Current Path : /compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/lz/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/xz/src/liblzma/lz/lz_encoder.c |
/////////////////////////////////////////////////////////////////////////////// // /// \file lz_encoder.c /// \brief LZ in window /// // Authors: Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "lz_encoder.h" #include "lz_encoder_hash.h" // See lz_encoder_hash.h. This is a bit hackish but avoids making // endianness a conditional in makefiles. #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL) # include "lz_encoder_hash_table.h" #endif struct lzma_coder_s { /// LZ-based encoder e.g. LZMA lzma_lz_encoder lz; /// History buffer and match finder lzma_mf mf; /// Next coder in the chain lzma_next_coder next; }; /// \brief Moves the data in the input window to free space for new data /// /// mf->buffer is a sliding input window, which keeps mf->keep_size_before /// bytes of input history available all the time. Now and then we need to /// "slide" the buffer to make space for the new data to the end of the /// buffer. At the same time, data older than keep_size_before is dropped. /// static void move_window(lzma_mf *mf) { // Align the move to a multiple of 16 bytes. Some LZ-based encoders // like LZMA use the lowest bits of mf->read_pos to know the // alignment of the uncompressed data. We also get better speed // for memmove() with aligned buffers. assert(mf->read_pos > mf->keep_size_before); const uint32_t move_offset = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15); assert(mf->write_pos > move_offset); const size_t move_size = mf->write_pos - move_offset; assert(move_offset + move_size <= mf->size); memmove(mf->buffer, mf->buffer + move_offset, move_size); mf->offset += move_offset; mf->read_pos -= move_offset; mf->read_limit -= move_offset; mf->write_pos -= move_offset; return; } /// \brief Tries to fill the input window (mf->buffer) /// /// If we are the last encoder in the chain, our input data is in in[]. /// Otherwise we call the next filter in the chain to process in[] and /// write its output to mf->buffer. /// /// This function must not be called once it has returned LZMA_STREAM_END. /// static lzma_ret fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in, size_t *in_pos, size_t in_size, lzma_action action) { assert(coder->mf.read_pos <= coder->mf.write_pos); // Move the sliding window if needed. if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after) move_window(&coder->mf); // Maybe this is ugly, but lzma_mf uses uint32_t for most things // (which I find cleanest), but we need size_t here when filling // the history window. size_t write_pos = coder->mf.write_pos; lzma_ret ret; if (coder->next.code == NULL) { // Not using a filter, simply memcpy() as much as possible. lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer, &write_pos, coder->mf.size); ret = action != LZMA_RUN && *in_pos == in_size ? LZMA_STREAM_END : LZMA_OK; } else { ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, coder->mf.buffer, &write_pos, coder->mf.size, action); } coder->mf.write_pos = write_pos; // If end of stream has been reached or flushing completed, we allow // the encoder to process all the input (that is, read_pos is allowed // to reach write_pos). Otherwise we keep keep_size_after bytes // available as prebuffer. if (ret == LZMA_STREAM_END) { assert(*in_pos == in_size); ret = LZMA_OK; coder->mf.action = action; coder->mf.read_limit = coder->mf.write_pos; } else if (coder->mf.write_pos > coder->mf.keep_size_after) { // This needs to be done conditionally, because if we got // only little new input, there may be too little input // to do any encoding yet. coder->mf.read_limit = coder->mf.write_pos - coder->mf.keep_size_after; } // Restart the match finder after finished