Current Path : /compat/linux/proc/self/root/usr/src/sys/arm/xscale/i80321/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/sys/arm/xscale/i80321/i80321_timer.c |
/* $NetBSD: i80321_timer.c,v 1.7 2003/07/27 04:52:28 thorpej Exp $ */ /*- * Copyright (c) 2001, 2002 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Timer/clock support for the Intel i80321 I/O processor. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/xscale/i80321/i80321_timer.c 197733 2009-10-03 13:59:15Z rpaulo $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/time.h> #include <sys/bus.h> #include <sys/resource.h> #include <sys/rman.h> #include <sys/timetc.h> #include <machine/bus.h> #include <machine/cpu.h> #include <machine/cpufunc.h> #include <machine/frame.h> #include <machine/resource.h> #include <machine/intr.h> #include <arm/xscale/i80321/i80321reg.h> #include <arm/xscale/i80321/i80321var.h> #ifdef CPU_XSCALE_81342 #define ICU_INT_TIMER0 (8) /* XXX: Can't include i81342reg.h because definitions overrides the ones from i80321reg.h */ #endif #include "opt_timer.h" void (*i80321_hardclock_hook)(void) = NULL; struct i80321_timer_softc { device_t dev; } timer_softc; static unsigned i80321_timer_get_timecount(struct timecounter *tc); static uint32_t counts_per_hz; #if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342) static uint32_t offset; static uint32_t last = -1; #endif static int ticked = 0; #ifndef COUNTS_PER_SEC #define COUNTS_PER_SEC 200000000 /* 200MHz */ #endif #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000) static struct timecounter i80321_timer_timecounter = { i80321_timer_get_timecount, /* get_timecount */ NULL, /* no poll_pps */ ~0u, /* counter_mask */ #if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342) COUNTS_PER_SEC, #else COUNTS_PER_SEC * 3, /* frequency */ #endif "i80321 timer", /* name */ 1000 /* quality */ }; static int i80321_timer_probe(device_t dev) { device_set_desc(dev, "i80321 timer"); return (0); } static int i80321_timer_attach(device_t dev) { timer_softc.dev = dev; return (0); } static device_method_t i80321_timer_methods[] = { DEVMETHOD(device_probe, i80321_timer_probe), DEVMETHOD(device_attach, i80321_timer_attach), {0, 0}, }; static driver_t i80321_timer_driver = { "itimer", i80321_timer_methods, sizeof(struct i80321_timer_softc), }; static devclass_t i80321_timer_devclass; DRIVER_MODULE(itimer, iq, i80321_timer_driver, i80321_timer_devclass, 0, 0); int clockhandler(void *); static __inline uint32_t tmr1_read(void) { uint32_t rv; #ifdef CPU_XSCALE_81342 __asm __volatile("mrc p6, 0, %0, c1, c9, 0" #else __asm __volatile("mrc p6, 0, %0, c1, c1, 0" #endif : "=r" (rv)); return (rv); } static __inline void tmr1_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c1, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c1, c1, 0" #endif : : "r" (val)); } static __inline uint32_t tcr1_read(void) { uint32_t rv; #ifdef CPU_XSCALE_81342 __asm __volatile("mrc p6, 0, %0, c3, c9, 0" #else __asm __volatile("mrc p6, 0, %0, c3, c1, 0" #endif : "=r" (rv)); return (rv); } static __inline void tcr1_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c3, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c3, c1, 0" #endif : : "r" (val)); } static __inline void trr1_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c5, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c5, c1, 0" #endif : : "r" (val)); } static __inline uint32_t tmr0_read(void) { uint32_t rv; #ifdef CPU_XSCALE_81342 __asm __volatile("mrc p6, 0, %0, c0, c9, 0" #else __asm __volatile("mrc p6, 0, %0, c0, c1, 0" #endif : "=r" (rv)); return (rv); } static __inline void tmr0_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c0, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c0, c1, 0" #endif : : "r" (val)); } static __inline uint32_t tcr0_read(void) { uint32_t rv; #ifdef CPU_XSCALE_81342 __asm __volatile("mrc p6, 0, %0, c2, c9, 0" #else __asm __volatile("mrc p6, 0, %0, c2, c1, 0" #endif : "=r" (rv)); return (rv); } static __inline void tcr0_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c2, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c2, c1, 