Current Path : /compat/linux/proc/self/root/usr/src/contrib/ofed/management/opensm/complib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/ofed/management/opensm/complib/cl_vector.c |
/* * Copyright (c) 2004-2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 1996-2003 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* * Abstract: * This file contains ivector and isvector implementations. * */ #if HAVE_CONFIG_H # include <config.h> #endif /* HAVE_CONFIG_H */ #include <stdlib.h> #include <string.h> #include <complib/cl_vector.h> /* * Define the maximum size for array pages in an cl_vector_t. * This size is in objects, not bytes. */ #define SVEC_MAX_PAGE_SIZE 0x1000 /* * cl_vector_copy_general * * Description: * copy operator used when size of the user object doesn't fit one of the * other optimized copy functions. * * Inputs: * p_src - source for copy * * Outputs: * p_dest - destination for copy * * Returns: * None * */ static void cl_vector_copy_general(OUT void *const p_dest, IN const void *const p_src, IN const size_t size) { memcpy(p_dest, p_src, size); } /* * cl_vector_copy8 * * Description: * copy operator used when the user structure is only 8 bits long. * * Inputs: * p_src - source for copy * * Outputs: * p_dest - destination for copy * * Returns: * None * */ static void cl_vector_copy8(OUT void *const p_dest, IN const void *const p_src, IN const size_t size) { CL_ASSERT(size == sizeof(uint8_t)); UNUSED_PARAM(size); *(uint8_t *) p_dest = *(uint8_t *) p_src; } /* * cl_vector_copy16 * * Description: * copy operator used when the user structure is only 16 bits long. * * Inputs: * p_src - source for copy * * Outputs: * p_dest - destination for copy * * Returns: * None * */ void cl_vector_copy16(OUT void *const p_dest, IN const void *const p_src, IN const size_t size) { CL_ASSERT(size == sizeof(uint16_t)); UNUSED_PARAM(size); *(uint16_t *) p_dest = *(uint16_t *) p_src; } /* * cl_vector_copy32 * * Description: * copy operator used when the user structure is only 32 bits long. * * Inputs: * p_src - source for copy * * Outputs: * p_dest - destination for copy * * Returns: * None * */ void cl_vector_copy32(OUT void *const p_dest, IN const void *const p_src, IN const size_t size) { CL_ASSERT(size == sizeof(uint32_t)); UNUSED_PARAM(size); *(uint32_t *) p_dest = *(uint32_t *) p_src; } /* * cl_vector_copy64 * * Description: * copy operator used when the user structure is only 64 bits long. * * Inputs: * p_src - source for copy * * Outputs: * p_dest - destination for copy * * Returns: * None * */ void cl_vector_copy64(OUT void *const p_dest, IN const void *const p_src, IN const size_t size) { CL_ASSERT(size == sizeof(uint64_t)); UNUSED_PARAM(size); *(uint64_t *) p_dest = *(uint64_t *) p_src; } void cl_vector_construct(IN cl_vector_t * const p_vector) { CL_ASSERT(p_vector); memset(p_vector, 0, sizeof(cl_vector_t)); p_vector->state = CL_UNINITIALIZED; } cl_status_t cl_vector_init(IN cl_vector_t * const p_vector, IN const size_t min_size, IN const size_t grow_size, IN const size_t element_size, IN cl_pfn_vec_init_t pfn_init OPTIONAL, IN cl_pfn_vec_dtor_t pfn_dtor OPTIONAL, IN const void *const context) { cl_status_t status = CL_SUCCESS; CL_ASSERT(p_vector); CL_ASSERT(element_size); cl_vector_construct(p_vector); p_vector->grow_size = grow_size; p_vector->element_size = element_size; p_vector->pfn_init = pfn_init; p_vector->pfn_dtor = pfn_dtor; p_vector->context = context; /* * Try to choose a smart copy operator * someday, we could simply let the users pass one in */ switch (element_size) { case sizeof(uint8_t): p_vector->pfn_copy = cl_vector_copy8; break; case sizeof(uint16_t): p_vector->pfn_copy = cl_vector_copy16; break; case sizeof(uint32_t): p_vector->pfn_copy = cl_vector_copy32; break; case