Current Path : /compat/linux/proc/self/root/usr/src/lib/libthr/thread/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/lib/libthr/thread/thr_mutex.c |
/* * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>. * Copyright (c) 2006 David Xu <davidxu@freebsd.org>. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Birrell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/lib/libthr/thread/thr_mutex.c 236275 2012-05-30 01:52:53Z davidxu $ */ #include "namespace.h" #include <stdlib.h> #include <errno.h> #include <string.h> #include <sys/param.h> #include <sys/queue.h> #include <pthread.h> #include <pthread_np.h> #include "un-namespace.h" #include "thr_private.h" #if defined(_PTHREADS_INVARIANTS) #define MUTEX_INIT_LINK(m) do { \ (m)->m_qe.tqe_prev = NULL; \ (m)->m_qe.tqe_next = NULL; \ } while (0) #define MUTEX_ASSERT_IS_OWNED(m) do { \ if (__predict_false((m)->m_qe.tqe_prev == NULL))\ PANIC("mutex is not on list"); \ } while (0) #define MUTEX_ASSERT_NOT_OWNED(m) do { \ if (__predict_false((m)->m_qe.tqe_prev != NULL || \ (m)->m_qe.tqe_next != NULL)) \ PANIC("mutex is on list"); \ } while (0) #else #define MUTEX_INIT_LINK(m) #define MUTEX_ASSERT_IS_OWNED(m) #define MUTEX_ASSERT_NOT_OWNED(m) #endif /* * For adaptive mutexes, how many times to spin doing trylock2 * before entering the kernel to block */ #define MUTEX_ADAPTIVE_SPINS 2000 /* * Prototypes */ int __pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr); int __pthread_mutex_trylock(pthread_mutex_t *mutex); int __pthread_mutex_lock(pthread_mutex_t *mutex); int __pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime); int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)); int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count); int _pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count); int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count); int _pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count); int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count); int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count); static int mutex_self_trylock(pthread_mutex_t); static int mutex_self_lock(pthread_mutex_t, const struct timespec *abstime); static int mutex_unlock_common(struct pthread_mutex *, int); static int mutex_lock_sleep(struct pthread *, pthread_mutex_t, const struct timespec *); __weak_reference(__pthread_mutex_init, pthread_mutex_init); __strong_reference(__pthread_mutex_init, _pthread_mutex_init); __weak_reference(__pthread_mutex_lock, pthread_mutex_lock); __strong_reference(__pthread_mutex_lock, _pthread_mutex_lock); __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock); __strong_reference(__pthread_mutex_timedlock, _pthread_mutex_timedlock); __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock); __strong_reference(__pthread_mutex_trylock, _pthread_mutex_trylock); /* Single underscore versions provided for libc internal usage: */ /* No difference between libc and application usage of these: */ __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy); __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock); __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling); __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling); __weak_reference(__pthread_mutex_setspinloops_np, pthread_mutex_setspinloops_np); __strong_reference(__pthread_mutex_setspinloops_np, _pthread_mutex_setspinloops_np); __weak_reference(_pthread_mutex_getspinloops_np, pthread_mutex_getspinloops_np); __weak_reference(__pthread_mutex_setyieldloops_np, pthread_mutex_setyieldloops_np); __strong_reference(__pthread_mutex_setyieldloops_np, _pthread_mutex_setyieldloops_np); __weak_reference(_pthread_mutex_getyieldloops_np, pthread_mutex_getyieldloops_np); __weak_reference(_pthread_mutex_isowned_np, pthread_mutex_isowned_np); static int mutex_init(pthread_mutex_t *mutex, const struct pthread_mutex_attr *mutex_attr, void *(calloc_cb)(size_t, size_t)) { const struct pthread_mutex_attr *attr; struct pthread_mutex *pmutex; if (mutex_attr == NULL) { attr = &_pthread_mutexattr_default; } else { attr = mutex_attr; if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK || attr->m_type >= PTHREAD_MUTEX_TYPE_MAX) return (EINVAL); if (attr->m_protocol < PTHREAD_PRIO_NONE || attr->m_protocol > PTHREAD_PRIO_PROTECT) return (EINVAL); } if ((pmutex = (pthread_mutex_t) calloc_cb(1, sizeof(struct pthread_mutex))) == NULL) return (ENOMEM); pmutex->m_flags = attr->m_type; pmutex->m_owner = NULL; pmutex->m_count = 0; pmutex->m_spinloops = 0; pmutex->m_yieldloops = 0; MUTEX_INIT_LINK(pmutex); switch(attr->m_protocol) { case PTHREAD_PRIO_NONE: pmutex->m_lock.m_owner = UMUTEX_UNOWNED; pmutex->m_lock.m_flags = 0; break; case PTHREAD_PRIO_INHERIT: pmutex->m_lock.m_owner = UMUTEX_UNOWNED; pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT; break; case PTHREAD_PRIO_PROTECT: pmutex->m_lock.m_owner = UMUTEX_CONTESTED; pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT; pmutex->m_lock.m_ceilings[0] = attr->m_ceiling; break; } if (PMUTEX_TYPE(pmutex->m_flags) == PTHREAD_MUTEX_ADAPTIVE_NP) { pmutex->m_spinloops = _thr_spinloops ? _thr_spinloops: MUTEX_ADAPTIVE_SPINS; pmutex->m_yieldloops = _thr_yieldloops; } *mutex = pmutex; return (0); } static int init_static(struct pthread *thread, pthread_mutex_t *mutex) { int ret; THR_LOCK_ACQUIRE(thread, &_mutex_static_lock); if (*mutex == THR_MUTEX_INITIALIZER) ret = mutex_init(mutex, &_pthread_mutexattr_default, calloc); else if (*mutex == THR_ADAPTIVE_MUTEX_INITIALIZER) ret = mutex_init(mutex, &_pthread_mutexattr_adaptive_default, calloc); else ret = 0; THR_LOCK_RELEASE(thread, &_mutex_static_lock); return (ret); } static void set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m) { struct pthread_mutex *m2; m2 = TAILQ_LAST(&curthread->pp_mutexq, mutex_queue); if (m2 != NULL) m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0]; else m->m_lock.m_ceilings[1] = -1; } int __pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr) { return mutex_init(mutex, mutex_attr ? *mutex_attr : NULL, calloc); } /* This function is used internally by malloc. */ int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)) { static const struct pthread_mutex_attr attr = { .m_type = PTHREAD_MUTEX_NORMAL, .m_protocol = PTHREAD_PRIO_NONE, .m_ceiling = 0 }; int ret; ret = mutex_init(mutex, &attr, calloc_cb); if (ret == 0) (*mutex)->m_flags |= PMUTEX_FLAG_PRIVATE; return (ret); } void _mutex_fork(struct pthread *curthread) { struct pthread_mutex *m; /* * Fix mutex ownership for child process. * note that process shared mutex should not * be inherited because owner is forking thread * which is in parent process, they should be * removed from the owned mutex list, current, * process shared mutex is not supported, so I * am not worried. */ TAILQ_FOREACH(m, &curthread->mutexq, m_qe) m->m_lock.m_owner = TID(curthread); TAILQ_FOREACH(m, &curthread->pp_mutexq, m_qe) m->m_lock.m_owner = TID(curthread) | UMUTEX_CONTESTED; } int _pthread_mutex_destroy(pthread_mutex_t *mutex) { pthread_mutex_t m; int ret; m = *mutex; if (m < THR_MUTEX_DESTROYED) { ret = 0; } else if (m == THR_MUTEX_DESTROYED) { ret = EINVAL; } else { if (m->m_owner != NULL) { ret = EBUSY; } else { *mutex = THR_MUTEX_DESTROYED; MUTEX_ASSERT_NOT_OWNED(m); free(m); ret = 0; } } return (ret); } #define ENQUEUE_MUTEX(curthread, m) \ do { \ (m)->m_owner = curthread; \ /* Add to the list of owned mutexes: */ \ MUTEX_ASSERT_NOT_OWNED((m)); \ if (((m)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) \ TAILQ_INSERT_TAIL(&curthread->mutexq, (m), m_qe);\ else \ TAILQ_INSERT_TAIL(&curthread->pp_mutexq, (m), m_qe);\ } while (0) #define DEQUEUE_MUTEX(curthread, m) \ (m)->m_owner = NULL; \ MUTEX_ASSERT_IS_OWNED(m); \ if (__predict_true(((m)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)) \ TAILQ_REMOVE(&curthread->mutexq, (m), m_qe); \ else { \ TAILQ_REMOVE(&curthread->pp_mutexq, (m), m_qe); \ set_inherited_priority(curthread, m); \ } \ MUTEX_INIT_LINK(m); #define CHECK_AND_INIT_MUTEX \ if (__predict_false((m = *mutex) <= THR_MUTEX_DESTROYED)) { \ if (m == THR_MUTEX_DESTROYED) \ return (EINVAL); \ int ret; \ ret = init_static(_get_curthread(), mutex); \ if (ret) \ return (ret); \ m = *mutex; \ } static int mutex_trylock_common(pthread_mutex_t *mutex) { struct pthread *curthread = _get_curthread(); struct