Current Path : /compat/linux/proc/self/root/usr/src/contrib/xz/src/xz/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/contrib/xz/src/xz/message.c |
/////////////////////////////////////////////////////////////////////////////// // /// \file message.c /// \brief Printing messages // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "private.h" #ifdef HAVE_SYS_TIME_H # include <sys/time.h> #endif #include <stdarg.h> /// Number of the current file static unsigned int files_pos = 0; /// Total number of input files; zero if unknown. static unsigned int files_total; /// Verbosity level static enum message_verbosity verbosity = V_WARNING; /// Filename which we will print with the verbose messages static const char *filename; /// True once the a filename has been printed to stderr as part of progress /// message. If automatic progress updating isn't enabled, this becomes true /// after the first progress message has been printed due to user sending /// SIGINFO, SIGUSR1, or SIGALRM. Once this variable is true, we will print /// an empty line before the next filename to make the output more readable. static bool first_filename_printed = false; /// This is set to true when we have printed the current filename to stderr /// as part of a progress message. This variable is useful only if not /// updating progress automatically: if user sends many SIGINFO, SIGUSR1, or /// SIGALRM signals, we won't print the name of the same file multiple times. static bool current_filename_printed = false; /// True if we should print progress indicator and update it automatically /// if also verbose >= V_VERBOSE. static bool progress_automatic; /// True if message_progress_start() has been called but /// message_progress_end() hasn't been called yet. static bool progress_started = false; /// This is true when a progress message was printed and the cursor is still /// on the same line with the progress message. In that case, a newline has /// to be printed before any error messages. static bool progress_active = false; /// Pointer to lzma_stream used to do the encoding or decoding. static lzma_stream *progress_strm; /// Expected size of the input stream is needed to show completion percentage /// and estimate remaining time. static uint64_t expected_in_size; /// Time when we started processing the file static uint64_t start_time; // Use alarm() and SIGALRM when they are supported. This has two minor // advantages over the alternative of polling gettimeofday(): // - It is possible for the user to send SIGINFO, SIGUSR1, or SIGALRM to // get intermediate progress information even when --verbose wasn't used // or stderr is not a terminal. // - alarm() + SIGALRM seems to have slightly less overhead than polling // gettimeofday(). #ifdef SIGALRM const int message_progress_sigs[] = { SIGALRM, #ifdef SIGINFO SIGINFO, #endif #ifdef SIGUSR1 SIGUSR1, #endif 0 }; /// The signal handler for SIGALRM sets this to true. It is set back to false /// once the progress message has been updated. static volatile sig_atomic_t progress_needs_updating = false; /// Signal handler for SIGALRM static void progress_signal_handler(int sig lzma_attribute((__unused__))) { progress_needs_updating = true; return; } #else /// This is true when progress message printing is wanted. Using the same /// variable name as above to avoid some ifdefs. static bool progress_needs_updating = false; /// Elapsed time when the next progress message update should be done. static uint64_t progress_next_update; #endif /// Get the current time as microseconds since epoch static uint64_t my_time(void) { struct timeval tv; gettimeofday(&tv, NULL); return (uint64_t)(tv.tv_sec) * UINT64_C(1000000) + tv.tv_usec; } extern void message_init(void) { // If --verbose is used, we use a progress indicator if and only // if stderr is a terminal. If stderr is not a terminal, we print // verbose information only after finishing the file. As a special // exception, even if --verbose was not used, user can send SIGALRM // to make us print progress information once without