Current Path : /compat/linux/proc/self/root/usr/src/sys/cam/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/sys/cam/cam_xpt.c |
/*- * Implementation of the Common Access Method Transport (XPT) layer. * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/cam/cam_xpt.c 237827 2012-06-29 22:28:31Z ken $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/systm.h> #include <sys/types.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/time.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <sys/interrupt.h> #include <sys/sbuf.h> #include <sys/taskqueue.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <sys/kthread.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/cam_periph.h> #include <cam/cam_queue.h> #include <cam/cam_sim.h> #include <cam/cam_xpt.h> #include <cam/cam_xpt_sim.h> #include <cam/cam_xpt_periph.h> #include <cam/cam_xpt_internal.h> #include <cam/cam_debug.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_message.h> #include <cam/scsi/scsi_pass.h> #include <machine/md_var.h> /* geometry translation */ #include <machine/stdarg.h> /* for xpt_print below */ #include "opt_cam.h" /* * This is the maximum number of high powered commands (e.g. start unit) * that can be outstanding at a particular time. */ #ifndef CAM_MAX_HIGHPOWER #define CAM_MAX_HIGHPOWER 4 #endif /* Datastructures internal to the xpt layer */ MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); /* Object for defering XPT actions to a taskqueue */ struct xpt_task { struct task task; void *data1; uintptr_t data2; }; typedef enum { XPT_FLAG_OPEN = 0x01 } xpt_flags; struct xpt_softc { xpt_flags flags; u_int32_t xpt_generation; /* number of high powered commands that can go through right now */ STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; int num_highpower; /* queue for handling async rescan requests. */ TAILQ_HEAD(, ccb_hdr) ccb_scanq; int buses_to_config; int buses_config_done; /* Registered busses */ TAILQ_HEAD(,cam_eb) xpt_busses; u_int bus_generation; struct intr_config_hook *xpt_config_hook; int boot_delay; struct callout boot_callout; struct mtx xpt_topo_lock; struct mtx xpt_lock; }; typedef enum { DM_RET_COPY = 0x01, DM_RET_FLAG_MASK = 0x0f, DM_RET_NONE = 0x00, DM_RET_STOP = 0x10, DM_RET_DESCEND = 0x20, DM_RET_ERROR = 0x30, DM_RET_ACTION_MASK = 0xf0 } dev_match_ret; typedef enum { XPT_DEPTH_BUS, XPT_DEPTH_TARGET, XPT_DEPTH_DEVICE, XPT_DEPTH_PERIPH } xpt_traverse_depth; struct xpt_traverse_config { xpt_traverse_depth depth; void *tr_func; void *tr_arg; }; typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); /* Transport layer configuration information */ static struct xpt_softc xsoftc; TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, &xsoftc.boot_delay, 0, "Bus registration wait time"); /* Queues for our software interrupt handler */ typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; static cam_simq_t cam_simq; static struct mtx cam_simq_lock; /* Pointers to software interrupt handlers */ static void *cambio_ih; struct cam_periph *xpt_periph; static periph_init_t xpt_periph_init; static struct periph_driver xpt_driver = { xpt_periph_init, "xpt", TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(xpt, xpt_driver); static d_open_t xptopen; static d_close_t xptclose; static d_ioctl_t xptioctl; static struct cdevsw xpt_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = xptopen, .d_close = xptclose, .d_ioctl = xptioctl, .d_name = "xpt", }; /* Storage for debugging datastructures */ struct cam_path *cam_dpath; u_int32_t cam_dflags = CAM_DEBUG_FLAGS; TUNABLE_INT("kern.cam.dflags", &cam_dflags); SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, &cam_dflags, 0, "Enabled debug flags"); u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, &cam_debug_delay, 0, "Delay in us after each debug message"); /* Our boot-time initialization hook */ static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); static moduledata_t cam_moduledata = { "cam", cam_module_event_handler, NULL }; static int xpt_init(void *); DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(cam, 1); static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg); static path_id_t xptnextfreepathid(void); static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); static