Current Path : /compat/linux/proc/self/root/usr/src/contrib/sendmail/libmilter/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/sendmail/libmilter/engine.c |
/* * Copyright (c) 1999-2004, 2006-2008 Sendmail, Inc. and its suppliers. * All rights reserved. * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the sendmail distribution. * */ #include <sm/gen.h> SM_RCSID("@(#)$Id: engine.c,v 8.167 2011/03/03 06:09:15 ca Exp $") #include "libmilter.h" #if NETINET || NETINET6 # include <arpa/inet.h> #endif /* NETINET || NETINET6 */ /* generic argument for functions in the command table */ struct arg_struct { size_t a_len; /* length of buffer */ char *a_buf; /* argument string */ int a_idx; /* index for macro array */ SMFICTX_PTR a_ctx; /* context */ }; typedef struct arg_struct genarg; /* structure for commands received from MTA */ struct cmdfct_t { char cm_cmd; /* command */ int cm_argt; /* type of arguments expected */ int cm_next; /* next state */ int cm_todo; /* what to do next */ int cm_macros; /* index for macros */ int (*cm_fct) __P((genarg *)); /* function to execute */ }; typedef struct cmdfct_t cmdfct; /* possible values for cm_argt */ #define CM_ARG0 0 /* no args */ #define CM_ARG1 1 /* one arg (string) */ #define CM_ARG2 2 /* two args (strings) */ #define CM_ARGA 4 /* one string and _SOCK_ADDR */ #define CM_ARGO 5 /* two integers */ #define CM_ARGV 8 /* \0 separated list of args, NULL-terminated */ #define CM_ARGN 9 /* \0 separated list of args (strings) */ /* possible values for cm_todo */ #define CT_CONT 0x0000 /* continue reading commands */ #define CT_IGNO 0x0001 /* continue even when error */ /* not needed right now, done via return code instead */ #define CT_KEEP 0x0004 /* keep buffer (contains symbols) */ #define CT_END 0x0008 /* last command of session, stop replying */ /* index in macro array: macros only for these commands */ #define CI_NONE (-1) #define CI_CONN 0 #define CI_HELO 1 #define CI_MAIL 2 #define CI_RCPT 3 #define CI_DATA 4 #define CI_EOM 5 #define CI_EOH 6 #define CI_LAST CI_EOH #if CI_LAST < CI_DATA ERROR: do not compile with CI_LAST < CI_DATA #endif #if CI_LAST < CI_EOM ERROR: do not compile with CI_LAST < CI_EOM #endif #if CI_LAST < CI_EOH ERROR: do not compile with CI_LAST < CI_EOH #endif #if CI_LAST < CI_ENVRCPT ERROR: do not compile with CI_LAST < CI_ENVRCPT #endif #if CI_LAST < CI_ENVFROM ERROR: do not compile with CI_LAST < CI_ENVFROM #endif #if CI_LAST < CI_HELO ERROR: do not compile with CI_LAST < CI_HELO #endif #if CI_LAST < CI_CONNECT ERROR: do not compile with CI_LAST < CI_CONNECT #endif #if CI_LAST >= MAX_MACROS_ENTRIES ERROR: do not compile with CI_LAST >= MAX_MACROS_ENTRIES #endif /* function prototypes */ static int st_abortfct __P((genarg *)); static int st_macros __P((genarg *)); static int st_optionneg __P((genarg *)); static int st_bodychunk __P((genarg *)); static int st_connectinfo __P((genarg *)); static int st_bodyend __P((genarg *)); static int st_helo __P((genarg *)); static int st_header __P((genarg *)); static int st_sender __P((genarg *)); static int st_rcpt __P((genarg *)); static int st_unknown __P((genarg *)); static int st_data __P((genarg *)); static int st_eoh __P((genarg *)); static int st_quit __P((genarg *)); static int sendreply __P((sfsistat, socket_t, struct timeval *, SMFICTX_PTR)); static void fix_stm __P((SMFICTX_PTR)); static bool trans_ok __P((int, int)); static char **dec_argv __P((char *, size_t)); static int dec_arg2 __P((char *, size_t, char **, char **)); static void mi_clr_symlist __P((SMFICTX_PTR)); #if _FFR_WORKERS_POOL static bool mi_rd_socket_ready __P((int)); #endif /* _FFR_WORKERS_POOL */ /* states */ #define ST_NONE (-1) #define ST_INIT 0 /* initial state */ #define ST_OPTS 1 /* option negotiation */ #define ST_CONN 2 /* connection info */ #define ST_HELO 3 /* helo */ #define ST_MAIL 4 /* mail from */ #define ST_RCPT 5 /* rcpt to */ #define ST_DATA 6 /* data */ #define ST_HDRS 7 /* headers */ #define ST_EOHS 8 /* end of headers */ #define ST_BODY 9 /* body */ #define ST_ENDM 10 /* end of message */ #define ST_QUIT 11 /* quit */ #define ST_ABRT 12 /* abort */ #define ST_UNKN 13 /* unknown SMTP command */ #define ST_Q_NC 14 /* quit, new connection follows */ #define ST_LAST ST_Q_NC /* last valid state */ #define ST_SKIP 16 /* not a state but required for the state table */ /* in a mail transaction? must be before eom according to spec. */ #define ST_IN_MAIL(st) ((st) >= ST_MAIL && (st) < ST_ENDM) /* ** set of next states ** each state (ST_*) corresponds to bit in an int value (1 << state) ** each state has a set of allowed transitions ('or' of bits of states) ** so a state transition is valid if the mask of the next state ** is set in the NX_* value ** this function is coded in trans_ok(), see below. */ #define MI_MASK(x) (0x0001 << (x)) /* generate a bit "mask" for a state */ #define NX_INIT (MI_MASK(ST_OPTS)) #define NX_OPTS (MI_MASK(ST_CONN) | MI_MASK(ST_UNKN)) #define NX_CONN (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN)) #define NX_HELO (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN)) #define NX_MAIL (MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | MI_MASK(ST_UNKN)) #define NX_RCPT (MI_MASK(ST_HDRS) | MI_MASK(ST_EOHS) | MI_MASK(ST_DATA) | \ MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | \ MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | MI_MASK(ST_UNKN)) #define NX_DATA (MI_MASK(ST_EOHS) | MI_MASK(ST_HDRS) | MI_MASK(ST_ABRT)) #define NX_HDRS (MI_MASK(ST_EOHS) | MI_MASK(ST_HDRS) | MI_MASK(ST_ABRT)) #define NX_EOHS (MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | MI_MASK(ST_ABRT)) #define NX_BODY (MI_MASK(ST_ENDM) | MI_MASK(ST_BODY) | MI_MASK(ST_ABRT)) #define NX_ENDM (MI_MASK(ST_QUIT) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN) | \ MI_MASK(ST_Q_NC)) #define NX_QUIT 0 #define NX_ABRT 0 #define NX_UNKN (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | \ MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | \ MI_MASK(ST_DATA) | \ MI_MASK(ST_BODY) | MI_MASK(ST_UNKN) | \ MI_MASK(ST_ABRT) | MI_MASK(ST_QUIT) | MI_MASK(ST_Q_NC)) #define NX_Q_NC (MI_MASK(ST_CONN) | MI_MASK(ST_UNKN)) #define NX_SKIP MI_MASK(ST_SKIP) static int next_states[] = { NX_INIT , NX_OPTS , NX_CONN , NX_HELO , NX_MAIL , NX_RCPT , NX_DATA , NX_HDRS , NX_EOHS , NX_BODY , NX_ENDM , NX_QUIT , NX_ABRT , NX_UNKN , NX_Q_NC }; #define SIZE_NEXT_STATES (sizeof(next_states) / sizeof(next_states[0])) /* commands received by milter */ static cmdfct cmds[] = { {SMFIC_ABORT, CM_ARG0, ST_ABRT, CT_CONT, CI_NONE, st_abortfct } , {SMFIC_MACRO, CM_ARGV, ST_NONE, CT_KEEP, CI_NONE, st_macros } , {SMFIC_BODY, CM_ARG1, ST_BODY, CT_CONT, CI_NONE, st_bodychunk } , {SMFIC_CONNECT, CM_ARG2, ST_CONN, CT_CONT, CI_CONN, st_connectinfo } , {SMFIC_BODYEOB, CM_ARG1, ST_ENDM, CT_CONT, CI_EOM, st_bodyend } , {SMFIC_HELO, CM_ARG1, ST_HELO, CT_CONT, CI_HELO, st_helo } , {SMFIC_HEADER, CM_ARG2, ST_HDRS, CT_CONT, CI_NONE, st_header } , {SMFIC_MAIL, CM_ARGV, ST_MAIL, CT_CONT, CI_MAIL, st_sender } , {SMFIC_OPTNEG, CM_ARGO, ST_OPTS, CT_CONT, CI_NONE, st_optionneg } , {SMFIC_EOH, CM_ARG0, ST_EOHS, CT_CONT, CI_EOH, st_eoh } , {SMFIC_QUIT, CM_ARG0, ST_QUIT, CT_END, CI_NONE, st_quit } , {SMFIC_DATA, CM_ARG0, ST_DATA, CT_CONT, CI_DATA, st_data } , {SMFIC_RCPT, CM_ARGV, ST_RCPT, CT_IGNO, CI_RCPT, st_rcpt } , {SMFIC_UNKNOWN, CM_ARG1, ST_UNKN, CT_IGNO, CI_NONE, st_unknown } , {SMFIC_QUIT_NC, CM_ARG0, ST_Q_NC, CT_CONT, CI_NONE, st_quit } }; /* ** Additional (internal) reply codes; ** must be coordinated wit libmilter/mfapi.h */ #define _SMFIS_KEEP 20 #define _SMFIS_ABORT 21 #define _SMFIS_OPTIONS 22 #define _SMFIS_NOREPLY SMFIS_NOREPLY #define _SMFIS_FAIL (-1) #define _SMFIS_NONE (-2) /* ** MI_ENGINE -- receive commands and process them ** ** Parameters: ** ctx -- context structure ** ** Returns: ** MI_FAILURE/MI_SUCCESS */ int mi_engine(ctx) SMFICTX_PTR ctx; { size_t len; int i; socket_t sd; int ret = MI_SUCCESS; int ncmds = sizeof(cmds) / sizeof(cmdfct); int curstate = ST_INIT; int newstate; bool call_abort; sfsistat r; char cmd; char *buf = NULL; genarg arg; struct timeval timeout; int (*f) __P((genarg *)); sfsistat (*fi_abort) __P((SMFICTX *)); sfsistat (*fi_close) __P((SMFICTX *)); arg.a_ctx = ctx; sd = ctx->ctx_sd; fi_abort = ctx->ctx_smfi->xxfi_abort; #if _FFR_WORKERS_POOL curstate = ctx->ctx_state; if (curstate == ST_INIT) { mi_clr_macros(ctx, 0); fix_stm(ctx); } #else /* _FFR_WORKERS_POOL */ mi_clr_macros(ctx, 0); fix_stm(ctx); #endif /* _FFR_WORKERS_POOL */ r = _SMFIS_NONE; do { /* call abort only if in a mail transaction */ call_abort = ST_IN_MAIL(curstate); timeout.tv_sec = ctx->ctx_timeout; timeout.tv_usec = 0; if (mi_stop() == MILTER_ABRT) { if (ctx->ctx_dbg > 3) sm_dprintf("[%lu] milter_abort\n", (long) ctx->ctx_id); ret = MI_FAILURE; break; } /* ** Notice: buf is allocated by mi_rd_cmd() and it will ** usually be free()d after it has been used in f(). ** However, if the function returns _SMFIS_KEEP then buf ** contains macros and will not be free()d. ** Hence r must be set to _SMFIS_NONE if a new buf is ** allocated to avoid problem with housekeeping, esp. ** if the code "break"s out of the loop. */ #if _FFR_WORKERS_POOL /* Is the socket ready to be read ??? */ if (!mi_rd_socket_ready(sd)) { ret = MI_CONTINUE; break; } #endif /* _FFR_WORKERS_POOL */ r = _SMFIS_NONE; if ((buf = mi_rd_cmd(sd, &timeout, &cmd, &len, ctx->ctx_smfi->xxfi_name)) == NULL && cmd < SMFIC_VALIDCMD) { if (ctx->ctx_dbg > 5) sm_dprintf("[%lu] mi_engine: mi_rd_cmd error (%x)\n", (long) ctx->ctx_id, (int) cmd); /* ** eof is currently treated as failure -> ** abort() instead of close(), otherwise use: ** if (cmd != SMFIC_EOF) */ ret = MI_FAILURE; break; } if (ctx->ctx_dbg > 4) sm_dprintf("[%lu] got cmd '%c' len %d\n", (long) ctx->ctx_id, cmd, (int) len); for (i = 0; i < ncmds; i++) { if (cmd == cmds[i].cm_cmd) break; } if (i >= ncmds) { /* unknown command */ if (ctx->ctx_dbg > 1) sm_dprintf("[%lu] cmd '%c' unknown\n", (long) ctx->ctx_id, cmd); ret = MI_FAILURE; break; } if ((f = cmds[i].cm_fct) == NULL) { /* stop for now */ if (ctx->ctx_dbg > 1) sm_dprintf("[%lu] cmd '%c' not impl\n", (long) ctx->ctx_id, cmd); ret = MI_FAILURE; break; } /* is new state ok? */ newstate = cmds[i].cm_next; if (ctx->ctx_dbg > 5) sm_dprintf("[%lu] cur %x new %x nextmask %x\n", (long) ctx->ctx_id, curstate, newstate, next_states[curstate]); if (newstate != ST_NONE && !trans_ok(curstate, newstate)) { if (ctx->ctx_dbg > 1) sm_dprintf("[%lu] abort: cur %d (%x) new %d (%x) next %x\n", (long) ctx->ctx_id, curstate, MI_MASK(curstate), newstate, MI_MASK(newstate), next_states[curstate]); /* call abort only if in a mail transaction */ if (fi_abort != NULL && call_abort) (void) (*fi_abort)(ctx); /* ** try to reach the new state from HELO ** if it can't be reached, ignore the command. */ curstate = ST_HELO; if (!trans_ok(curstate, newstate)) { if (buf != NULL) { free(buf); buf = NULL; } continue; } } arg.a_len = len; arg.a_buf = buf; if (newstate != ST_NONE) { curstate = newstate; ctx->ctx_state = curstate; } arg.a_idx = cmds[i].cm_macros; call_abort = ST_IN_MAIL(curstate); /* call function to deal with command */ MI_MONITOR_BEGIN(ctx, cmd); r = (*f)(&arg); MI_MONITOR_END(ctx, cmd); if (r != _SMFIS_KEEP && buf != NULL) { free(buf); buf = NULL; } if (sendreply(r, sd, &timeout, ctx) != MI_SUCCESS) { ret = MI_FAILURE; break; } if (r == SMFIS_ACCEPT) { /* accept mail, no further actions taken */ curstate = ST_HELO; } else if (r == SMFIS_REJECT || r == SMFIS_DISCARD || r == SMFIS_TEMPFAIL) { /* ** further actions depend on current state ** if the IGNO bit is set: "ignore" the error, ** i.e., stay in the current state */ if (!bitset(CT_IGNO, cmds[i].cm_todo)) curstate = ST_HELO; } else if (r == _SMFIS_ABORT) { if (ctx->ctx_dbg > 5) sm_dprintf("[%lu] function returned abort\n", (long) ctx->ctx_id); ret = MI_FAILURE; break; } } while (!bitset(CT_END, cmds[i].cm_todo)); ctx->ctx_state = curstate; if (ret == MI_FAILURE) { /* call abort only if in a mail transaction */ if (fi_abort != NULL && call_abort) (void) (*fi_abort)(ctx); } /* has close been called? */ if (ctx->ctx_state != ST_QUIT #if _FFR_WORKERS_POOL && ret != MI_CONTINUE #endif /* _FFR_WORKERS_POOL */ ) { if ((fi_close = ctx->ctx_smfi->xxfi_close) != NULL) (void) (*fi_close)(ctx); } if (r != _SMFIS_KEEP && buf != NULL) free(buf); #if !_FFR_WORKERS_POOL mi_clr_macros(ctx, 0); #endif /* _FFR_WORKERS_POOL */ return ret; } static size_t milter_addsymlist __P((SMFICTX_PTR, char *, char **)); static size_t milter_addsymlist(ctx, buf, newbuf) SMFICTX_PTR ctx; char *buf; char **newbuf; { size_t len; int i; mi_int32 v; char *buffer; SM_ASSERT(ctx != NULL); SM_ASSERT(buf != NULL); SM_ASSERT(newbuf != NULL); len = 0; for (i = 0; i < MAX_MACROS_ENTRIES; i++) { if (ctx->ctx_mac_list[i] != NULL) { len += strlen(ctx->ctx_mac_list[i]) + 1 + MILTER_LEN_BYTES; } } if (len > 0) { size_t offset; SM_ASSERT(len + MILTER_OPTLEN > len); len += MILTER_OPTLEN; buffer = malloc(len); if (buffer != NULL) { (void) memcpy(buffer, buf, MILTER_OPTLEN); offset = MILTER_OPTLEN; for (i = 0; i < MAX_MACROS_ENTRIES; i++) { size_t l; if (ctx->ctx_mac_list[i] == NULL) continue; SM_ASSERT(offset + MILTER_LEN_BYTES < len); v = htonl(i); (void) memcpy(buffer + offset, (void *) &v, MILTER_LEN_BYTES); offset += MILTER_LEN_BYTES; l = strlen(ctx->ctx_mac_list[i]) + 1; SM_ASSERT(offset + l <= len); (void) memcpy(buffer + offset, ctx->ctx_mac_list[i], l); offset += l; } } else { /* oops ... */ } } else { len = MILTER_OPTLEN; buffer = buf; } *newbuf = buffer; return len; } /* ** GET_NR_BIT -- get "no reply" bit matching state ** ** Parameters: ** state -- current protocol stage ** ** Returns: ** 0: no matching bit ** >0: the matching "no reply" bit */ static unsigned long get_nr_bit __P((int)); static unsigned long get_nr_bit(state) int state; { unsigned long bit; switch (state) { case ST_CONN: bit = SMFIP_NR_CONN; break; case ST_HELO: bit = SMFIP_NR_HELO; break; case ST_MAIL: bit = SMFIP_NR_MAIL; break; case ST_RCPT: bit = SMFIP_NR_RCPT; break; case ST_DATA: bit = SMFIP_NR_DATA; break; case ST_UNKN: bit = SMFIP_NR_UNKN; break; case ST_HDRS: bit = SMFIP_NR_HDR; break; case ST_EOHS: bit = SMFIP_NR_EOH; break; case ST_BODY: bit = SMFIP_NR_BODY; break; default: bit = 0; break; } return bit; } /* ** SENDREPLY -- send a reply to the MTA ** ** Parameters: ** r -- reply code ** sd -- socket descriptor ** timeout_ptr -- (ptr to) timeout to use for sending ** ctx -- context structure ** ** Returns: ** MI_SUCCESS/MI_FAILURE */ static int sendreply(r, sd, timeout_ptr, ctx) sfsistat r; socket_t sd; struct timeval *timeout_ptr; SMFICTX_PTR ctx; { int ret; unsigned long bit; ret = MI_SUCCESS; bit = get_nr_bit(ctx->ctx_state); if (bit != 0 && (ctx->ctx_pflags & bit) != 0 && r != SMFIS_NOREPLY) { if (r >= SMFIS_CONTINUE && r < _SMFIS_KEEP) { /* milter said it wouldn't reply, but it lied... */ smi_log(SMI_LOG_ERR, "%s: milter claimed