LZMA_SYNC_FLUSH. if (coder->mf.pending > 0 && coder->mf.read_pos < coder->mf.read_limit) { // Match finder may update coder->pending and expects it to // start from zero, so use a temporary variable. const size_t pending = coder->mf.pending; coder->mf.pending = 0; // Rewind read_pos so that the match finder can hash // the pending bytes. assert(coder->mf.read_pos >= pending); coder->mf.read_pos -= pending; // Call the skip function directly instead of using // mf_skip(), since we don't want to touch mf->read_ahead. coder->mf.skip(&coder->mf, pending); } return ret; } static lzma_ret lz_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { while (*out_pos < out_size && (*in_pos < in_size || action != LZMA_RUN)) { // Read more data to coder->mf.buffer if needed. if (coder->mf.action == LZMA_RUN && coder->mf.read_pos >= coder->mf.read_limit) return_if_error(fill_window(coder, allocator, in, in_pos, in_size, action)); // Encode const lzma_ret ret = coder->lz.code(coder->lz.coder, &coder->mf, out, out_pos, out_size); if (ret != LZMA_OK) { // Setting this to LZMA_RUN for cases when we are // flushing. It doesn't matter when finishing or if // an error occurred. coder->mf.action = LZMA_RUN; return ret; } } return LZMA_OK; } static bool lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator, const lzma_lz_options *lz_options) { // For now, the dictionary size is limited to 1.5 GiB. This may grow // in the future if needed, but it needs a little more work than just // changing this check. if (lz_options->dict_size < LZMA_DICT_SIZE_MIN || lz_options->dict_size > (UINT32_C(1) << 30) + (UINT32_C(1) << 29) || lz_options->nice_len > lz_options->match_len_max) return true; mf->keep_size_before = lz_options->before_size + lz_options->dict_size; mf->keep_size_after = lz_options->after_size + lz_options->match_len_max; // To avoid constant memmove()s, allocate some extra space. Since // memmove()s become more expensive when the size of the buffer // increases, we reserve more space when a large dictionary is // used to make the memmove() calls rarer. // // This works with dictionaries up to about 3 GiB. If bigger // dictionary is wanted, some extra work is needed: // - Several variables in lzma_mf have to be changed from uint32_t // to size_t. // - Memory usage calculation needs something too, e.g. use uint64_t // for mf->size. uint32_t reserve = lz_options->dict_size / 2; if (reserve > (UINT32_C(1) << 30)) reserve /= 2; reserve += (lz_options->before_size + lz_options->match_len_max + lz_options->after_size) / 2 + (UINT32_C(1) << 19); const uint32_t old_size = mf->size; mf->size = mf->keep_size_before + reserve + mf->keep_size_after; // Deallocate the old history buffer if it exists but has different // size than what is needed now. if (mf->buffer != NULL && old_size != mf->size) { lzma_free(mf->buffer, allocator); mf->buffer = NULL; } // Match finder options mf->match_len_max = lz_options->match_len_max; mf->nice_len = lz_options->nice_len; // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't // mean limiting dictionary size to less than 2 GiB. With a match // finder that uses multibyte resolution (hashes start at e.g. every // fourth byte), cyclic_size would stay below 2 Gi even when // dictionary size is greater than 2 GiB. // // It would be possible to allow cyclic_size >= 2 Gi, but then we // would need to be careful to use 64-bit types in various places // (size_t could do since we would need bigger than 32-bit address // space anyway). It would also require either zeroing a multigigabyte // buffer at initialization (waste of time and RAM) or allow // normalization in lz_encoder_mf.c to access uninitialized // memory to keep the code simpler. The current way is simple and // still allows pretty big dictionaries, so I don't expect these // limits to change. mf->cyclic_size = lz_options->dict_size + 1; // Validate the match finder ID and setup the function pointers. switch (lz_options->match_finder) { #ifdef HAVE_MF_HC3 case LZMA_MF_HC3: mf->find = &lzma_mf_hc3_find; mf->skip = &lzma_mf_hc3_skip; break; #endif #ifdef HAVE_MF_HC4 case LZMA_MF_HC4: mf->find = &lzma_mf_hc4_find; mf->skip = &lzma_mf_hc4_skip; break; #endif #ifdef HAVE_MF_BT2 case LZMA_MF_BT2: mf->find = &lzma_mf_bt2_find; mf->skip = &lzma_mf_bt2_skip; break; #endif #ifdef HAVE_MF_BT3 case LZMA_MF_BT3: mf->find = &lzma_mf_bt3_find; mf->skip = &lzma_mf_bt3_skip; break; #endif #ifdef HAVE_MF_BT4 case LZMA_MF_BT4: mf->find = &lzma_mf_bt4_find; mf->skip = &lzma_mf_bt4_skip; break; #endif default: return true; } // Calculate the sizes of mf->hash and mf->son and check that // nice_len is big enough for the selected match finder. const uint32_t hash_bytes = lz_options->match_finder & 0x0F; if (hash_bytes > mf->nice_len) return true; const bool is_bt = (lz_options->match_finder & 0x10) != 0; uint32_t hs; if (hash_bytes == 2) { hs = 0xFFFF; } else { // Round dictionary size up to the next 2^n - 1 so it can // be used as a hash mask. hs = lz_options->dict_size - 1; hs |= hs >> 1; hs |= hs >> 2; hs |= hs >> 4; hs |= hs >> 8; hs >>= 1; hs |= 0xFFFF; if (hs > (UINT32_C(1) << 24)) { if (hash_bytes == 3) hs = (UINT32_C(1) << 24) - 1; else hs >>= 1; } } mf->hash_mask = hs; ++hs; if (hash_bytes > 2) hs += HASH_2_SIZE; if (hash_bytes > 3) hs += HASH_3_SIZE; /* No match finder uses this at the moment. if (mf->hash_bytes > 4) hs += HASH_4_SIZE; */ // If the above code calculating hs is modified, make sure that // this assertion stays valid (UINT32_MAX / 5 is not strictly the // exact limit). If it doesn't, you need to calculate that // hash_size_sum + sons_count cannot overflow. assert(hs < UINT32_MAX / 5); const uint32_t old_count = mf->hash_size_sum + mf->sons_count; mf->hash_size_sum = hs; mf->sons_count = mf->cyclic_size; if (is_bt) mf->sons_count *= 2; const uint32_t new_count = mf->hash_size_sum + mf->sons_count; // Deallocate the old hash array if it exists and has different size // than what is needed now. if (old_count != new_count) { lzma_free(mf->hash, allocator); mf->hash = NULL; } // Maximum number of match finder cycles mf->depth = lz_options->depth; if (mf->depth == 0) { if (is_bt) mf->depth = 16 + mf->nice_len / 2; else mf->depth = 4 + mf->nice_len / 4; } return false; } static bool lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator, const lzma_lz_options *lz_options) { // Allocate the history buffer. if (mf->buffer == NULL) { mf->buffer = lzma_alloc(mf->size, allocator); if (mf->buffer == NULL) return true; } // Use cyclic_size as initial mf->offset. This allows // avoiding a few branches in the match finders. The downside is // that match finder needs to be normalized more often, which may // hurt performance with huge dictionaries. mf->offset = mf->cyclic_size; mf->read_pos = 0; mf->read_ahead = 0; mf->read_limit = 0; mf->write_pos = 0; mf->pending = 0; // Allocate match finder's hash array. const size_t alloc_count = mf->hash_size_sum + mf->sons_count; #if UINT32_MAX >= SIZE_MAX / 4 // Check for integer overflow. (Huge dictionaries are not // possible on 32-bit CPU.) if (alloc_count > SIZE_MAX / sizeof(uint32_t)) return true; #endif if (mf->hash == NULL) { mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t), allocator); if (mf->hash == NULL) return true; } mf->son = mf->hash + mf->hash_size_sum; mf->cyclic_pos = 0; // Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we // can use memset(). /* for (uint32_t i = 0; i < hash_size_sum; ++i) mf->hash[i] = EMPTY_HASH_VALUE; */ memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t)); // We don't need to initialize mf->son, but not doing that will // make Valgrind complain in normalization (see normalize() in // lz_encoder_mf.c). // // Skipping this initialization is *very* good when big dictionary is // used but only small amount of data gets actually compressed: most // of the mf->hash won't get actually allocated by the kernel, so // we avoid wasting RAM and improve initialization speed a lot. //memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t)); // Handle preset dictionary. if (lz_options->preset_dict != NULL && lz_options->preset_dict_size > 0) { // If the preset dictionary is bigger than the actual // dictionary, use only the tail. mf->write_pos = my_min(lz_options->preset_dict_size, mf->size); memcpy(mf->buffer, lz_options->preset_dict + lz_options->preset_dict_size - mf->write_pos, mf->write_pos); mf->action = LZMA_SYNC_FLUSH; mf->skip(mf, mf->write_pos); } mf->action = LZMA_RUN; return false; } extern uint64_t lzma_lz_encoder_memusage(const lzma_lz_options *lz_options) { // Old buffers must not exist when calling lz_encoder_prepare(). lzma_mf mf = { .buffer = NULL, .hash = NULL, .hash_size_sum = 0, .sons_count = 0, }; // Setup the size information into mf. if (lz_encoder_prepare(&mf, NULL, lz_options)) return UINT64_MAX; // Calculate the memory usage. return (uint64_t)(mf.hash_size_sum + mf.sons_count) * sizeof(uint32_t) + (uint64_t)(mf.size) + sizeof(lzma_coder); } static void lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_free(coder->mf.hash, allocator); lzma_free(coder->mf.buffer, allocator); if (coder->lz.end != NULL) coder->lz.end(coder->lz.coder, allocator); else lzma_free(coder->lz.coder, allocator); lzma_free(coder, allocator); return; } static lzma_ret lz_encoder_update(lzma_coder *coder, lzma_allocator *allocator, const lzma_filter *filters_null lzma_attribute((__unused__)), const lzma_filter *reversed_filters) { if (coder->lz.options_update == NULL) return LZMA_PROG_ERROR; return_if_error(coder->lz.options_update( coder->lz.coder, reversed_filters)); return lzma_next_filter_update( &coder->next, allocator, reversed_filters + 1); } extern lzma_ret lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, const lzma_filter_info *filters, lzma_ret (*lz_init)(lzma_lz_encoder *lz, lzma_allocator *allocator, const void *options, lzma_lz_options *lz_options)) { #ifdef HAVE_SMALL // We need that the CRC32 table has been initialized. lzma_crc32_init(); #endif // Allocate and initialize the base data structure. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &lz_encode; next->end = &lz_encoder_end; next->update = &lz_encoder_update; next->coder->lz.coder = NULL; next->coder->lz.code = NULL; next->coder->lz.end = NULL; next->coder->mf.buffer = NULL; next->coder->mf.hash = NULL; next->coder->mf.hash_size_sum = 0; next->coder->mf.sons_count = 0; next->coder->next = LZMA_NEXT_CODER_INIT; } // Initialize the LZ-based encoder. lzma_lz_options lz_options; return_if_error(lz_init(&next->coder->lz, allocator, filters[0].options, &lz_options)); // Setup the size information into next->coder->mf and deallocate // old buffers if they have wrong size. if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options)) return LZMA_OPTIONS_ERROR; // Allocate new buffers if needed, and do the rest of // the initialization. if (lz_encoder_init(&next->coder->mf, allocator, &lz_options)) return LZMA_MEM_ERROR; // Initialize the next filter in the chain, if any. return lzma_next_filter_init(&next->coder->next, allocator, filters + 1); } extern LZMA_API(lzma_bool) lzma_mf_is_supported(lzma_match_finder mf) { bool ret = false; #ifdef HAVE_MF_HC3 if (mf == LZMA_MF_HC3) ret = true; #endif #ifdef HAVE_MF_HC4 if (mf == LZMA_MF_HC4) ret = true; #endif #ifdef HAVE_MF_BT2 if (mf == LZMA_MF_BT2) ret = true; #endif #ifdef HAVE_MF_BT3 if (mf == LZMA_MF_BT3) ret = true; #endif #ifdef HAVE_MF_BT4 if (mf == LZMA_MF_BT4) ret = true; #endif return ret; }