union ccb *xpt_get_ccb(struct cam_ed *device); static void xpt_run_dev_allocq(struct cam_eb *bus); static void xpt_run_dev_sendq(struct cam_eb *bus); static timeout_t xpt_release_devq_timeout; static void xpt_release_simq_timeout(void *arg) __unused; static void xpt_release_bus(struct cam_eb *bus); static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue); static struct cam_et* xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); static void xpt_release_target(struct cam_et *target); static struct cam_eb* xpt_find_bus(path_id_t path_id); static struct cam_et* xpt_find_target(struct cam_eb *bus, target_id_t target_id); static struct cam_ed* xpt_find_device(struct cam_et *target, lun_id_t lun_id); static void xpt_config(void *arg); static xpt_devicefunc_t xptpassannouncefunc; static void xptaction(struct cam_sim *sim, union ccb *work_ccb); static void xptpoll(struct cam_sim *sim); static void camisr(void *); static void camisr_runqueue(void *); static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus); static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device); static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph); static xpt_busfunc_t xptedtbusfunc; static xpt_targetfunc_t xptedttargetfunc; static xpt_devicefunc_t xptedtdevicefunc; static xpt_periphfunc_t xptedtperiphfunc; static xpt_pdrvfunc_t xptplistpdrvfunc; static xpt_periphfunc_t xptplistperiphfunc; static int xptedtmatch(struct ccb_dev_match *cdm); static int xptperiphlistmatch(struct ccb_dev_match *cdm); static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg); static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg); static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg); static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg); static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static xpt_busfunc_t xptdefbusfunc; static xpt_targetfunc_t xptdeftargetfunc; static xpt_devicefunc_t xptdefdevicefunc; static xpt_periphfunc_t xptdefperiphfunc; static void xpt_finishconfig_task(void *context, int pending); static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static xpt_devicefunc_t xptsetasyncfunc; static xpt_busfunc_t xptsetasyncbusfunc; static cam_status xptregister(struct cam_periph *periph, void *arg); static __inline int periph_is_queued(struct cam_periph *periph); static __inline int device_is_alloc_queued(struct cam_ed *device); static __inline int device_is_send_queued(struct cam_ed *device); static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) { int retval; if ((dev->drvq.entries > 0) && (dev->ccbq.devq_openings > 0) && (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( CAMQ_GET_PRIO(&dev->drvq))) == 0)) { /* * The priority of a device waiting for CCB resources * is that of the highest priority peripheral driver * enqueued. */ retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, &dev->alloc_ccb_entry.pinfo, CAMQ_GET_PRIO(&dev->drvq)); } else { retval = 0; } return (retval); } static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) { int retval; if ((dev->ccbq.queue.entries > 0) && (dev->ccbq.dev_openings > 0) && (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { /* * The priority of a device waiting for controller * resources is that of the highest priority CCB * enqueued. */ retval = xpt_schedule_dev(&bus->sim->devq->send_queue, &dev->send_ccb_entry.pinfo, CAMQ_GET_PRIO(&dev->ccbq.queue)); } else { retval = 0; } return (retval); } static __inline int periph_is_queued(struct cam_periph *periph) { return (periph->pinfo.index != CAM_UNQUEUED_INDEX); } static __inline int device_is_alloc_queued(struct cam_ed *device) { return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); } static __inline int device_is_send_queued(struct cam_ed *device) { return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); } static void xpt_periph_init() { make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); } static void xptdone(struct cam_periph *periph, union ccb *done_ccb) { /* Caller will release the CCB */ wakeup(&done_ccb->ccb_h.cbfcnp); } static int xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) { /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) return(EPERM); /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { printf("%s: can't do nonblocking access\n", devtoname(dev)); return(ENODEV); } /* Mark ourselves open */ mtx_lock(&xsoftc.xpt_lock); xsoftc.flags |= XPT_FLAG_OPEN; mtx_unlock(&xsoftc.xpt_lock); return(0); } static int xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) { /* Mark ourselves closed */ mtx_lock(&xsoftc.xpt_lock); xsoftc.flags &= ~XPT_FLAG_OPEN; mtx_unlock(&xsoftc.xpt_lock); return(0); } /* * Don't automatically grab the xpt softc lock here even though this is going * through the xpt device. The xpt device is really just a back door for * accessing other devices and SIMs, so the right thing to do is to grab * the appropriate SIM lock once the bus/SIM is located. */ static int xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; error = 0; switch(cmd) { /* * For the transport layer CAMIOCOMMAND ioctl, we really only want * to accept CCB types that don't quite make sense to send through a * passthrough driver. XPT_PATH_INQ is an exception to this, as stated * in the CAM spec. */ case CAMIOCOMMAND: { union ccb *ccb; union ccb *inccb; struct cam_eb *bus; inccb = (union ccb *)addr; bus = xpt_find_bus(inccb->ccb_h.path_id); if (bus == NULL) return (EINVAL); switch (inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; case XPT_SCAN_TGT: if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; default: break; } switch(inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: case XPT_PATH_INQ: case XPT_ENG_INQ: case XPT_SCAN_LUN: case XPT_SCAN_TGT: ccb = xpt_alloc_ccb(); CAM_SIM_LOCK(bus->sim); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; CAM_SIM_UNLOCK(bus->sim); xpt_free_ccb(ccb); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(ccb, inccb); ccb->ccb_h.cbfcnp = xptdone; cam_periph_runccb(ccb, NULL, 0, 0, NULL); bcopy(ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); CAM_SIM_UNLOCK(bus->sim); break; case XPT_DEBUG: { union ccb ccb; /* * This is an immediate CCB, so it's okay to * allocate it on the stack. */ CAM_SIM_LOCK(bus->sim); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; CAM_SIM_UNLOCK(bus->sim); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(&ccb, inccb); ccb.ccb_h.cbfcnp = xptdone; xpt_action(&ccb); CAM_SIM_UNLOCK(bus->sim); bcopy(&ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb.ccb_h.path); break; } case XPT_DEV_MATCH: { struct cam_periph_map_info mapinfo; struct cam_path *old_path; /* * We can't deal with physical addresses for this * type of transaction. */ if (inccb->ccb_h.flags & CAM_DATA_PHYS) { error = EINVAL; break; } /* * Save this in case the caller had it set to * something in particular. */ old_path = inccb->ccb_h.path; /* * We really don't need a path for the matching * code. The path is needed because of the * debugging statements in xpt_action(). They * assume that the CCB has a valid path. */ inccb->ccb_h.path = xpt_periph->path; bzero(&mapinfo, sizeof(mapinfo)); /* * Map the pattern and match buffers into kernel * virtual address space. */ error = cam_periph_mapmem(inccb, &mapinfo); if (error) { inccb->ccb_h.path = old_path; break; } /* * This is an immediate CCB, we can send it on directly. */ xpt_action(inccb); /* * Map the buffers back into user space. */ cam_periph_unmapmem(inccb, &mapinfo); inccb->ccb_h.path = old_path; error = 0; break; } default: error = ENOTSUP; break; } xpt_release_bus(bus); break; } /* * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, * with the periphal driver name and unit name filled in. The other * fields don't really matter as input. The passthrough driver name * ("pass"), and unit number are passed back in the ccb. The current * device generation number, and the index into the device peripheral * driver list, and the status are also passed back. Note that * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is * (or rather should be) impossible for the device peripheral driver * list to change since we look at the whole thing in one pass, and * we do it with lock protection. * */ case CAMGETPASSTHRU: { union ccb *ccb; struct cam_periph *periph; struct periph_driver **p_drv; char *name; u_int unit; u_int cur_generation; int