not to reply in state %d but did anyway %d\n", ctx->ctx_smfi->xxfi_name, ctx->ctx_state, r); } /* ** Force specified behavior, otherwise libmilter ** and MTA will fail to communicate properly. */ switch (r) { case SMFIS_CONTINUE: case SMFIS_TEMPFAIL: case SMFIS_REJECT: case SMFIS_DISCARD: case SMFIS_ACCEPT: case SMFIS_SKIP: case _SMFIS_OPTIONS: r = SMFIS_NOREPLY; break; } } switch (r) { case SMFIS_CONTINUE: ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_CONTINUE, NULL, 0); break; case SMFIS_TEMPFAIL: case SMFIS_REJECT: if (ctx->ctx_reply != NULL && ((r == SMFIS_TEMPFAIL && *ctx->ctx_reply == '4') || (r == SMFIS_REJECT && *ctx->ctx_reply == '5'))) { ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_REPLYCODE, ctx->ctx_reply, strlen(ctx->ctx_reply) + 1); free(ctx->ctx_reply); ctx->ctx_reply = NULL; } else { ret = mi_wr_cmd(sd, timeout_ptr, r == SMFIS_REJECT ? SMFIR_REJECT : SMFIR_TEMPFAIL, NULL, 0); } break; case SMFIS_DISCARD: ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_DISCARD, NULL, 0); break; case SMFIS_ACCEPT: ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_ACCEPT, NULL, 0); break; case SMFIS_SKIP: ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_SKIP, NULL, 0); break; case _SMFIS_OPTIONS: { mi_int32 v; size_t len; char *buffer; char buf[MILTER_OPTLEN]; v = htonl(ctx->ctx_prot_vers2mta); (void) memcpy(&(buf[0]), (void *) &v, MILTER_LEN_BYTES); v = htonl(ctx->ctx_aflags); (void) memcpy(&(buf[MILTER_LEN_BYTES]), (void *) &v, MILTER_LEN_BYTES); v = htonl(ctx->ctx_pflags2mta); (void) memcpy(&(buf[MILTER_LEN_BYTES * 2]), (void *) &v, MILTER_LEN_BYTES); len = milter_addsymlist(ctx, buf, &buffer); if (buffer != NULL) ret = mi_wr_cmd(sd, timeout_ptr, SMFIC_OPTNEG, buffer, len); else ret = MI_FAILURE; } break; case SMFIS_NOREPLY: if (bit != 0 && (ctx->ctx_pflags & bit) != 0 && (ctx->ctx_mta_pflags & bit) == 0) { /* ** milter doesn't want to send a reply, ** but the MTA doesn't have that feature: fake it. */ ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_CONTINUE, NULL, 0); } break; default: /* don't send a reply */ break; } return ret; } /* ** CLR_MACROS -- clear set of macros starting from a given index ** ** Parameters: ** ctx -- context structure ** m -- index from which to clear all macros ** ** Returns: ** None. */ void mi_clr_macros(ctx, m) SMFICTX_PTR ctx; int m; { int i; for (i = m; i < MAX_MACROS_ENTRIES; i++) { if (ctx->ctx_mac_ptr[i] != NULL) { free(ctx->ctx_mac_ptr[i]); ctx->ctx_mac_ptr[i] = NULL; } if (ctx->ctx_mac_buf[i] != NULL) { free(ctx->ctx_mac_buf[i]); ctx->ctx_mac_buf[i] = NULL; } } } /* ** MI_CLR_SYMLIST -- clear list of macros ** ** Parameters: ** ctx -- context structure ** ** Returns: ** None. */ static void mi_clr_symlist(ctx) SMFICTX *ctx; { int i; SM_ASSERT(ctx != NULL); for (i = SMFIM_FIRST; i <= SMFIM_LAST; i++) { if (ctx->ctx_mac_list[i] != NULL) { free(ctx->ctx_mac_list[i]); ctx->ctx_mac_list[i] = NULL; } } } /* ** MI_CLR_CTX -- clear context ** ** Parameters: ** ctx -- context structure ** ** Returns: ** None. */ void mi_clr_ctx(ctx) SMFICTX *ctx; { SM_ASSERT(ctx != NULL); if (ValidSocket(ctx->ctx_sd)) { (void) closesocket(ctx->ctx_sd); ctx->ctx_sd = INVALID_SOCKET; } if (ctx->ctx_reply != NULL) { free(ctx->ctx_reply); ctx->ctx_reply = NULL; } if (ctx->ctx_privdata != NULL) { smi_log(SMI_LOG_WARN, "%s: private data not NULL", ctx->ctx_smfi->xxfi_name); } mi_clr_macros(ctx, 0); mi_clr_symlist(ctx); free(ctx); } /* ** ST_OPTIONNEG -- negotiate options ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** abort/send options/continue */ static int st_optionneg(g) genarg *g; { mi_int32 i, v, fake_pflags, internal_pflags; SMFICTX_PTR ctx; #if _FFR_MILTER_CHECK bool testmode = false; #endif /* _FFR_MILTER_CHECK */ int (*fi_negotiate) __P((SMFICTX *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long *, unsigned long *, unsigned long *, unsigned long *)); if (g == NULL || g->a_ctx->ctx_smfi == NULL) return SMFIS_CONTINUE; ctx = g->a_ctx; mi_clr_macros(ctx, g->a_idx + 1); ctx->ctx_prot_vers = SMFI_PROT_VERSION; /* check for minimum length */ if (g->a_len < MILTER_OPTLEN) { smi_log(SMI_LOG_ERR, "%s: st_optionneg[%ld]: len too short %d < %d", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, (int) g->a_len, MILTER_OPTLEN); return _SMFIS_ABORT; } /* protocol version */ (void) memcpy((void *) &i, (void *) &(g->a_buf[0]), MILTER_LEN_BYTES); v = ntohl(i); #define SMFI_PROT_VERSION_MIN 2 /* check for minimum version */ if (v < SMFI_PROT_VERSION_MIN) { smi_log(SMI_LOG_ERR, "%s: st_optionneg[%ld]: protocol version too old %d < %d", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, v, SMFI_PROT_VERSION_MIN); return _SMFIS_ABORT; } ctx->ctx_mta_prot_vers = v; if (ctx->ctx_prot_vers < ctx->ctx_mta_prot_vers) ctx->ctx_prot_vers2mta = ctx->ctx_prot_vers; else ctx->ctx_prot_vers2mta = ctx->ctx_mta_prot_vers; (void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES]), MILTER_LEN_BYTES); v = ntohl(i); /* no flags? set to default