0" #endif : : "r" (val)); } static __inline void trr0_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c4, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c4, c1, 0" #endif : : "r" (val)); } static __inline void tisr_write(uint32_t val) { #ifdef CPU_XSCALE_81342 __asm __volatile("mcr p6, 0, %0, c6, c9, 0" #else __asm __volatile("mcr p6, 0, %0, c6, c1, 0" #endif : : "r" (val)); } static __inline uint32_t tisr_read(void) { int ret; #ifdef CPU_XSCALE_81342 __asm __volatile("mrc p6, 0, %0, c6, c9, 0" : "=r" (ret)); #else __asm __volatile("mrc p6, 0, %0, c6, c1, 0" : "=r" (ret)); #endif return (ret); } static unsigned i80321_timer_get_timecount(struct timecounter *tc) { #if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342) uint32_t cur = tcr0_read(); if (cur > last && last != -1) { offset += counts_per_hz; if (ticked > 0) ticked--; } if (ticked) { offset += ticked * counts_per_hz; ticked = 0; } return (counts_per_hz - cur + offset); #else uint32_t ret; __asm __volatile("mrc p14, 0, %0, c1, c0, 0\n" : "=r" (ret)); return (ret); #endif } /* * i80321_calibrate_delay: * * Calibrate the delay loop. */ void i80321_calibrate_delay(void) { /* * Just use hz=100 for now -- we'll adjust it, if necessary, * in cpu_initclocks(). */ counts_per_hz = COUNTS_PER_SEC / 100; tmr0_write(0); /* stop timer */ tisr_write(TISR_TMR0); /* clear interrupt */ trr0_write(counts_per_hz); /* reload value */ tcr0_write(counts_per_hz); /* current value */ tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE); } /* * cpu_initclocks: * * Initialize the clock and get them going. */ void cpu_initclocks(void) { u_int oldirqstate; struct resource *irq; int rid = 0; void *ihl; device_t dev = timer_softc.dev; if (hz < 50 || COUNTS_PER_SEC % hz) { printf("Cannot get %d Hz clock; using 100 Hz\n", hz); hz = 100; } tick = 1000000 / hz; /* number of microseconds between interrupts */ /* * We only have one timer available; stathz and profhz are * always left as 0 (the upper-layer clock code deals with * this situation). */ if (stathz != 0) printf("Cannot get %d Hz statclock\n", stathz); stathz = 0; if (profhz != 0) printf("Cannot get %d Hz profclock\n", profhz); profhz = 0; /* Report the clock frequency. */ oldirqstate = disable_interrupts(I32_bit); irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, #ifdef CPU_XSCALE_81342 ICU_INT_TIMER0, ICU_INT_TIMER0, #else ICU_INT_TMR0, ICU_INT_TMR0, #endif 1, RF_ACTIVE); if (!irq) panic("Unable to setup the clock irq handler.\n"); else bus_setup_intr(dev, irq, INTR_TYPE_CLK, clockhandler, NULL, NULL, &ihl); tmr0_write(0); /* stop timer */ tisr_write(TISR_TMR0); /* clear interrupt */ counts_per_hz = COUNTS_PER_SEC / hz; trr0_write(counts_per_hz); /* reload value */ tcr0_write(counts_per_hz); /* current value */ tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE); tc_init(&i80321_timer_timecounter); restore_interrupts(oldirqstate); rid = 0; #if !defined(XSCALE_DISABLE_CCNT) && !defined(CPU_XSCALE_81342) /* Enable the clock count register. */ __asm __volatile("mrc p14, 0, %0, c0, c0, 0\n" : "=r" (rid)); rid &= ~(1 << 3); rid |= (1 << 2) | 1; __asm __volatile("mcr p14, 0, %0, c0, c0, 0\n" : : "r" (rid)); #endif } /* * DELAY: * * Delay for at least N microseconds. */ void DELAY(int n) { uint32_t cur, last, delta, usecs; /* * This works by polling the timer and counting the * number of microseconds that go by. */ last = tcr0_read(); delta = usecs = 0; while (n > usecs) { cur = tcr0_read(); /* Check to see if the timer has wrapped around. */ if (last < cur) delta += (last + (counts_per_hz - cur)); else delta += (last - cur); last = cur; if (delta >= COUNTS_PER_USEC) { usecs += delta / COUNTS_PER_USEC; delta %= COUNTS_PER_USEC; } } } /* * clockhandler: * * Handle the hardclock interrupt. */ int clockhandler(void *arg) { struct trapframe *frame = arg; ticked++; tisr_write(TISR_TMR0); hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame)); if (i80321_hardclock_hook != NULL) (*i80321_hardclock_hook)(); return (FILTER_HANDLED); } void cpu_startprofclock(void) { } void cpu_stopprofclock(void) { }