automatic // updating. progress_automatic = isatty(STDERR_FILENO); // Commented out because COLUMNS is rarely exported to environment. // Most users have at least 80 columns anyway, let's think something // fancy here if enough people complain. /* if (progress_automatic) { // stderr is a terminal. Check the COLUMNS environment // variable to see if the terminal is wide enough. If COLUMNS // doesn't exist or it has some unparsable value, we assume // that the terminal is wide enough. const char *columns_str = getenv("COLUMNS"); if (columns_str != NULL) { char *endptr; const long columns = strtol(columns_str, &endptr, 10); if (*endptr != '\0' || columns < 80) progress_automatic = false; } } */ #ifdef SIGALRM // Establish the signal handlers which set a flag to tell us that // progress info should be updated. struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = &progress_signal_handler; for (size_t i = 0; message_progress_sigs[i] != 0; ++i) if (sigaction(message_progress_sigs[i], &sa, NULL)) message_signal_handler(); #endif return; } extern void message_verbosity_increase(void) { if (verbosity < V_DEBUG) ++verbosity; return; } extern void message_verbosity_decrease(void) { if (verbosity > V_SILENT) --verbosity; return; } extern enum message_verbosity message_verbosity_get(void) { return verbosity; } extern void message_set_files(unsigned int files) { files_total = files; return; } /// Prints the name of the current file if it hasn't been printed already, /// except if we are processing exactly one stream from stdin to stdout. /// I think it looks nicer to not print "(stdin)" when --verbose is used /// in a pipe and no other files are processed. static void print_filename(void) { if (files_total != 1 || filename != stdin_filename) { signals_block(); FILE *file = opt_mode == MODE_LIST ? stdout : stderr; // If a file was already processed, put an empty line // before the next filename to improve readability. if (first_filename_printed) fputc('\n', file); first_filename_printed = true; current_filename_printed = true; // If we don't know how many files there will be due // to usage of --files or --files0. if (files_total == 0) fprintf(file, "%s (%u)\n", filename, files_pos); else fprintf(file, "%s (%u/%u)\n", filename, files_pos, files_total); signals_unblock(); } return; } extern void message_filename(const char *src_name) { // Start numbering the files starting from one. ++files_pos; filename = src_name; if (verbosity >= V_VERBOSE && (progress_automatic || opt_mode == MODE_LIST)) print_filename(); else current_filename_printed = false; return; } extern void message_progress_start(lzma_stream *strm, uint64_t in_size) { // Store the pointer to the lzma_stream used to do the coding. // It is needed to find out the position in the stream. progress_strm = strm; // Store the processing start time of the file and its expected size. // If we aren't printing any statistics, then these are unused. But // since it is possible that the user sends us a signal to show // statistics, we need to have these available anyway. start_time = my_time(); expected_in_size = in_size; // Indicate that progress info may need to be printed before // printing error messages. progress_started = true; // If progress indicator is wanted, print the filename and possibly // the file count now. if (verbosity >= V_VERBOSE && progress_automatic) { // Start the timer to display the first progress message // after one second. An alternative would be to show the // first message almost immediately, but delaying by one // second looks better to me, since extremely early // progress info is pretty much useless. #ifdef SIGALRM // First disable a possibly existing alarm. alarm(0); progress_needs_updating = false; alarm(1); #else progress_needs_updating = true; progress_next_update = 1000000; #endif } return; } /// Make the string indicating completion percentage. static const char * progress_percentage(uint64_t in_pos) { // If the size of the input file is unknown or the size told us is // clearly wrong since we have processed