value for V1 actions */ if (v == 0) v = SMFI_V1_ACTS; ctx->ctx_mta_aflags = v; /* MTA action flags */ internal_pflags = 0; (void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES * 2]), MILTER_LEN_BYTES); v = ntohl(i); /* no flags? set to default value for V1 protocol */ if (v == 0) v = SMFI_V1_PROT; #if _FFR_MDS_NEGOTIATE else if (ctx->ctx_smfi->xxfi_version >= SMFI_VERSION_MDS) { /* ** Allow changing the size only if milter is compiled ** against a version that supports this. ** If a milter is dynamically linked against a newer ** libmilter version, we don't want to "surprise" ** it with a larger buffer as it may rely on it ** even though it is not documented as a limit. */ if (bitset(SMFIP_MDS_1M, v)) { internal_pflags |= SMFIP_MDS_1M; (void) smfi_setmaxdatasize(MILTER_MDS_1M); } else if (bitset(SMFIP_MDS_256K, v)) { internal_pflags |= SMFIP_MDS_256K; (void) smfi_setmaxdatasize(MILTER_MDS_256K); } } # if 0 /* don't log this for now... */ else if (ctx->ctx_smfi->xxfi_version < SMFI_VERSION_MDS && bitset(SMFIP_MDS_1M|SMFIP_MDS_256K, v)) { smi_log(SMI_LOG_WARN, "%s: st_optionneg[%ld]: milter version=%X, trying flags=%X", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, ctx->ctx_smfi->xxfi_version, v); } # endif /* 0 */ #endif /* _FFR_MDS_NEGOTIATE */ /* ** MTA protocol flags. ** We pass the internal flags to the milter as "read only", ** i.e., a milter can read them so it knows which size ** will be used, but any changes by a milter will be ignored ** (see below, search for SMFI_INTERNAL). */ ctx->ctx_mta_pflags = (v & ~SMFI_INTERNAL) | internal_pflags; /* ** Copy flags from milter struct into libmilter context; ** this variable will be used later on to check whether ** the MTA "actions" can fulfill the milter requirements, ** but it may be overwritten by the negotiate callback. */ ctx->ctx_aflags = ctx->ctx_smfi->xxfi_flags; fake_pflags = SMFIP_NR_CONN |SMFIP_NR_HELO |SMFIP_NR_MAIL |SMFIP_NR_RCPT |SMFIP_NR_DATA |SMFIP_NR_UNKN |SMFIP_NR_HDR |SMFIP_NR_EOH |SMFIP_NR_BODY ; if (g->a_ctx->ctx_smfi != NULL && g->a_ctx->ctx_smfi->xxfi_version > 4 && (fi_negotiate = g->a_ctx->ctx_smfi->xxfi_negotiate) != NULL) { int r; unsigned long m_aflags, m_pflags, m_f2, m_f3; /* ** let milter decide whether the features offered by the ** MTA are "good enough". ** Notes: ** - libmilter can "fake" some features (e.g., SMFIP_NR_HDR) ** - m_f2, m_f3 are for future extensions */ m_f2 = m_f3 = 0; m_aflags = ctx->ctx_mta_aflags; m_pflags = ctx->ctx_pflags; if ((SMFIP_SKIP & ctx->ctx_mta_pflags) != 0) m_pflags |= SMFIP_SKIP; r = fi_negotiate(g->a_ctx, ctx->ctx_mta_aflags, ctx->ctx_mta_pflags|fake_pflags, 0, 0, &m_aflags, &m_pflags, &m_f2, &m_f3); #if _FFR_MILTER_CHECK testmode = bitset(SMFIP_TEST, m_pflags); if (testmode) m_pflags &= ~SMFIP_TEST; #endif /* _FFR_MILTER_CHECK */ /* ** Types of protocol flags (pflags): ** 1. do NOT send protocol step X ** 2. MTA can do/understand something extra (SKIP, ** send unknown RCPTs) ** 3. MTA can deal with "no reply" for various protocol steps ** Note: this mean that it isn't possible to simply set all ** flags to get "everything": ** setting a flag of type 1 turns off a step ** (it should be the other way around: ** a flag means a protocol step can be sent) ** setting a flag of type 3 requires that milter ** never sends a reply for the corresponding step. ** Summary: the "negation" of protocol flags is causing ** problems, but at least for type 3 there is no simple ** solution. ** ** What should "all options" mean? ** send all protocol steps _except_ those for which there is ** no callback (currently registered in ctx_pflags) ** expect SKIP as return code? Yes ** send unknown RCPTs? No, ** must be explicitly requested? ** "no reply" for some protocol steps? No, ** must be explicitly requested. */ if (SMFIS_ALL_OPTS == r) { ctx->ctx_aflags = ctx->ctx_mta_aflags; ctx->ctx_pflags2mta = ctx->ctx_pflags; if ((SMFIP_SKIP & ctx->ctx_mta_pflags) != 0) ctx->ctx_pflags2mta |= SMFIP_SKIP; } else if (r != SMFIS_CONTINUE) { smi_log(SMI_LOG_ERR, "%s: st_optionneg[%ld]: xxfi_negotiate returned %d (protocol options=0x%lx, actions=0x%lx)", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, r, ctx->ctx_mta_pflags, ctx->ctx_mta_aflags); return _SMFIS_ABORT; } else { ctx->ctx_aflags = m_aflags; ctx->ctx_pflags = m_pflags; ctx->ctx_pflags2mta = m_pflags; } /* check whether some flags need to be "faked" */ i = ctx->ctx_pflags2mta; if ((ctx->ctx_mta_pflags & i) != i) { unsigned int idx; unsigned long b; /* ** If some behavior can be faked (set in fake_pflags), ** but the MTA doesn't support it, then unset ** that flag in the value that is sent to the MTA. */ for (idx = 0; idx < 32; idx++) { b = 1 << idx; if ((ctx->ctx_mta_pflags & b) != b && (fake_pflags & b) == b) ctx->ctx_pflags2mta &= ~b; } } } else { /* ** Set the protocol flags based on the values determined ** in mi_listener() which checked the defined callbacks. */ ctx->ctx_pflags2mta = ctx->ctx_pflags; } /* check whether