Current Path : /compat/linux/proc/self/root/usr/src/lib/msun/src/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/lib/msun/src/k_log.h |
/* @(#)e_log.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/msun/src/k_log.h 216210 2010-12-05 22:11:03Z das $"); /* __kernel_log(x) * Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)]. * * The following describes the overall strategy for computing * logarithms in base e. The argument reduction and adding the final * term of the polynomial are done by the caller for increased accuracy * when different bases are used. * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ /* * We always inline __kernel_log(), since doing so produces a * substantial performance improvement (~40% on amd64). */ static inline double __kernel_log(double x) { double hfsq,f,s,z,R,w,t1,t2; int32_t hx,i,j; u_int32_t lx; EXTRACT_WORDS(hx,lx,x); f = x-1.0; if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */ if(f==0.0) return 0.0; return f*f*(0.33333333333333333*f-0.5); } s = f/(2.0+f); z = s*s; hx &= 0x000fffff; i = hx-0x6147a; w = z*z; j = 0x6b851-hx; t1= w*(Lg2+w*(Lg4+w*Lg6)); t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); i |= j; R = t2+t1; if (i>0) { hfsq=0.5*f*f; return s*(hfsq+R) - hfsq; } else { return s*(R-f); } }