more data than the alleged // size of the file, show a static string indicating that we have // no idea of the completion percentage. if (expected_in_size == 0 || in_pos > expected_in_size) return "--- %"; // Never show 100.0 % before we actually are finished. double percentage = (double)(in_pos) / (double)(expected_in_size) * 99.9; // Use big enough buffer to hold e.g. a multibyte decimal point. static char buf[16]; snprintf(buf, sizeof(buf), "%.1f %%", percentage); return buf; } /// Make the string containing the amount of input processed, amount of /// output produced, and the compression ratio. static const char * progress_sizes(uint64_t compressed_pos, uint64_t uncompressed_pos, bool final) { // Use big enough buffer to hold e.g. a multibyte thousand separators. static char buf[128]; char *pos = buf; size_t left = sizeof(buf); // Print the sizes. If this the final message, use more reasonable // units than MiB if the file was small. const enum nicestr_unit unit_min = final ? NICESTR_B : NICESTR_MIB; my_snprintf(&pos, &left, "%s / %s", uint64_to_nicestr(compressed_pos, unit_min, NICESTR_TIB, false, 0), uint64_to_nicestr(uncompressed_pos, unit_min, NICESTR_TIB, false, 1)); // Avoid division by zero. If we cannot calculate the ratio, set // it to some nice number greater than 10.0 so that it gets caught // in the next if-clause. const double ratio = uncompressed_pos > 0 ? (double)(compressed_pos) / (double)(uncompressed_pos) : 16.0; // If the ratio is very bad, just indicate that it is greater than // 9.999. This way the length of the ratio field stays fixed. if (ratio > 9.999) snprintf(pos, left, " > %.3f", 9.999); else snprintf(pos, left, " = %.3f", ratio); return buf; } /// Make the string containing the processing speed of uncompressed data. static const char * progress_speed(uint64_t uncompressed_pos, uint64_t elapsed) { // Don't print the speed immediately, since the early values look // somewhat random. if (elapsed < 3000000) return ""; static const char unit[][8] = { "KiB/s", "MiB/s", "GiB/s", }; size_t unit_index = 0; // Calculate the speed as KiB/s. double speed = (double)(uncompressed_pos) / ((double)(elapsed) * (1024.0 / 1e6)); // Adjust the unit of the speed if needed. while (speed > 999.0) { speed /= 1024.0; if (++unit_index == ARRAY_SIZE(unit)) return ""; // Way too fast ;-) } // Use decimal point only if the number is small. Examples: // - 0.1 KiB/s // - 9.9 KiB/s // - 99 KiB/s // - 999 KiB/s // Use big enough buffer to hold e.g. a multibyte decimal point. static char buf[16]; snprintf(buf, sizeof(buf), "%.*f %s", speed > 9.9 ? 0 : 1, speed, unit[unit_index]); return buf; } /// Make a string indicating elapsed or remaining time. The format is either /// M:SS or H:MM:SS depending on if the time is an hour or more. static const char * progress_time(uint64_t useconds) { // 9999 hours = 416 days static char buf[sizeof("9999:59:59")]; uint32_t seconds = useconds / 1000000; // Don't show anything if the time is zero or ridiculously big. if (seconds == 0 || seconds > ((9999 * 60) + 59) * 60 + 59) return ""; uint32_t minutes = seconds / 60; seconds %= 60; if (minutes >= 60) { const uint32_t hours = minutes / 60; minutes %= 60; snprintf(buf, sizeof(buf), "%" PRIu32 ":%02" PRIu32 ":%02" PRIu32, hours, minutes, seconds); } else { snprintf(buf, sizeof(buf), "%" PRIu32 ":%02" PRIu32, minutes, seconds); } return buf; } /// Return a string containing estimated remaining time when /// reasonably possible. static const char * progress_remaining(uint64_t in_pos, uint64_t elapsed) { // Don't show the estimated remaining time when it wouldn't // make sense: // - Input size is unknown. // - Input has grown bigger since we started (de)compressing. // - We haven't processed much data yet, so estimate would be // too inaccurate. // - Only a few seconds has passed since we started (de)compressing, // so estimate would be too inaccurate. if (expected_in_size == 0 || in_pos > expected_in_size || in_pos < (UINT64_C(1) << 19) || elapsed < 8000000) return ""; // Calculate the estimate. Don't