Current Path : /compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/common/stream_decoder.c |
/////////////////////////////////////////////////////////////////////////////// // /// \file stream_decoder.c /// \brief Decodes .xz Streams // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "stream_decoder.h" #include "block_decoder.h" struct lzma_coder_s { enum { SEQ_STREAM_HEADER, SEQ_BLOCK_HEADER, SEQ_BLOCK, SEQ_INDEX, SEQ_STREAM_FOOTER, SEQ_STREAM_PADDING, } sequence; /// Block or Metadata decoder. This takes little memory and the same /// data structure can be used to decode every Block Header, so it's /// a good idea to have a separate lzma_next_coder structure for it. lzma_next_coder block_decoder; /// Block options decoded by the Block Header decoder and used by /// the Block decoder. lzma_block block_options; /// Stream Flags from Stream Header lzma_stream_flags stream_flags; /// Index is hashed so that it can be compared to the sizes of Blocks /// with O(1) memory usage. lzma_index_hash *index_hash; /// Memory usage limit uint64_t memlimit; /// Amount of memory actually needed (only an estimate) uint64_t memusage; /// If true, LZMA_NO_CHECK is returned if the Stream has /// no integrity check. bool tell_no_check; /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has /// an integrity check that isn't supported by this liblzma build. bool tell_unsupported_check; /// If true, LZMA_GET_CHECK is returned after decoding Stream Header. bool tell_any_check; /// If true, we will decode concatenated Streams that possibly have /// Stream Padding between or after them. LZMA_STREAM_END is returned /// once the application isn't giving us any new input, and we aren't /// in the middle of a Stream, and possible Stream Padding is a /// multiple of four bytes. bool concatenated; /// When decoding concatenated Streams, this is true as long as we /// are decoding the first Stream. This is needed to avoid misleading /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic /// bytes. bool first_stream; /// Write position in buffer[] and position in Stream Padding size_t pos; /// Buffer to hold Stream Header, Block Header, and Stream Footer. /// Block Header has biggest maximum size. uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX]; }; static lzma_ret stream_decoder_reset(lzma_coder *coder, lzma_allocator *allocator) { // Initialize the Index hash used to verify the Index. coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator); if (coder->index_hash == NULL) return LZMA_MEM_ERROR; // Reset the rest of the variables. coder->sequence = SEQ_STREAM_HEADER; coder->pos = 0; return LZMA_OK; } static lzma_ret stream_decode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // When decoding the actual Block, it may be able to produce more // output even if we don't give it any new input. while (true) switch (coder->sequence) { case SEQ_STREAM_HEADER: { // Copy the Stream Header to the internal buffer. lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, LZMA_STREAM_HEADER_SIZE); // Return if we didn't get the whole Stream Header yet. if (coder->pos < LZMA_STREAM_HEADER_SIZE) return LZMA_OK; coder->pos = 0; // Decode the Stream Header. const lzma_ret ret = lzma_stream_header_decode( &coder->stream_flags, coder->buffer); if (ret != LZMA_OK) return ret == LZMA_FORMAT_ERROR && !coder->first_stream ? LZMA_DATA_ERROR : ret; // If we are decoding concatenated Streams, and the later // Streams have invalid Header Magic Bytes, we give // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR. coder->first_stream = false; // Copy the type of the Check so that Block Header and Block // decoders see it. coder->block_options.check = coder->stream_flags.check; // Even if we return LZMA_*_CHECK below, we want // to continue from Block Header decoding. coder->sequence = SEQ_BLOCK_HEADER; // Detect if there's no integrity check or if it is // unsupported if those were requested by the application. if (coder->tell_no_check && coder->stream_flags.check == LZMA_CHECK_NONE) return LZMA_NO_CHECK; if (coder->tell_unsupported_check && !lzma_check_is_supported( coder->stream_flags.check)) return LZMA_UNSUPPORTED_CHECK; if (coder->tell_any_check) return LZMA_GET_CHECK; } // Fall through case SEQ_BLOCK_HEADER: { if (*in_pos >= in_size) return LZMA_OK; if (coder->pos == 0) { // Detect if it's Index. if (in[*in_pos] == 0x00) { coder->sequence = SEQ_INDEX; break; } // Calculate the size of the Block Header. Note that // Block Header decoder wants to see this byte too // so don't advance *in_pos. coder->block_options.header_size = lzma_block_header_size_decode( in[*in_pos]); } // Copy the Block Header to the internal buffer. lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, coder->block_options.header_size); // Return if we didn't get the whole Block Header yet. if (coder->pos < coder->block_options.header_size) return LZMA_OK; coder->pos = 0; // Version 0 is currently the only possible version. coder->block_options.version = 0; // Set up a buffer to hold the filter chain. Block Header // decoder will initialize all members of this array so // we don't need to do it here. lzma_filter filters[LZMA_FILTERS_MAX + 1]; coder->block_options.filters = filters; // Decode the Block Header. return_if_error(lzma_block_header_decode(&coder->block_options, allocator, coder->buffer)); // Check the memory usage limit. const uint64_t memusage = lzma_raw_decoder_memusage(filters); lzma_ret ret; if (memusage == UINT64_MAX) { // One or more unknown Filter IDs. ret = LZMA_OPTIONS_ERROR; } else { // Now we can set coder->memusage since we know