pthread_mutex *m = *mutex; uint32_t id; int ret; id = TID(curthread); if (m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_ENTER(curthread); ret = _thr_umutex_trylock(&m->m_lock, id); if (__predict_true(ret == 0)) { ENQUEUE_MUTEX(curthread, m); } else if (m->m_owner == curthread) { ret = mutex_self_trylock(m); } /* else {} */ if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE)) THR_CRITICAL_LEAVE(curthread); return (ret); } int __pthread_mutex_trylock(pthread_mutex_t *mutex) { struct pthread_mutex *m; CHECK_AND_INIT_MUTEX return (mutex_trylock_common(mutex)); } static int mutex_lock_sleep(struct pthread *curthread, struct pthread_mutex *m, const struct timespec *abstime) { uint32_t id, owner; int count; int ret; if (m->m_owner == curthread) return mutex_self_lock(m, abstime); id = TID(curthread); /* * For adaptive mutexes, spin for a bit in the expectation * that if the application requests this mutex type then * the lock is likely to be released quickly and it is * faster than entering the kernel */ if (__predict_false( (m->m_lock.m_flags & (UMUTEX_PRIO_PROTECT | UMUTEX_PRIO_INHERIT)) != 0)) goto sleep_in_kernel; if (!_thr_is_smp) goto yield_loop; count = m->m_spinloops; while (count--) { owner = m->m_lock.m_owner; if ((owner & ~UMUTEX_CONTESTED) == 0) { if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) { ret = 0; goto done; } } CPU_SPINWAIT; } yield_loop: count = m->m_yieldloops; while (count--) { _sched_yield(); owner = m->m_lock.m_owner; if ((owner & ~UMUTEX_CONTESTED) == 0) { if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) { ret = 0; goto done; } } } sleep_in_kernel: if (abstime == NULL) { ret = __thr_umutex_lock(&m->m_lock, id); } else if (__predict_false( abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)) { ret = EINVAL; } else { ret = __thr_umutex_timedlock(&m->m_lock, id, abstime); } done: if (ret == 0) ENQUEUE_MUTEX(curthread, m); return (ret); } static inline int mutex_lock_common(struct pthread_mutex *m, const struct timespec *abstime, int cvattach) { struct pthread *curthread = _get_curthread(); int ret; if (!cvattach && m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_ENTER(curthread); if (_thr_umutex_trylock2(&m->m_lock, TID(curthread)) == 0) { ENQUEUE_MUTEX(curthread, m); ret = 0; } else { ret = mutex_lock_sleep(curthread, m, abstime); } if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE) && !cvattach) THR_CRITICAL_LEAVE(curthread); return (ret); } int __pthread_mutex_lock(pthread_mutex_t *mutex) { struct pthread_mutex *m; _thr_check_init(); CHECK_AND_INIT_MUTEX return (mutex_lock_common(m, NULL, 0)); } int __pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime) { struct pthread_mutex *m; _thr_check_init(); CHECK_AND_INIT_MUTEX return (mutex_lock_common(m, abstime, 0)); } int _pthread_mutex_unlock(pthread_mutex_t *mutex) { struct pthread_mutex *mp; mp = *mutex; return (mutex_unlock_common(mp, 0)); } int _mutex_cv_lock(struct pthread_mutex *m, int count) { int error; error = mutex_lock_common(m, NULL, 1); if (error == 0) m->m_count = count; return (error); } int _mutex_cv_unlock(struct pthread_mutex *m, int *count) { /* * Clear the count in case this is a recursive mutex. */ *count = m->m_count; m->m_count = 0; (void)mutex_unlock_common(m, 1); return (0); } int _mutex_cv_attach(struct pthread_mutex *m, int count) { struct pthread *curthread = _get_curthread(); ENQUEUE_MUTEX(curthread, m); m->m_count = count; return (0); } int _mutex_cv_detach(struct pthread_mutex *mp, int *recurse) { struct pthread *curthread = _get_curthread(); int defered; int error; if ((error = _mutex_owned(curthread, mp)) != 0) return (error); /* * Clear the count in case this is a recursive mutex. */ *recurse = mp->m_count; mp->m_count = 0; DEQUEUE_MUTEX(curthread, mp); /* Will this happen in real-world ? */ if ((mp->m_flags & PMUTEX_FLAG_DEFERED) != 0) { defered = 1; mp->m_flags &= ~PMUTEX_FLAG_DEFERED; } else defered = 0; if (defered) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } return (0); } static int mutex_self_trylock(struct pthread_mutex *m) { int ret; switch (PMUTEX_TYPE(m->m_flags)) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ADAPTIVE_NP: ret = EBUSY; break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_self_lock(struct pthread_mutex *m, const struct timespec *abstime) { struct timespec ts1, ts2; int ret; switch (PMUTEX_TYPE(m->m_flags)) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_ADAPTIVE_NP: if (abstime) { if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) { ret = EINVAL; } else { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } } else { /* * POSIX specifies that mutexes should return * EDEADLK if a recursive lock is detected. */ ret = EDEADLK; } break; case PTHREAD_MUTEX_NORMAL: /* * What SS2 define as a 'normal' mutex. Intentionally * deadlock on attempts to get a lock you already own. */ ret = 0; if (abstime) { if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) { ret = EINVAL; } else { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } } else { ts1.tv_sec = 30; ts1.tv_nsec = 0; for (;;) __sys_nanosleep(&ts1, NULL); } break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_unlock_common(struct pthread_mutex *m, int cv) { struct pthread *curthread = _get_curthread(); uint32_t id; int defered; if (__predict_false(m <= THR_MUTEX_DESTROYED)) { if (m == THR_MUTEX_DESTROYED) return (EINVAL); return (EPERM); } /* * Check if the running thread is not the owner of the mutex. */ if (__predict_false(m->m_owner != curthread)) return (EPERM); id = TID(curthread); if (__predict_false( PMUTEX_TYPE(m->m_flags) == PTHREAD_MUTEX_RECURSIVE && m->m_count > 0)) { m->m_count--; } else { if ((m->m_flags & PMUTEX_FLAG_DEFERED) != 0) { defered = 1; m->m_flags &= ~PMUTEX_FLAG_DEFERED; } else defered = 0; DEQUEUE_MUTEX(curthread, m); _thr_umutex_unlock(&m->m_lock, id); if (curthread->will_sleep == 0 && defered) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } } if (!cv && m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_LEAVE(curthread); return (0); } int _pthread_mutex_getprioceiling(pthread_mutex_t *mutex, int *prioceiling) { struct pthread_mutex *m; int ret; m = *mutex; if ((m <= THR_MUTEX_DESTROYED) || (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) ret = EINVAL; else { *prioceiling = m->m_lock.m_ceilings[0]; ret = 0; } return (ret); } int _pthread_mutex_setprioceiling(pthread_mutex_t *mutex, int ceiling, int *old_ceiling) { struct pthread *curthread = _get_curthread(); struct pthread_mutex *m, *m1, *m2; int ret; m = *mutex; if ((m <= THR_MUTEX_DESTROYED) || (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) return (EINVAL); ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling); if (ret != 0) return (ret); if (m->m_owner == curthread) { MUTEX_ASSERT_IS_OWNED(m); m1 = TAILQ_PREV(m, mutex_queue, m_qe); m2 = TAILQ_NEXT(m, m_qe); if ((m1 != NULL && m1->m_lock.m_ceilings[0] > (u_int)ceiling) || (m2 != NULL && m2->m_lock.m_ceilings[0] < (u_int)ceiling)) { TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe); TAILQ_FOREACH(m2, &curthread->pp_mutexq, m_qe) { if (m2->m_lock.m_ceilings[0] > (u_int)ceiling) { TAILQ_INSERT_BEFORE(m2, m, m_qe); return (0); } } TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe); } } return (0); } int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count) { struct pthread_mutex *m; CHECK_AND_INIT_MUTEX *count = m->m_spinloops; return (0); } int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count) { struct pthread_mutex *m; CHECK_AND_INIT_MUTEX m->m_spinloops = count; return (0); } int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count) { struct pthread_mutex *m; CHECK_AND_INIT_MUTEX *count = m->m_yieldloops; return (0); } int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count) { struct pthread_mutex *m; CHECK_AND_INIT_MUTEX m->m_yieldloops = count; return (0); } int _pthread_mutex_isowned_np(pthread_mutex_t *mutex) { struct pthread_mutex *m; m = *mutex; if (m <= THR_MUTEX_DESTROYED) return (0); return (m->m_owner == _get_curthread()); } int _mutex_owned(struct pthread *curthread, const struct pthread_mutex *mp) { if (__predict_false(mp <= THR_MUTEX_DESTROYED)) { if (mp == THR_MUTEX_DESTROYED) return (EINVAL); return (EPERM); } if (mp->m_owner != curthread) return (EPERM); return (0); }