give an estimate of zero seconds, // since it is possible that all the input has been already passed // to the library, but there is still quite a bit of output pending. uint32_t remaining = (double)(expected_in_size - in_pos) * ((double)(elapsed) / 1e6) / (double)(in_pos); if (remaining < 1) remaining = 1; static char buf[sizeof("9 h 55 min")]; // Select appropriate precision for the estimated remaining time. if (remaining <= 10) { // A maximum of 10 seconds remaining. // Show the number of seconds as is. snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining); } else if (remaining <= 50) { // A maximum of 50 seconds remaining. // Round up to the next multiple of five seconds. remaining = (remaining + 4) / 5 * 5; snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining); } else if (remaining <= 590) { // A maximum of 9 minutes and 50 seconds remaining. // Round up to the next multiple of ten seconds. remaining = (remaining + 9) / 10 * 10; snprintf(buf, sizeof(buf), "%" PRIu32 " min %" PRIu32 " s", remaining / 60, remaining % 60); } else if (remaining <= 59 * 60) { // A maximum of 59 minutes remaining. // Round up to the next multiple of a minute. remaining = (remaining + 59) / 60; snprintf(buf, sizeof(buf), "%" PRIu32 " min", remaining); } else if (remaining <= 9 * 3600 + 50 * 60) { // A maximum of 9 hours and 50 minutes left. // Round up to the next multiple of ten minutes. remaining = (remaining + 599) / 600 * 10; snprintf(buf, sizeof(buf), "%" PRIu32 " h %" PRIu32 " min", remaining / 60, remaining % 60); } else if (remaining <= 23 * 3600) { // A maximum of 23 hours remaining. // Round up to the next multiple of an hour. remaining = (remaining + 3599) / 3600; snprintf(buf, sizeof(buf), "%" PRIu32 " h", remaining); } else if (remaining <= 9 * 24 * 3600 + 23 * 3600) { // A maximum of 9 days and 23 hours remaining. // Round up to the next multiple of an hour. remaining = (remaining + 3599) / 3600; snprintf(buf, sizeof(buf), "%" PRIu32 " d %" PRIu32 " h", remaining / 24, remaining % 24); } else if (remaining <= 999 * 24 * 3600) { // A maximum of 999 days remaining. ;-) // Round up to the next multiple of a day. remaining = (remaining + 24 * 3600 - 1) / (24 * 3600); snprintf(buf, sizeof(buf), "%" PRIu32 " d", remaining); } else { // The estimated remaining time is too big. Don't show it. return ""; } return buf; } /// Calculate the elapsed time as microseconds. static uint64_t progress_elapsed(void) { return my_time() - start_time; } /// Get information about position in the stream. This is currently simple, /// but it will become more complicated once we have multithreading support. static void progress_pos(uint64_t *in_pos, uint64_t *compressed_pos, uint64_t *uncompressed_pos) { *in_pos = progress_strm->total_in; if (opt_mode == MODE_COMPRESS) { *compressed_pos = progress_strm->total_out; *uncompressed_pos = progress_strm->total_in; } else { *compressed_pos = progress_strm->total_in; *uncompressed_pos = progress_strm->total_out; } return; } extern void message_progress_update(void) { if (!progress_needs_updating) return; // Calculate how long we have been processing this file. const uint64_t elapsed = progress_elapsed(); #ifndef SIGALRM if (progress_next_update > elapsed) return; progress_next_update = elapsed + 1000000; #endif // Get our current position in the stream. uint64_t in_pos; uint64_t compressed_pos; uint64_t uncompressed_pos; progress_pos(&in_pos, &compressed_pos, &uncompressed_pos); // Block signals so that fprintf() doesn't get interrupted. signals_block(); // Print the filename if it hasn't been printed yet. if (!current_filename_printed) print_filename(); // Print the actual progress message. The idea is that there is at // least three spaces between the fields in typical situations, but // even in rare situations there is at least one space. const char *cols[5] = { progress_percentage(in_pos), progress_sizes(compressed_pos, uncompressed_pos, false), progress_speed(uncompressed_pos, elapsed), progress_time(elapsed), progress_remaining(in_pos, elapsed), }; fprintf(stderr, "\r %*s %*s %*s %10s %10s\r", tuklib_mbstr_fw(cols[0], 6), cols[0], tuklib_mbstr_fw(cols[1], 35), cols[1], tuklib_mbstr_fw(cols[2], 9), cols[2], cols[3], cols[4]); #ifdef SIGALRM // Updating the progress info was finished. Reset // progress_needs_updating to wait for the next SIGALRM. // // NOTE: This has to be done before alarm(1) or with (very) bad // luck we could be setting this to false after the alarm has already // been triggered. progress_needs_updating = false; if (verbosity >= V_VERBOSE && progress_automatic) { // Mark that the progress indicator is active, so if an error // occurs, the error message gets printed cleanly. progress_active = true; // Restart the timer so that progress_needs_updating gets // set to true after about one second. alarm(1); } else { // The progress message was printed because user had sent us // SIGALRM. In this case, each progress message is printed // on its own line. fputc('\n', stderr); } #else // When SIGALRM isn't supported and we get here, it's always due to // automatic progress update. We set progress_active here too like // described above. assert(verbosity >= V_VERBOSE); assert(progress_automatic); progress_active = true; #endif signals_unblock(); return; } static void progress_flush(bool finished) { if (!progress_started || verbosity < V_VERBOSE) return; uint64_t in_pos; uint64_t compressed_pos; uint64_t uncompressed_pos; progress_pos(&in_pos, &compressed_pos, &uncompressed_pos); // Avoid printing intermediate progress info if some error occurs // in the beginning of the stream. (If something goes wrong later in // the stream, it is sometimes useful to tell the user where the // error approximately occurred, especially if the error occurs // after a time-consuming operation.) if (!finished && !progress_active && (compressed_pos == 0 || uncompressed_pos == 0)) return; progress_active = false; const uint64_t elapsed = progress_elapsed(); signals_block(); // When using the auto-updating progress indicator, the final // statistics are printed in the same format as the progress // indicator itself. if (progress_automatic) { const char *cols[5] = { finished ? "100 %" : progress_percentage(in_pos), progress_sizes(compressed_pos, uncompressed_pos, true), progress_speed(uncompressed_pos, elapsed), progress_time(elapsed), finished ? "" : progress_remaining(in_pos, elapsed), }; fprintf(stderr, "\r %*s %*s %*s %10s %10s\n", tuklib_mbstr_fw(cols[0], 6), cols[0], tuklib_mbstr_fw(cols[1], 35), cols[1], tuklib_mbstr_fw(cols[2], 9), cols[2], cols[3], cols[4]); } else { // The filename is always printed. fprintf(stderr, "%s: ", filename); // Percentage is printed only if we didn't finish yet. if (!finished) { // Don't print the percentage when it isn't known // (starts with a dash). const char *percentage = progress_percentage(in_pos); if (percentage[0] != '-') fprintf(stderr, "%s, ", percentage); } // Size information is always printed. fprintf(stderr, "%s", progress_sizes( compressed_pos, uncompressed_pos, true)); // The speed and elapsed time aren't always shown. const char *speed = progress_speed(uncompressed_pos, elapsed); if (speed[0] != '\0') fprintf(stderr, ", %s", speed); const char *elapsed_str = progress_time(elapsed); if (elapsed_str[0] != '\0') fprintf(stderr, ", %s", elapsed_str); fputc('\n', stderr); } signals_unblock(); return; } extern void message_progress_end(bool success) { assert(progress_started); progress_flush(success); progress_started = false; return; } static void vmessage(enum message_verbosity v, const char *fmt, va_list ap) { if (v <= verbosity) { signals_block(); progress_flush(false); // TRANSLATORS: This is the program name in the beginning // of the line in messages. Usually it becomes "xz: ". // This is a translatable string because French needs // a space before a colon. fprintf(stderr, _("%s: "), progname); vfprintf(stderr, fmt, ap); fputc('\n', stderr); signals_unblock(); } return; } extern void message(enum message_verbosity v, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vmessage(v, fmt, ap); va_end(ap); return; } extern