Current Path : /compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/common/block_encoder.c |
/////////////////////////////////////////////////////////////////////////////// // /// \file block_encoder.c /// \brief Encodes .xz Blocks // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "block_encoder.h" #include "filter_encoder.h" #include "check.h" struct lzma_coder_s { /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Encoding options; we also write Unpadded Size, Compressed Size, /// and Uncompressed Size back to this structure when the encoding /// has been finished. lzma_block *block; enum { SEQ_CODE, SEQ_PADDING, SEQ_CHECK, } sequence; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Position in the Check field size_t pos; /// Check of the uncompressed data lzma_check_state check; }; static lzma_ret block_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Check that our amount of input stays in proper limits. if (LZMA_VLI_MAX - coder->uncompressed_size < in_size - *in_pos) return LZMA_DATA_ERROR; switch (coder->sequence) { case SEQ_CODE: { const size_t in_start = *in_pos; const size_t out_start = *out_pos; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; if (COMPRESSED_SIZE_MAX - coder->compressed_size < out_used) return LZMA_DATA_ERROR; coder->compressed_size += out_used; // No need to check for overflow because we have already // checked it at the beginning of this function. coder->uncompressed_size += in_used; lzma_check_update(&coder->check, coder->block->check, in + in_start, in_used); if (ret != LZMA_STREAM_END || action == LZMA_SYNC_FLUSH) return ret; assert(*in_pos == in_size); assert(action == LZMA_FINISH); // Copy the values into coder->block. The caller // may use this information to construct Index. coder->block->compressed_size = coder->compressed_size; coder->block->uncompressed_size = coder->uncompressed_size; coder->sequence = SEQ_PADDING; } // Fall through case SEQ_PADDING: // Pad Compressed Data to a multiple of four bytes. We can // use coder->compressed_size for this since we don't need // it for anything else anymore. while (coder->compressed_size & 3) { if (*out_pos >= out_size) return LZMA_OK; out[*out_pos] = 0x00; ++*out_pos; ++coder->compressed_size; } if (coder->block->check == LZMA_CHECK_NONE) return LZMA_STREAM_END; lzma_check_finish(&coder->check, coder->block->check); coder->sequence = SEQ_CHECK; // Fall through case SEQ_CHECK: { const size_t check_size = lzma_check_size(coder->block->check); lzma_bufcpy(coder->check.buffer.u8, &coder->pos, check_size, out, out_pos, out_size); if (coder->pos < check_size) return LZMA_OK; memcpy(coder->block->raw_check, coder->check.buffer.u8, check_size); return LZMA_STREAM_END; } } return LZMA_PROG_ERROR; } static void block_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_free(coder, allocator); return; } static lzma_ret block_encoder_update(lzma_coder *coder, lzma_allocator *allocator, const lzma_filter *filters lzma_attribute((__unused__)), const lzma_filter *reversed_filters) { if (coder->sequence != SEQ_CODE) return LZMA_PROG_ERROR; return lzma_next_filter_update( &coder->next, allocator, reversed_filters); } extern lzma_ret lzma_block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_block *block) { lzma_next_coder_init(&lzma_block_encoder_init, next, allocator); if (block == NULL) return LZMA_PROG_ERROR; // The contents of the structure may depend on the version so // check the version first. if (block->version != 0) return LZMA_OPTIONS_ERROR; // If the Check ID is not supported, we cannot calculate the check and // thus not create a proper Block. if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX) return LZMA_PROG_ERROR; if (!lzma_check_is_supported(block->check)) return LZMA_UNSUPPORTED_CHECK; // Allocate and initialize *next->coder if needed. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_encode; next->end = &block_encoder_end; next->update = &block_encoder_update; next->coder->next = LZMA_NEXT_CODER_INIT; } // Basic initializations next->coder->sequence = SEQ_CODE; next->coder->block = block; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; next->coder->pos = 0; // Initialize the check lzma_check_init(&next->coder->check, block->check); // Initialize the requested filters. return lzma_raw_encoder_init(&next->coder->next, allocator, block->filters); } extern LZMA_API(lzma_ret) lzma_block_encoder(lzma_stream *strm, lzma_block *block) { lzma_next_strm_init(lzma_block_encoder_init, strm, block); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; }