that // the filter chain is valid. We don't want // lzma_memusage() to return UINT64_MAX in case of // invalid filter chain. coder->memusage = memusage; if (memusage > coder->memlimit) { // The chain would need too much memory. ret = LZMA_MEMLIMIT_ERROR; } else { // Memory usage is OK. // Initialize the Block decoder. ret = lzma_block_decoder_init( &coder->block_decoder, allocator, &coder->block_options); } } // Free the allocated filter options since they are needed // only to initialize the Block decoder. for (size_t i = 0; i < LZMA_FILTERS_MAX; ++i) lzma_free(filters[i].options, allocator); coder->block_options.filters = NULL; // Check if memory usage calculation and Block enocoder // initialization succeeded. if (ret != LZMA_OK) return ret; coder->sequence = SEQ_BLOCK; } // Fall through case SEQ_BLOCK: { const lzma_ret ret = coder->block_decoder.code( coder->block_decoder.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); if (ret != LZMA_STREAM_END) return ret; // Block decoded successfully. Add the new size pair to // the Index hash. return_if_error(lzma_index_hash_append(coder->index_hash, lzma_block_unpadded_size( &coder->block_options), coder->block_options.uncompressed_size)); coder->sequence = SEQ_BLOCK_HEADER; break; } case SEQ_INDEX: { // If we don't have any input, don't call // lzma_index_hash_decode() since it would return // LZMA_BUF_ERROR, which we must not do here. if (*in_pos >= in_size) return LZMA_OK; // Decode the Index and compare it to the hash calculated // from the sizes of the Blocks (if any). const lzma_ret ret = lzma_index_hash_decode(coder->index_hash, in, in_pos, in_size); if (ret != LZMA_STREAM_END) return ret; coder->sequence = SEQ_STREAM_FOOTER; } // Fall through case SEQ_STREAM_FOOTER: { // Copy the Stream Footer to the internal buffer. lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos, LZMA_STREAM_HEADER_SIZE); // Return if we didn't get the whole Stream Footer yet. if (coder->pos < LZMA_STREAM_HEADER_SIZE) return LZMA_OK; coder->pos = 0; // Decode the Stream Footer. The decoder gives // LZMA_FORMAT_ERROR if the magic bytes don't match, // so convert that return code to LZMA_DATA_ERROR. lzma_stream_flags footer_flags; const lzma_ret ret = lzma_stream_footer_decode( &footer_flags, coder->buffer); if (ret != LZMA_OK) return ret == LZMA_FORMAT_ERROR ? LZMA_DATA_ERROR : ret; // Check that Index Size stored in the Stream Footer matches // the real size of the Index field. if (lzma_index_hash_size(coder->index_hash) != footer_flags.backward_size) return LZMA_DATA_ERROR; // Compare that the Stream Flags fields are identical in // both Stream Header and Stream Footer. return_if_error(lzma_stream_flags_compare( &coder->stream_flags, &footer_flags)); if (!coder->concatenated) return LZMA_STREAM_END; coder->sequence = SEQ_STREAM_PADDING; } // Fall through case SEQ_STREAM_PADDING: assert(coder->concatenated); // Skip over possible Stream Padding. while (true) { if (*in_pos >= in_size) { // Unless LZMA_FINISH was used, we cannot // know if there's more input coming later. if (action != LZMA_FINISH) return LZMA_OK; // Stream Padding must be a multiple of // four bytes. return coder->pos == 0 ? LZMA_STREAM_END : LZMA_DATA_ERROR; } // If the byte is not zero, it probably indicates // beginning of a new Stream (or the file is corrupt). if (in[*in_pos] != 0x00) break; ++*in_pos; coder->pos = (coder->pos + 1) & 3; } // Stream Padding must be a multiple of four bytes (empty // Stream Padding is OK). if (coder->pos != 0) { ++*in_pos; return LZMA_DATA_ERROR; } // Prepare to decode the next Stream. return_if_error(stream_decoder_reset(coder, allocator)); break; default: assert(0); return LZMA_PROG_ERROR; } // Never reached } static void stream_decoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->block_decoder, allocator); lzma_index_hash_end(coder->index_hash, allocator); lzma_free(coder, allocator); return; } static lzma_check stream_decoder_get_check(const lzma_coder *coder) { return coder->stream_flags.check; } static lzma_ret stream_decoder_memconfig(lzma_coder *coder, uint64_t *memusage, uint64_t *old_memlimit, uint64_t new_memlimit) { *memusage = coder->memusage; *old_memlimit = coder->memlimit; if (new_memlimit != 0) { if (new_memlimit < coder->memusage) return LZMA_MEMLIMIT_ERROR; coder->memlimit = new_memlimit; } return LZMA_OK; } extern lzma_ret lzma_stream_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, uint64_t memlimit, uint32_t flags) { lzma_next_coder_init(&lzma_stream_decoder_init, next, allocator); if (memlimit == 0) return LZMA_PROG_ERROR; if (flags & ~LZMA_SUPPORTED_FLAGS) return LZMA_OPTIONS_ERROR; if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &stream_decode; next->end = &stream_decoder_end; next->get_check = &stream_decoder_get_check; next->memconfig = &stream_decoder_memconfig; next->coder->block_decoder = LZMA_NEXT_CODER_INIT; next->coder->index_hash = NULL; } next->coder->memlimit = memlimit; next->coder->memusage = LZMA_MEMUSAGE_BASE; next->coder->tell_no_check = (flags & LZMA_TELL_NO_CHECK) != 0; next->coder->tell_unsupported_check = (flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0; next->coder->tell_any_check = (flags & LZMA_TELL_ANY_CHECK) != 0; next->coder->concatenated = (flags & LZMA_CONCATENATED) != 0; next->coder->first_stream = true; return stream_decoder_reset(next->coder, allocator); } extern LZMA_API(lzma_ret) lzma_stream_decoder(lzma_stream *strm, uint64_t memlimit, uint32_t flags) { lzma_next_strm_init(lzma_stream_decoder_init, strm, memlimit, flags); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; }