void message_warning(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vmessage(V_WARNING, fmt, ap); va_end(ap); set_exit_status(E_WARNING); return; } extern void message_error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vmessage(V_ERROR, fmt, ap); va_end(ap); set_exit_status(E_ERROR); return; } extern void message_fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vmessage(V_ERROR, fmt, ap); va_end(ap); tuklib_exit(E_ERROR, E_ERROR, false); } extern void message_bug(void) { message_fatal(_("Internal error (bug)")); } extern void message_signal_handler(void) { message_fatal(_("Cannot establish signal handlers")); } extern const char * message_strm(lzma_ret code) { switch (code) { case LZMA_NO_CHECK: return _("No integrity check; not verifying file integrity"); case LZMA_UNSUPPORTED_CHECK: return _("Unsupported type of integrity check; " "not verifying file integrity"); case LZMA_MEM_ERROR: return strerror(ENOMEM); case LZMA_MEMLIMIT_ERROR: return _("Memory usage limit reached"); case LZMA_FORMAT_ERROR: return _("File format not recognized"); case LZMA_OPTIONS_ERROR: return _("Unsupported options"); case LZMA_DATA_ERROR: return _("Compressed data is corrupt"); case LZMA_BUF_ERROR: return _("Unexpected end of input"); case LZMA_OK: case LZMA_STREAM_END: case LZMA_GET_CHECK: case LZMA_PROG_ERROR: // Without "default", compiler will warn if new constants // are added to lzma_ret, it is not too easy to forget to // add the new constants to this function. break; } return _("Internal error (bug)"); } extern void message_mem_needed(enum message_verbosity v, uint64_t memusage) { if (v > verbosity) return; // Convert memusage to MiB, rounding up to the next full MiB. // This way the user can always use the displayed usage as // the new memory usage limit. (If we rounded to the nearest, // the user might need to +1 MiB to get high enough limit.) memusage = round_up_to_mib(memusage); // With US-ASCII: // 2^64 with thousand separators + " MiB" suffix + '\0' = 26 + 4 + 1 // But there may be multibyte chars so reserve enough space. char memlimitstr[128]; // Show the memory usage limit as MiB unless it is less than 1 MiB. // This way it's easy to notice errors where one has typed // --memory=123 instead of --memory=123MiB. uint64_t memlimit = hardware_memlimit_get(opt_mode); if (memlimit < (UINT32_C(1) << 20)) { snprintf(memlimitstr, sizeof(memlimitstr), "%s B", uint64_to_str(memlimit, 1)); } else { // Round up just like with memusage. If this function is // called for informational purposes (to just show the // current usage and limit), we should never show that // the usage is higher than the limit, which would give // a false impression that the memory usage limit isn't // properly enforced. snprintf(memlimitstr, sizeof(memlimitstr), "%s MiB", uint64_to_str(round_up_to_mib(memlimit), 1)); } message(v, _("%s MiB of memory is required. The limit is %s."), uint64_to_str(memusage, 0), memlimitstr); return; } /// \brief Convert uint32_t to a nice string for --lzma[12]=dict=SIZE /// /// The idea is to use KiB or MiB suffix when possible. static const char * uint32_to_optstr(uint32_t num) { static char buf[16]; if ((num & ((UINT32_C(1) << 20) - 1)) == 0) snprintf(buf, sizeof(buf), "%" PRIu32 "MiB", num >> 20); else if ((num & ((UINT32_C(1) << 10) - 1)) == 0) snprintf(buf, sizeof(buf), "%" PRIu32 "KiB", num >> 10); else snprintf(buf, sizeof(buf), "%" PRIu32, num); return buf; } extern void message_filters_to_str(char buf[FILTERS_STR_SIZE], const lzma_filter *filters, bool all_known) { char *pos = buf; size_t left = FILTERS_STR_SIZE; for (size_t i = 0; filters[i].id != LZMA_VLI_UNKNOWN; ++i) { // Add the dashes for the filter option. A space is // needed after the first and later filters. my_snprintf(&pos, &left, "%s", i == 0 ? "--" : " --"); switch (filters[i].id) { case LZMA_FILTER_LZMA1: case LZMA_FILTER_LZMA2: { const lzma_options_lzma *opt = filters[i].options; const char *mode = NULL; const char *mf = NULL; if (all_known) { switch (opt->mode) { case LZMA_MODE_FAST: mode = "fast"; break; case LZMA_MODE_NORMAL: mode = "normal"; break; default: mode = "UNKNOWN"; break; } switch (opt->mf) { case LZMA_MF_HC3: mf = "hc3"; break; case LZMA_MF_HC4: mf = "hc4"; break; case LZMA_MF_BT2: mf = "bt2"; break; case LZMA_MF_BT3: mf = "bt3"; break; case LZMA_MF_BT4: mf = "bt4"; break; default: mf = "UNKNOWN"; break; } } // Add the filter name and dictionary size, which // is always known. my_snprintf(&pos, &left, "lzma%c=dict=%s", filters[i].id == LZMA_FILTER_LZMA2 ? '2' : '1', uint32_to_optstr(opt->dict_size)); // With LZMA1 also lc/lp/pb are known when // decompressing, but this function is never // used to print information about .lzma headers. assert(filters[i].id == LZMA_FILTER_LZMA2 || all_known); // Print the rest of the options, which are known // only when compressing. if (all_known) my_snprintf(&pos, &left, ",lc=%" PRIu32 ",lp=%" PRIu32 ",pb=%" PRIu32 ",mode=%s,nice=%" PRIu32 ",mf=%s" ",depth=%" PRIu32, opt->lc, opt->lp, opt->pb, mode, opt->nice_len, mf, opt->depth); break; } case LZMA_FILTER_X86: case LZMA_FILTER_POWERPC: case LZMA_FILTER_IA64: case LZMA_FILTER_ARM: case LZMA_FILTER_ARMTHUMB: case LZMA_FILTER_SPARC: { static const char bcj_names[][9] = { "x86", "powerpc", "ia64", "arm", "armthumb", "sparc", }; const lzma_options_bcj *opt = filters[i].options; my_snprintf(&pos, &left, "%s", bcj_names[filters[i].id - LZMA_FILTER_X86]); // Show the start offset only when really needed. if (opt != NULL && opt->start_offset != 0) my_snprintf(&pos, &left, "=start=%" PRIu32, opt->start_offset); break; } case LZMA_FILTER_DELTA: { const lzma_options_delta *opt = filters[i].options; my_snprintf(&pos, &left, "delta=dist=%" PRIu32, opt->dist); break; } default: // This should be possible only if liblzma is // newer than the xz tool. my_snprintf(&pos, &left, "UNKNOWN"); break; } } return; } extern void message_filters_show(enum message_verbosity v, const lzma_filter *filters) { if (v > verbosity) return; char buf[FILTERS_STR_SIZE]; message_filters_to_str(buf, filters, true); fprintf(stderr, _("%s: Filter chain: %s\n"), progname, buf); return; } extern void message_try_help(void) { // Print this with V_WARNING instead of V_ERROR to prevent it from // showing up when --quiet has been specified. message(V_WARNING, _("Try `%s --help' for more information."), progname); return; } extern void message_version(void) { // It is possible that liblzma version is different than the command // line tool version, so print both. if (opt_robot) { printf("XZ_VERSION=%" PRIu32 "\nLIBLZMA_VERSION=%" PRIu32 "\n", LZMA_VERSION, lzma_version_number()); } else { printf("xz (" PACKAGE_NAME ") " LZMA_VERSION_STRING "\n"); printf("liblzma %s\n", lzma_version_string()); } tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT); } extern void message_help(bool long_help) { printf(_("Usage: %s [OPTION]... [FILE]...\n" "Compress or decompress FILEs in the .xz format.\n\n"), progname); // NOTE: The short help doesn't currently have options that // take arguments. if (long_help) puts(_("Mandatory arguments to long options are mandatory " "for short options too.\n")); if (long_help) puts(_(" Operation mode:\n")); puts(_( " -z, --compress force compression\n" " -d, --decompress force decompression\n" " -t, --test test compressed file integrity\n" " -l, --list list information about .xz files")); if (long_help) puts(_("\n Operation modifiers:\n")); puts(_( " -k, --keep keep (don't delete) input files\n" " -f, --force force overwrite of output file and (de)compress links\n" " -c, --stdout write to standard output and don't delete input files")); if (long_help) puts(_( " --no-sparse do not create sparse files when decompressing\n" " -S, --suffix=.SUF use the suffix `.SUF' on compressed files\n" " --files[=FILE] read filenames to process from FILE; if FILE is\n" " omitted, filenames are read from the standard input;\n" " filenames must be terminated with the newline character\n" " --files0[=FILE] like --files but use the null character as terminator")); if (long_help) { puts(_("\n