actions and protocol requirements can be satisfied */ i = ctx->ctx_aflags; if ((i & ctx->ctx_mta_aflags) != i) { smi_log(SMI_LOG_ERR, "%s: st_optionneg[%ld]: 0x%lx does not fulfill action requirements 0x%x", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, ctx->ctx_mta_aflags, i); return _SMFIS_ABORT; } i = ctx->ctx_pflags2mta; if ((ctx->ctx_mta_pflags & i) != i) { /* ** Older MTAs do not support some protocol steps. ** As this protocol is a bit "wierd" (it asks for steps ** NOT to be taken/sent) we have to check whether we ** should turn off those "negative" requests. ** Currently these are only SMFIP_NODATA and SMFIP_NOUNKNOWN. */ if (bitset(SMFIP_NODATA, ctx->ctx_pflags2mta) && !bitset(SMFIP_NODATA, ctx->ctx_mta_pflags)) ctx->ctx_pflags2mta &= ~SMFIP_NODATA; if (bitset(SMFIP_NOUNKNOWN, ctx->ctx_pflags2mta) && !bitset(SMFIP_NOUNKNOWN, ctx->ctx_mta_pflags)) ctx->ctx_pflags2mta &= ~SMFIP_NOUNKNOWN; i = ctx->ctx_pflags2mta; } if ((ctx->ctx_mta_pflags & i) != i) { smi_log(SMI_LOG_ERR, "%s: st_optionneg[%ld]: 0x%lx does not fulfill protocol requirements 0x%x", ctx->ctx_smfi->xxfi_name, (long) ctx->ctx_id, ctx->ctx_mta_pflags, i); return _SMFIS_ABORT; } fix_stm(ctx); if (ctx->ctx_dbg > 3) sm_dprintf("[%lu] milter_negotiate:" " mta_actions=0x%lx, mta_flags=0x%lx" " actions=0x%lx, flags=0x%lx\n" , (long) ctx->ctx_id , ctx->ctx_mta_aflags, ctx->ctx_mta_pflags , ctx->ctx_aflags, ctx->ctx_pflags); #if _FFR_MILTER_CHECK if (ctx->ctx_dbg > 3) sm_dprintf("[%lu] milter_negotiate:" " testmode=%d, pflags2mta=%X, internal_pflags=%X\n" , (long) ctx->ctx_id, testmode , ctx->ctx_pflags2mta, internal_pflags); /* in test mode: take flags without further modifications */ if (!testmode) /* Warning: check statement below! */ #endif /* _FFR_MILTER_CHECK */ /* ** Remove the internal flags that might have been set by a milter ** and set only those determined above. */ ctx->ctx_pflags2mta = (ctx->ctx_pflags2mta & ~SMFI_INTERNAL) | internal_pflags; return _SMFIS_OPTIONS; } /* ** ST_CONNECTINFO -- receive connection information ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_connectinfo(g) genarg *g; { size_t l; size_t i; char *s, family; unsigned short port = 0; _SOCK_ADDR sockaddr; sfsistat (*fi_connect) __P((SMFICTX *, char *, _SOCK_ADDR *)); if (g == NULL) return _SMFIS_ABORT; mi_clr_macros(g->a_ctx, g->a_idx + 1); if (g->a_ctx->ctx_smfi == NULL || (fi_connect = g->a_ctx->ctx_smfi->xxfi_connect) == NULL) return SMFIS_CONTINUE; s = g->a_buf; i = 0; l = g->a_len; while (s[i] != '\0' && i <= l) ++i; if (i + 1 >= l) return _SMFIS_ABORT; /* Move past trailing \0 in host string */ i++; family = s[i++]; (void) memset(&sockaddr, '\0', sizeof sockaddr); if (family != SMFIA_UNKNOWN) { if (i + sizeof port >= l) { smi_log(SMI_LOG_ERR, "%s: connect[%ld]: wrong len %d >= %d", g->a_ctx->ctx_smfi->xxfi_name, (long) g->a_ctx->ctx_id, (int) i, (int) l); return _SMFIS_ABORT; } (void) memcpy((void *) &port, (void *) (s + i), sizeof port); i += sizeof port; /* make sure string is terminated */ if (s[l - 1] != '\0') return _SMFIS_ABORT; # if NETINET if (family == SMFIA_INET) { if (inet_aton(s + i, (struct in_addr *) &sockaddr.sin.sin_addr) != 1) { smi_log(SMI_LOG_ERR, "%s: connect[%ld]: inet_aton failed", g->a_ctx->ctx_smfi->xxfi_name, (long) g->a_ctx->ctx_id); return _SMFIS_ABORT; } sockaddr.sa.sa_family = AF_INET; if (port > 0) sockaddr.sin.sin_port = port; } else # endif /* NETINET */ # if NETINET6 if (family == SMFIA_INET6) { if (mi_inet_pton(AF_INET6, s + i, &sockaddr.sin6.sin6_addr) != 1) { smi_log(SMI_LOG_ERR, "%s: connect[%ld]: mi_inet_pton failed", g->a_ctx->ctx_smfi->xxfi_name, (long) g->a_ctx->ctx_id); return _SMFIS_ABORT; } sockaddr.sa.sa_family = AF_INET6; if (port > 0) sockaddr.sin6.sin6_port = port; } else # endif /* NETINET6 */ # if NETUNIX if (family == SMFIA_UNIX) { if (sm_strlcpy(sockaddr.sunix.sun_path, s + i, sizeof sockaddr.sunix.sun_path) >= sizeof sockaddr.sunix.sun_path) { smi_log(SMI_LOG_ERR, "%s: connect[%ld]: path too long", g->a_ctx->ctx_smfi->xxfi_name, (long) g->a_ctx->ctx_id); return _SMFIS_ABORT; } sockaddr.sunix.sun_family = AF_UNIX; } else # endif /* NETUNIX */ { smi_log(SMI_LOG_ERR, "%s: connect[%ld]: unknown family %d", g->a_ctx->ctx_smfi->xxfi_name, (long) g->a_ctx->ctx_id, family); return _SMFIS_ABORT; } } return (*fi_connect)(g->a_ctx, g->a_buf, family != SMFIA_UNKNOWN ? &sockaddr : NULL); } /* ** ST_EOH -- end of headers ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_eoh(g) genarg *g; { sfsistat (*fi_eoh) __P((SMFICTX *)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi != NULL && (fi_eoh = g->a_ctx->ctx_smfi->xxfi_eoh) != NULL) return (*fi_eoh)(g->a_ctx); return SMFIS_CONTINUE; } /* ** ST_DATA -- DATA command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_data(g) genarg *g; { sfsistat (*fi_data) __P((SMFICTX *)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi != NULL && g->a_ctx->ctx_smfi->xxfi_version > 3 && (fi_data = g->a_ctx->ctx_smfi->xxfi_data) != NULL) return (*fi_data)(g->a_ctx); return SMFIS_CONTINUE; } /* ** ST_HELO -- helo/ehlo command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_helo(g) genarg *g; { sfsistat (*fi_helo) __P((SMFICTX *, char *)); if (g == NULL) return _SMFIS_ABORT; mi_clr_macros(g->a_ctx, g->a_idx + 1); if (g->a_ctx->ctx_smfi != NULL && (fi_helo = g->a_ctx->ctx_smfi->xxfi_helo) != NULL) { /* paranoia: check for terminating '\0' */ if (g->a_len == 0 || g->a_buf[g->a_len - 1] != '\0') return MI_FAILURE; return (*fi_helo)(g->a_ctx, g->a_buf); } return SMFIS_CONTINUE; } /* ** ST_HEADER -- header line ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_header(g) genarg *g; { char *hf, *hv; sfsistat (*fi_header) __P((SMFICTX *, char *, char *)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi == NULL || (fi_header = g->a_ctx->ctx_smfi->xxfi_header) == NULL) return SMFIS_CONTINUE; if (dec_arg2(g->a_buf, g->a_len, &hf, &hv) == MI_SUCCESS) return (*fi_header)(g->a_ctx, hf, hv); else return _SMFIS_ABORT; } #define ARGV_FCT(lf, rf, idx) \ char **argv; \ sfsistat (*lf) __P((SMFICTX *, char **)); \ int r; \ \ if (g == NULL) \ return _SMFIS_ABORT; \ mi_clr_macros(g->a_ctx, g->a_idx + 1); \ if (g->a_ctx->ctx_smfi == NULL || \ (lf = g->a_ctx->ctx_smfi->rf) == NULL) \ return SMFIS_CONTINUE; \ if ((argv = dec_argv(g->a_buf, g->a_len)) == NULL) \ return _SMFIS_ABORT; \ r = (*lf)(g->a_ctx, argv); \ free(argv); \ return r; /* ** ST_SENDER -- MAIL FROM command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_sender(g) genarg *g; { ARGV_FCT(fi_envfrom, xxfi_envfrom, CI_MAIL) } /* ** ST_RCPT -- RCPT TO command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_rcpt(g) genarg *g; { ARGV_FCT(fi_envrcpt, xxfi_envrcpt, CI_RCPT) } /* ** ST_UNKNOWN -- unrecognized or unimplemented command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_unknown(g) genarg *g; { sfsistat (*fi_unknown) __P((SMFICTX *, const char *)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi != NULL && g->a_ctx->ctx_smfi->xxfi_version > 2 && (fi_unknown = g->a_ctx->ctx_smfi->xxfi_unknown) != NULL) return (*fi_unknown)(g->a_ctx, (const char *) g->a_buf); return SMFIS_CONTINUE; } /* ** ST_MACROS -- deal with macros received from the MTA ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue/keep ** ** Side effects: ** set pointer in macro array to current values. */ static int st_macros(g) genarg *g; { int i; char **argv; if (g == NULL || g->a_len < 1) return _SMFIS_FAIL; if ((argv = dec_argv(g->a_buf + 1, g->a_len - 1)) == NULL) return _SMFIS_FAIL; switch (g->a_buf[0]) { case SMFIC_CONNECT: i = CI_CONN; break; case SMFIC_HELO: i = CI_HELO; break; case SMFIC_MAIL: i = CI_MAIL; break; case SMFIC_RCPT: i = CI_RCPT; break; case SMFIC_DATA: i = CI_DATA; break; case SMFIC_BODYEOB: i = CI_EOM; break; case SMFIC_EOH: i = CI_EOH; break; default: free(argv); return _SMFIS_FAIL; } if (g->a_ctx->ctx_mac_ptr[i] != NULL) free(g->a_ctx->ctx_mac_ptr[i]); if (g->a_ctx->ctx_mac_buf[i] != NULL) free(g->a_ctx->ctx_mac_buf[i]); g->a_ctx->ctx_mac_ptr[i] = argv; g->a_ctx->ctx_mac_buf[i] = g->a_buf; return _SMFIS_KEEP; } /* ** ST_QUIT -- quit command ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** noreply */ /* ARGSUSED */ static int st_quit(g) genarg *g; { sfsistat (*fi_close) __P((SMFICTX *)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi != NULL && (fi_close = g->a_ctx->ctx_smfi->xxfi_close) != NULL) (void) (*fi_close)(g->a_ctx); mi_clr_macros(g->a_ctx, 0); return _SMFIS_NOREPLY; } /* ** ST_BODYCHUNK -- deal with a piece of the mail body ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value */ static int st_bodychunk(g) genarg *g; { sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t)); if (g == NULL) return _SMFIS_ABORT; if (g->a_ctx->ctx_smfi != NULL && (fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL) return (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf, g->a_len); return SMFIS_CONTINUE; } /* ** ST_BODYEND -- deal with the last piece of the mail body ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** continue or filter-specified value ** ** Side effects: ** sends a reply for the body part (if non-empty). */ static int st_bodyend(g) genarg *g; { sfsistat r; sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t)); sfsistat (*fi_eom) __P((SMFICTX *)); if (g == NULL) return _SMFIS_ABORT; r = SMFIS_CONTINUE; if (g->a_ctx->ctx_smfi != NULL) { if ((fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL && g->a_len > 0) { socket_t sd; struct timeval timeout; timeout.tv_sec = g->a_ctx->ctx_timeout; timeout.tv_usec = 0; sd = g->a_ctx->ctx_sd; r = (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf, g->a_len); if (r != SMFIS_CONTINUE && sendreply(r, sd, &timeout, g->a_ctx) != MI_SUCCESS) return _SMFIS_ABORT; } } if (r == SMFIS_CONTINUE && (fi_eom = g->a_ctx->ctx_smfi->xxfi_eom) != NULL) return (*fi_eom)(g->a_ctx); return r; } /* ** ST_ABORTFCT -- deal with aborts ** ** Parameters: ** g -- generic argument structure ** ** Returns: ** abort or filter-specified value */ static int st_abortfct(g) genarg *g; { sfsistat (*fi_abort) __P((SMFICTX *)); if (g == NULL) return _SMFIS_ABORT; if (g != NULL && g->a_ctx->ctx_smfi != NULL && (fi_abort = g->a_ctx->ctx_smfi->xxfi_abort) != NULL) (void) (*fi_abort)(g->a_ctx); return _SMFIS_NOREPLY; } /* ** TRANS_OK -- is the state transition ok? ** ** Parameters: ** old -- old state ** new -- new state ** ** Returns: ** state transition ok */ static bool trans_ok(old, new) int old, new; { int s, n; s = old; if (s >= SIZE_NEXT_STATES) return false; do { /* is this state transition allowed? */ if ((MI_MASK(new) & next_states[s]) != 0) return true; /* ** no: try next state; ** this works since the relevant states are ordered ** strict sequentially */ n = s + 1; if (n >= SIZE_NEXT_STATES) return false; /* ** can we actually "skip" this state? ** see fix_stm() which sets this bit for those ** states which the filter program is not interested in */ if (bitset(NX_SKIP, next_states[n])) s = n; else return false; } while (s < SIZE_NEXT_STATES); return false; } /* ** FIX_STM -- add "skip" bits to the state transition table ** ** Parameters: ** ctx -- context structure ** ** Returns: ** None. ** ** Side effects: ** may change state transition table. */ static void fix_stm(ctx) SMFICTX_PTR ctx; { unsigned long fl; if (ctx == NULL || ctx->ctx_smfi == NULL) return; fl = ctx->ctx_pflags; if (bitset(SMFIP_NOCONNECT, fl)) next_states[ST_CONN] |= NX_SKIP; if (bitset(SMFIP_NOHELO, fl)) next_states[ST_HELO] |= NX_SKIP; if (bitset(SMFIP_NOMAIL, fl)) next_states[ST_MAIL] |= NX_SKIP; if (bitset(SMFIP_NORCPT, fl)) next_states[ST_RCPT] |= NX_SKIP; if (bitset(SMFIP_NOHDRS, fl)) next_states[ST_HDRS] |= NX_SKIP; if (bitset(SMFIP_NOEOH, fl)) next_states[ST_EOHS] |= NX_SKIP; if (bitset(SMFIP_NOBODY, fl)) next_states[ST_BODY] |= NX_SKIP; if (bitset(SMFIP_NODATA, fl)) next_states[ST_DATA] |= NX_SKIP; if (bitset(SMFIP_NOUNKNOWN, fl)) next_states[ST_UNKN] |= NX_SKIP; } /* ** DEC_ARGV -- split a buffer into a list of strings, NULL terminated ** ** Parameters: ** buf -- buffer with several strings ** len -- length of buffer ** ** Returns: ** array of pointers to the individual strings */ static char ** dec_argv(buf, len) char *buf; size_t len; { char **s; size_t i; int elem, nelem; nelem = 0; for (i = 0; i < len; i++) { if (buf[i] == '\0') ++nelem; } if (nelem == 0) return NULL; /* last entry is only for the name */ s = (char **)malloc((nelem + 1) * (sizeof *s)); if (s == NULL) return NULL; s[0] = buf; for (i = 0, elem = 0; i < len && elem < nelem; i++) { if (buf[i] == '\0') { ++elem; if (i + 1 >= len) s[elem] = NULL; else s[elem] = &(buf[i + 1]); } } /* overwrite last entry (already done above, just paranoia) */ s[elem] = NULL; return s; } /* ** DEC_ARG2 -- split a buffer into two strings ** ** Parameters: ** buf -- buffer with two strings ** len -- length of buffer ** s1,s2 -- pointer to result strings ** ** Returns: ** MI_FAILURE/MI_SUCCESS */ static int dec_arg2(buf, len, s1, s2) char *buf; size_t len; char **s1; char **s2; { size_t i; /* paranoia: check for terminating '\0' */ if (len == 0 || buf[len - 1] != '\0') return MI_FAILURE; *s1 = buf; for (i = 1; i < len && buf[i] != '\0'; i++) continue; if (i >= len - 1) return MI_FAILURE; *s2 = buf + i + 1; return MI_SUCCESS; } /* ** SENDOK -- is it ok for the filter to send stuff to the MTA? ** ** Parameters: ** ctx -- context structure ** flag -- flag to check ** ** Returns: ** sending allowed (in current state) */ bool mi_sendok(ctx, flag) SMFICTX_PTR ctx; int flag; { if (ctx == NULL || ctx->ctx_smfi == NULL) return false; /* did the milter request this operation? */ if (flag != 0 && !bitset(flag, ctx->ctx_aflags)) return false; /* are we in the correct state? It must be "End of Message". */ return ctx->ctx_state == ST_ENDM; } #if _FFR_WORKERS_POOL /* ** MI_RD_SOCKET_READY - checks if the socket is ready for read(2) ** ** Parameters: ** sd -- socket_t ** ** Returns: ** true iff socket is ready for read(2) */ #define MI_RD_CMD_TO 1 #define MI_RD_MAX_ERR 16 static bool mi_rd_socket_ready (sd) socket_t sd; { int n; int nerr = 0; #if SM_CONF_POLL struct pollfd pfd; #else /* SM_CONF_POLL */ fd_set rd_set, exc_set; #endif /* SM_CONF_POLL */ do { #if SM_CONF_POLL pfd.fd = sd; pfd.events = POLLIN; pfd.revents = 0; n = poll(&pfd, 1, MI_RD_CMD_TO); #else /* SM_CONF_POLL */ struct timeval timeout; FD_ZERO(&rd_set); FD_ZERO(&exc_set); FD_SET(sd, &rd_set); FD_SET(sd, &exc_set); timeout.tv_sec = MI_RD_CMD_TO / 1000; timeout.tv_usec = 0; n = select(sd + 1, &rd_set, NULL, &exc_set, &timeout); #endif /* SM_CONF_POLL */ if (n < 0) { if (errno == EINTR) { nerr++; continue; } return true; } if (n == 0) return false; break; } while (nerr < MI_RD_MAX_ERR); if (nerr >= MI_RD_MAX_ERR) return false; #if SM_CONF_POLL return (pfd.revents != 0); #else /* SM_CONF_POLL */ return FD_ISSET(sd, &rd_set) || FD_ISSET(sd, &exc_set); #endif /* SM_CONF_POLL */ } #endif /* _FFR_WORKERS_POOL */