sizeof(uint64_t): p_vector->pfn_copy = cl_vector_copy64; break; default: p_vector->pfn_copy = cl_vector_copy_general; break; } /* * Set the state to initialized so that the call to set_size * doesn't assert. */ p_vector->state = CL_INITIALIZED; /* Initialize the allocation list */ cl_qlist_init(&p_vector->alloc_list); /* get the storage needed by the user */ if (min_size) { status = cl_vector_set_size(p_vector, min_size); if (status != CL_SUCCESS) cl_vector_destroy(p_vector); } return (status); } void cl_vector_destroy(IN cl_vector_t * const p_vector) { size_t i; void *p_element; CL_ASSERT(p_vector); CL_ASSERT(cl_is_state_valid(p_vector->state)); /* Call the user's destructor for each element in the array. */ if (p_vector->state == CL_INITIALIZED) { if (p_vector->pfn_dtor) { for (i = 0; i < p_vector->size; i++) { p_element = p_vector->p_ptr_array[i]; /* Sanity check! */ CL_ASSERT(p_element); p_vector->pfn_dtor(p_element, (void *)p_vector->context); } } /* Deallocate the pages */ while (!cl_is_qlist_empty(&p_vector->alloc_list)) free(cl_qlist_remove_head(&p_vector->alloc_list)); /* Destroy the page vector. */ if (p_vector->p_ptr_array) { free(p_vector->p_ptr_array); p_vector->p_ptr_array = NULL; } } p_vector->state = CL_UNINITIALIZED; } cl_status_t cl_vector_at(IN const cl_vector_t * const p_vector, IN const size_t index, OUT void *const p_element) { CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Range check */ if (index >= p_vector->size) return (CL_INVALID_PARAMETER); cl_vector_get(p_vector, index, p_element); return (CL_SUCCESS); } cl_status_t cl_vector_set(IN cl_vector_t * const p_vector, IN const size_t index, IN void *const p_element) { cl_status_t status; void *p_dest; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(p_element); /* Determine if the vector has room for this element. */ if (index >= p_vector->size) { /* Resize to accomodate the given index. */ status = cl_vector_set_size(p_vector, index + 1); /* Check for failure on or before the given index. */ if ((status != CL_SUCCESS) && (p_vector->size < index)) return (status); } /* At this point, the array is guaranteed to be big enough */ p_dest = cl_vector_get_ptr(p_vector, index); /* Sanity check! */ CL_ASSERT(p_dest); /* Copy the data into the array */ p_vector->pfn_copy(p_dest, p_element, p_vector->element_size); return (CL_SUCCESS); } cl_status_t cl_vector_set_capacity(IN cl_vector_t * const p_vector, IN const size_t new_capacity) { size_t new_elements; size_t alloc_size; size_t i; cl_list_item_t *p_buf; void *p_new_ptr_array; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Do we have to do anything here? */ if (new_capacity <= p_vector->capacity) { /* Nope */ return (CL_SUCCESS); } /* Allocate our pointer array. */ p_new_ptr_array = malloc(new_capacity * sizeof(void *)); if (!p_new_ptr_array) return (CL_INSUFFICIENT_MEMORY); else memset(p_new_ptr_array, 0, new_capacity * sizeof(void *)); if (p_vector->p_ptr_array) { /* Copy the old pointer array into the new. */ memcpy(p_new_ptr_array, p_vector->p_ptr_array, p_vector->capacity * sizeof(void *)); /* Free the old pointer array. */ free(p_vector->p_ptr_array); } /* Set the new array. */ p_vector->p_ptr_array = p_new_ptr_array; /* * We have to add capacity to the array. Determine how many * elements to add. */ new_elements = new_capacity - p_vector->capacity; /* Determine the allocation size for the new array elements. */ alloc_size = new_elements * p_vector->element_size; p_buf = (cl_list_item_t *) malloc(alloc_size + sizeof(cl_list_item_t)); if (!p_buf) return (CL_INSUFFICIENT_MEMORY); else memset(p_buf, 0, alloc_size + sizeof(cl_list_item_t)); cl_qlist_insert_tail(&p_vector->alloc_list, p_buf); /* Advance the buffer pointer past the list item. */ p_buf++; for (i = p_vector->capacity; i < new_capacity; i++) { p_vector->p_ptr_array[i] = p_buf; /* Move the buffer pointer to the next element. */ p_buf = (void *)(((uint8_t *) p_buf) + p_vector->element_size); } /* Update the vector with the new capactity. */ p_vector->capacity = new_capacity; return (CL_SUCCESS); } cl_status_t cl_vector_set_size(IN cl_vector_t * const p_vector, IN const size_t size) { cl_status_t status; size_t new_capacity; size_t index; void *p_element; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Check to see if the requested size is the same as the existing size. */ if (size == p_vector->size) return (CL_SUCCESS); /* Determine if the vector has room for this element. */ if (size >= p_vector->capacity) { if (!p_vector->grow_size) return (CL_INSUFFICIENT_MEMORY); /* Calculate the new capacity, taking into account the grow size. */ new_capacity = size; if (size % p_vector->grow_size) { /* Round up to nearest grow_size boundary. */ new_capacity += p_vector->grow_size - (size % p_vector->grow_size); } status = cl_vector_set_capacity(p_vector, new_capacity); if (status != CL_SUCCESS) return (status); } /* Are we growing the array and need to invoke an initializer callback? */ if (size > p_vector->size && p_vector->pfn_init) { for (index = p_vector->size; index < size; index++) { /* Get a pointer to this element */ p_element = cl_vector_get_ptr(p_vector, index); /* Call the user's initializer and trap failures. */ status = p_vector->pfn_init(p_element, (void *)p_vector->context); if (status != CL_SUCCESS) { /* Call the destructor for this object */ if (p_vector->pfn_dtor) p_vector->pfn_dtor(p_element, (void *)p_vector-> context); /* Return the failure status to the caller. */ return (status); } /* The array just grew by one element */ p_vector->size++; } } else if (p_vector->pfn_dtor) { /* The array is shrinking and there is a destructor to invoke. */ for (index = size; index < p_vector->size; index++) { /* compute the address of the new elements */ p_element = cl_vector_get_ptr(p_vector, index); /* call the user's destructor */ p_vector->pfn_dtor(p_element, (void *)p_vector->context); } } p_vector->size = size; return (CL_SUCCESS); } cl_status_t cl_vector_set_min_size(IN cl_vector_t * const p_vector, IN const size_t min_size) { CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); if (min_size > p_vector->size) { /* We have to resize the array */ return (cl_vector_set_size(p_vector, min_size)); } /* We didn't have to do anything */ return (CL_SUCCESS); } void cl_vector_apply_func(IN const cl_vector_t * const p_vector, IN cl_pfn_vec_apply_t pfn_callback, IN const void *const context) { size_t i; void *p_element; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); for (i = 0; i < p_vector->size; i++) { p_element = cl_vector_get_ptr(p_vector, i); pfn_callback(i, p_element, (void *)context); } } size_t cl_vector_find_from_start(IN const cl_vector_t * const p_vector, IN cl_pfn_vec_find_t pfn_callback, IN const void *const context) { size_t i; void *p_element; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); for (i = 0; i < p_vector->size; i++) { p_element = cl_vector_get_ptr(p_vector, i); /* Invoke the callback */ if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS) break; } return (i); } size_t cl_vector_find_from_end(IN const cl_vector_t * const p_vector, IN cl_pfn_vec_find_t pfn_callback, IN const void *const context) { size_t i; void *p_element; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); i = p_vector->size; while (i) { /* Get a pointer to the element in the array. */ p_element = cl_vector_get_ptr(p_vector, --i); CL_ASSERT(p_element); /* Invoke the callback for the current element. */ if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS) return (i); } return (p_vector->size); }