Basic file format and compression options:\n")); puts(_( " -F, --format=FMT file format to encode or decode; possible values are\n" " `auto' (default), `xz', `lzma', and `raw'\n" " -C, --check=CHECK integrity check type: `none' (use with caution),\n" " `crc32', `crc64' (default), or `sha256'")); } puts(_( " -0 ... -9 compression preset; default is 6; take compressor *and*\n" " decompressor memory usage into account before using 7-9!")); puts(_( " -e, --extreme try to improve compression ratio by using more CPU time;\n" " does not affect decompressor memory requirements")); if (long_help) { puts(_( // xgettext:no-c-format " --memlimit-compress=LIMIT\n" " --memlimit-decompress=LIMIT\n" " -M, --memlimit=LIMIT\n" " set memory usage limit for compression, decompression,\n" " or both; LIMIT is in bytes, % of RAM, or 0 for defaults")); puts(_( " --no-adjust if compression settings exceed the memory usage limit,\n" " give an error instead of adjusting the settings downwards")); } if (long_help) { puts(_( "\n Custom filter chain for compression (alternative for using presets):")); #if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1) \ || defined(HAVE_ENCODER_LZMA2) || defined(HAVE_DECODER_LZMA2) // TRANSLATORS: The word "literal" in "literal context bits" // means how many "context bits" to use when encoding // literals. A literal is a single 8-bit byte. It doesn't // mean "literally" here. puts(_( "\n" " --lzma1[=OPTS] LZMA1 or LZMA2; OPTS is a comma-separated list of zero or\n" " --lzma2[=OPTS] more of the following options (valid values; default):\n" " preset=PRE reset options to a preset (0-9[e])\n" " dict=NUM dictionary size (4KiB - 1536MiB; 8MiB)\n" " lc=NUM number of literal context bits (0-4; 3)\n" " lp=NUM number of literal position bits (0-4; 0)\n" " pb=NUM number of position bits (0-4; 2)\n" " mode=MODE compression mode (fast, normal; normal)\n" " nice=NUM nice length of a match (2-273; 64)\n" " mf=NAME match finder (hc3, hc4, bt2, bt3, bt4; bt4)\n" " depth=NUM maximum search depth; 0=automatic (default)")); #endif puts(_( "\n" " --x86[=OPTS] x86 BCJ filter (32-bit and 64-bit)\n" " --powerpc[=OPTS] PowerPC BCJ filter (big endian only)\n" " --ia64[=OPTS] IA-64 (Itanium) BCJ filter\n" " --arm[=OPTS] ARM BCJ filter (little endian only)\n" " --armthumb[=OPTS] ARM-Thumb BCJ filter (little endian only)\n" " --sparc[=OPTS] SPARC BCJ filter\n" " Valid OPTS for all BCJ filters:\n" " start=NUM start offset for conversions (default=0)")); #if defined(HAVE_ENCODER_DELTA) || defined(HAVE_DECODER_DELTA) puts(_( "\n" " --delta[=OPTS] Delta filter; valid OPTS (valid values; default):\n" " dist=NUM distance between bytes being subtracted\n" " from each other (1-256; 1)")); #endif } if (long_help) puts(_("\n Other options:\n")); puts(_( " -q, --quiet suppress warnings; specify twice to suppress errors too\n" " -v, --verbose be verbose; specify twice for even more verbose")); if (long_help) { puts(_( " -Q, --no-warn make warnings not affect the exit status")); puts(_( " --robot use machine-parsable messages (useful for scripts)")); puts(""); puts(_( " --info-memory display the total amount of RAM and the currently active\n" " memory usage limits, and exit")); puts(_( " -h, --help display the short help (lists only the basic options)\n" " -H, --long-help display this long help and exit")); } else { puts(_( " -h, --help display this short help and exit\n" " -H, --long-help display the long help (lists also the advanced options)")); } puts(_( " -V, --version display the version number and exit")); puts(_("\nWith no FILE, or when FILE is -, read standard input.\n")); // TRANSLATORS: This message indicates the bug reporting address // for this package. Please add _another line_ saying // "Report translation bugs to <...>\n" with the email or WWW // address for translation bugs. Thanks. printf(_("Report bugs to <%s> (in English or Finnish).\n"), PACKAGE_BUGREPORT); printf(_("%s home page: <%s>\n"), PACKAGE_NAME, PACKAGE_URL); tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT); }