValue(Type *Tp) { unsigned index = Ran->Rand(); for (unsigned i=0; i<PT->size(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType() == Tp) return V; } // If the requested type was not found, generate a constant value. if (Tp->isIntegerTy()) { if (Ran->Rand() & 1) return ConstantInt::getAllOnesValue(Tp); return ConstantInt::getNullValue(Tp); } else if (Tp->isFloatingPointTy()) { if (Ran->Rand() & 1) return ConstantFP::getAllOnesValue(Tp); return ConstantFP::getNullValue(Tp); } else if (Tp->isVectorTy()) { VectorType *VTp = cast<VectorType>(Tp); std::vector<Constant*> TempValues; TempValues.reserve(VTp->getNumElements()); for (unsigned i = 0; i < VTp->getNumElements(); ++i) TempValues.push_back(getRandomConstant(VTp->getScalarType())); ArrayRef<Constant*> VectorValue(TempValues); return ConstantVector::get(VectorValue); } return UndefValue::get(Tp); } /// Return a random value of any pointer type. Value *getRandomPointerValue() { unsigned index = Ran->Rand(); for (unsigned i=0; i<PT->size(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType()->isPointerTy()) return V; } return UndefValue::get(pickPointerType()); } /// Return a random value of any vector type. Value *getRandomVectorValue() { unsigned index = Ran->Rand(); for (unsigned i=0; i<PT->size(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType()->isVectorTy()) return V; } return UndefValue::get(pickVectorType()); } /// Pick a random type. Type *pickType() { return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType()); } /// Pick a random pointer type. Type *pickPointerType() { Type *Ty = pickType(); return PointerType::get(Ty, 0); } /// Pick a random vector type. Type *pickVectorType(unsigned len = (unsigned)-1) { // Pick a random vector width in the range 2**0 to 2**4. // by adding two randoms we are generating a normal-like distribution // around 2**3. unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3)); Type *Ty; // Vectors of x86mmx are illegal; keep trying till we get something else. do { Ty = pickScalarType(); } while (Ty->isX86_MMXTy()); if (len != (unsigned)-1) width = len; return VectorType::get(Ty, width); } /// Pick a random scalar type. Type *pickScalarType() { Type *t = 0; do { switch (Ran->Rand() % 30) { case 0: t = Type::getInt1Ty(Context); break; case 1: t = Type::getInt8Ty(Context); break; case 2: t = Type::getInt16Ty(Context); break; case 3: case 4: case 5: t = Type::getFloatTy(Context); break; case 6: case 7: case 8: t = Type::getDoubleTy(Context); break; case 9: case 10: case 11: t = Type::getInt32Ty(Context); break; case 12: case 13: case 14: t = Type::getInt64Ty(Context); break; case 15: case 16: case 17: if (GenHalfFloat) t = Type::getHalfTy(Context); break; case 18: case 19: case 20: if (GenX86FP80) t = Type::getX86_FP80Ty(Context); break; case 21: case 22: case 23: if (GenFP128) t = Type::getFP128Ty(Context); break; case 24: case 25: case 26: if (GenPPCFP128) t = Type::getPPC_FP128Ty(Context); break; case 27: case 28: case 29: if (GenX86MMX) t = Type::getX86_MMXTy(Context); break; default: llvm_unreachable("Invalid scalar value"); } } while (t == 0); return t; } /// Basic block to populate BasicBlock *BB; /// Value table PieceTable *PT; /// Random number generator Random *Ran; /// Context LLVMContext &Context; }; struct LoadModifier: public Modifier { LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { // Try to use predefined pointers. If non exist, use undef pointer value; Value *Ptr = getRandomPointerValue(); Value *V = new LoadInst(Ptr, "L", BB->getTerminator()); PT->push_back(V); } }; struct StoreModifier: public Modifier { StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { // Try to use predefined pointers. If non exist, use undef pointer value; Value *Ptr = getRandomPointerValue(); Type *Tp = Ptr->getType(); Value *Val = getRandomValue(Tp->getContainedType(0)); Type *ValTy = Val->getType(); // Do not store vectors of i1s because they are unsupported // by the codegen. if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) return; new StoreInst(Val, Ptr, BB->getTerminator()); } }; struct BinModifier: public Modifier { BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); // Don't handle pointer types. if (Val0->getType()->isPointerTy() || Val1->getType()->isPointerTy()) return; // Don't handle i1 types. if (Val0->getType()->getScalarSizeInBits() == 1) return; bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); Instruction* Term = BB->getTerminator(); unsigned R = Ran->Rand() % (isFloat ? 7 : 13); Instruction::BinaryOps Op; switch (R) { default: llvm_unreachable("Invalid BinOp"); case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } case 7: {Op = Instruction::Shl; break; } case 8: {Op = Instruction::LShr; break; } case 9: {Op = Instruction::AShr; break; } case 10:{Op = Instruction::And; break; } case 11:{Op = Instruction::Or; break; } case 12:{Op = Instruction::Xor; break; } } PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); } }; /// Generate constant values. struct ConstModifier: public Modifier { ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { Type *Ty = pickType(); if (Ty->isVectorTy()) { switch (Ran->Rand() % 2) { case 0: if (Ty->getScalarType()->isIntegerTy()) return PT->push_back(ConstantVector::getAllOnesValue(Ty)); case 1: if (Ty->getScalarType()->isIntegerTy()) return PT->push_back(ConstantVector::getNullValue(Ty)); } } if (Ty->isFloatingPointTy()) { // Generate 128 random bits, the size of the (currently) // largest floating-point types. uint64_t RandomBits[2]; for (unsigned i = 0; i < 2; ++i) RandomBits[i] = Ran->Rand64(); APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits)); bool isIEEE = !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty(); APFloat RandomFloat(RandomInt, isIEEE); if (Ran->Rand() & 1) return PT->push_back(ConstantFP::getNullValue(Ty)); return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); } if (Ty->isIntegerTy()) { switch (Ran->Rand() % 7) { case 0: if (Ty->isIntegerTy()) return PT->push_back(ConstantInt::get(Ty, APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits()))); case 1: if (Ty->isIntegerTy()) return PT->push_back(ConstantInt::get(Ty, APInt::getNullValue(Ty->getPrimitiveSizeInBits()))); case 2: case 3: case 4: case 5: case 6: if (Ty->isIntegerTy()) PT->push_back(ConstantInt::get(Ty, Ran->Rand())); } } } }; struct AllocaModifier: public Modifier { AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){} virtual void Act() { Type *Tp = pickType(); PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI())); } }; struct ExtractElementModifier: public Modifier { ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): Modifier(BB, PT, R) {} virtual void Act() { Value *Val0 = getRandomVectorValue(); Value *V = ExtractElementInst::Create(Val0, ConstantInt::get(Type::getInt32Ty(BB->getContext()), Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), "E", BB->getTerminator()); return PT->push_back(V); } }; struct ShuffModifier: public Modifier { ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { Value *Val0 = getRandomVectorValue(); Value *Val1 = getRandomValue(Val0->getType()); unsigned Width = cast<VectorType>(Val0->getType())->getNumElements(); std::vector<Constant*> Idxs; Type *I32 = Type::getInt32Ty(BB->getContext()); for (unsigned i=0; i<Width; ++i) { Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2)); // Pick some undef values. if (!(Ran->Rand() % 5)) CI = UndefValue::get(I32); Idxs.push_back(CI); } Constant *Mask = ConstantVector::get(Idxs); Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff", BB->getTerminator()); PT->push_back(V); } }; struct InsertElementModifier: public Modifier { InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): Modifier(BB, PT, R) {} virtual void Act() { Value *Val0 = getRandomVectorValue(); Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); Value *V = InsertElementInst::Create(Val0, Val1, ConstantInt::get(Type::getInt32Ty(BB->getContext()), Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), "I", BB->getTerminator()); return PT->push_back(V); } }; struct CastModifier: public Modifier { CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { Value *V = getRandomVal(); Type *VTy = V->getType(); Type *DestTy = pickScalarType(); // Handle vector casts vectors. if (VTy->isVectorTy()) { VectorType *VecTy = cast<VectorType>(VTy); DestTy = pickVectorType(VecTy->getNumElements()); } // no need to cast. if (VTy == DestTy) return; // Pointers: if (VTy->isPointerTy()) { if (!DestTy->isPointerTy()) DestTy = PointerType::get(DestTy, 0); return PT->push_back( new BitCastInst(V, DestTy, "PC", BB->getTerminator())); } unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); // Generate lots of bitcasts. if ((Ran->Rand() & 1) && VSize == DestSize) { return PT->push_back( new BitCastInst(V, DestTy, "BC", BB->getTerminator())); } // Both types are integers: if (VTy->getScalarType()->isIntegerTy() && DestTy->getScalarType()->isIntegerTy()) { if (VSize > DestSize) { return PT->push_back( new TruncInst(V, DestTy, "Tr", BB->getTerminator())); } else { assert(VSize < DestSize && "Different int types with the same size?"); if (Ran->Rand() & 1) return PT->push_back( new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); } } // Fp to int. if (VTy->getScalarType()->isFloatingPointTy() && DestTy->getScalarType()->isIntegerTy()) { if (Ran->Rand() & 1) return PT->push_back( new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); } // Int to fp. if (VTy->getScalarType()->isIntegerTy() && DestTy->getScalarType()->isFloatingPointTy()) { if (Ran->Rand() & 1) return PT->push_back( new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); } // Both floats. if (VTy->getScalarType()->isFloatingPointTy() && DestTy->getScalarType()->isFloatingPointTy()) { if (VSize > DestSize) { return PT->push_back( new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); } else if (VSize < DestSize) { return PT->push_back( new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); } // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, // for which there is no defined conversion. So do nothing. } } }; struct SelectModifier: public Modifier { SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R): Modifier(BB, PT, R) {} virtual void Act() { // Try a bunch of different select configuration until a valid one is found. Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); Type *CondTy = Type::getInt1Ty(Context); // If the value type is a vector, and we allow vector select, then in 50% // of the cases generate a vector select. if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) { unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements(); CondTy = VectorType::get(CondTy, NumElem); } Value *Cond = getRandomValue(CondTy); Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); return PT->push_back(V); } }; struct CmpModifier: public Modifier { CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} virtual void Act() { Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); if (Val0->getType()->isPointerTy()) return; bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); int op; if (fp) { op = Ran->Rand() % (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + CmpInst::FIRST_FCMP_PREDICATE; } else { op = Ran->Rand() % (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + CmpInst::FIRST_ICMP_PREDICATE; } Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, op, Val0, Val1, "Cmp", BB->getTerminator()); return PT->push_back(V); } }; void FillFunction(Function *F) { // Create a legal entry block. BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); ReturnInst::Create(F->getContext(), BB); // Create the value table. Modifier::PieceTable PT; // Pick an initial seed value Random R(SeedCL); // Consider arguments as legal values. for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end(); it != e; ++it) PT.push_back(it); // List of modifiers which add new random instructions. std::vector<Modifier*> Modifiers; std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R)); std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R)); std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R)); std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R)); std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R)); std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R)); std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R)); std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R)); std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R)); Modifiers.push_back(LM.get()); Modifiers.push_back(SM.get()); Modifiers.push_back(EE.get()); Modifiers.push_back(SHM.get()); Modifiers.push_back(IE.get()); Modifiers.push_back(BM.get()); Modifiers.push_back(CM.get()); Modifiers.push_back(SLM.get()); Modifiers.push_back(PM.get()); // Generate the random instructions AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas ConstModifier COM(BB, &PT, &R); COM.ActN(40); // Throw in a few constants for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i) for (std::vector<Modifier*>::iterator it = Modifiers.begin(), e = Modifiers.end(); it != e; ++it) { (*it)->Act(); } SM->ActN(5); // Throw in a few stores. } void IntroduceControlFlow(Function *F) { std::set<Instruction*> BoolInst; for (BasicBlock::iterator it = F->begin()->begin(), e = F->begin()->end(); it != e; ++it) { if (it->getType() == IntegerType::getInt1Ty(F->getContext())) BoolInst.insert(it); } for (std::set<Instruction*>::iterator it = BoolInst.begin(), e = BoolInst.end(); it != e; ++it) { Instruction *Instr = *it; BasicBlock *Curr = Instr->getParent(); BasicBlock::iterator Loc= Instr; BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); Instr->moveBefore(Curr->getTerminator()); if (Curr != &F->getEntryBlock()) { BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); Curr->getTerminator()->eraseFromParent(); } } } int main(int argc, char **argv) { // Init LLVM, call llvm_shutdown() on exit, parse args, etc. llvm::PrettyStackTraceProgram X(argc, argv); cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); llvm_shutdown_obj Y; std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext())); Function *F = GenEmptyFunction(M.get()); FillFunction(F); IntroduceControlFlow(F); // Figure out what stream we are supposed to write to... OwningPtr<tool_output_file> Out; // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::string ErrorInfo; Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, raw_fd_ostream::F_Binary)); if (!ErrorInfo.empty()) { errs() << ErrorInfo << '\n'; return 1; } PassManager Passes; Passes.add(createVerifierPass()); Passes.add(createPrintModulePass(&Out->os())); Passes.run(*M.get()); Out->keep(); return 0; }