base_periph_found; int splbreaknum; ccb = (union ccb *)addr; unit = ccb->cgdl.unit_number; name = ccb->cgdl.periph_name; /* * Every 100 devices, we want to drop our lock protection to * give the software interrupt handler a chance to run. * Most systems won't run into this check, but this should * avoid starvation in the software interrupt handler in * large systems. */ splbreaknum = 100; ccb = (union ccb *)addr; base_periph_found = 0; /* * Sanity check -- make sure we don't get a null peripheral * driver name. */ if (*ccb->cgdl.periph_name == '\0') { error = EINVAL; break; } /* Keep the list from changing while we traverse it */ mtx_lock(&xsoftc.xpt_topo_lock); ptstartover: cur_generation = xsoftc.xpt_generation; /* first find our driver in the list of drivers */ for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) if (strcmp((*p_drv)->driver_name, name) == 0) break; if (*p_drv == NULL) { mtx_unlock(&xsoftc.xpt_topo_lock); ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; break; } /* * Run through every peripheral instance of this driver * and check to see whether it matches the unit passed * in by the user. If it does, get out of the loops and * find the passthrough driver associated with that * peripheral driver. */ for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (periph->unit_number == unit) { break; } else if (--splbreaknum == 0) { mtx_unlock(&xsoftc.xpt_topo_lock); mtx_lock(&xsoftc.xpt_topo_lock); splbreaknum = 100; if (cur_generation != xsoftc.xpt_generation) goto ptstartover; } } /* * If we found the peripheral driver that the user passed * in, go through all of the peripheral drivers for that * particular device and look for a passthrough driver. */ if (periph != NULL) { struct cam_ed *device; int i; base_periph_found = 1; device = periph->path->device; for (i = 0, periph = SLIST_FIRST(&device->periphs); periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++) { /* * Check to see whether we have a * passthrough device or not. */ if (strcmp(periph->periph_name, "pass") == 0) { /* * Fill in the getdevlist fields. */ strcpy(ccb->cgdl.periph_name, periph->periph_name); ccb->cgdl.unit_number = periph->unit_number; if (SLIST_NEXT(periph, periph_links)) ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; else ccb->cgdl.status = CAM_GDEVLIST_LAST_DEVICE; ccb->cgdl.generation = device->generation; ccb->cgdl.index = i; /* * Fill in some CCB header fields * that the user may want. */ ccb->ccb_h.path_id = periph->path->bus->path_id; ccb->ccb_h.target_id = periph->path->target->target_id; ccb->ccb_h.target_lun = periph->path->device->lun_id; ccb->ccb_h.status = CAM_REQ_CMP; break; } } } /* * If the periph is null here, one of two things has * happened. The first possibility is that we couldn't * find the unit number of the particular peripheral driver * that the user is asking about. e.g. the user asks for * the passthrough driver for "da11". We find the list of * "da" peripherals all right, but there is no unit 11. * The other possibility is that we went through the list * of peripheral drivers attached to the device structure, * but didn't find one with the name "pass". Either way, * we return ENOENT, since we couldn't find something. */ if (periph == NULL) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; /* * It is unfortunate that this is even necessary, * but there are many, many clueless users out there. * If this is true, the user is looking for the * passthrough driver, but doesn't have one in his * kernel. */ if (base_periph_found == 1) { printf("xptioctl: pass driver is not in the " "kernel\n"); printf("xptioctl: put \"device pass\" in " "your kernel config file\n"); } } mtx_unlock(&xsoftc.xpt_topo_lock); break; } default: error = ENOTTY; break; } return(error); } static int cam_module_event_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if ((error = xpt_init(NULL)) != 0) return (error); break; case MOD_UNLOAD: return EBUSY; default: return EOPNOTSUPP; } return 0; } static void xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) { if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(done_ccb); } else { done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } xpt_release_boot(); } /* thread to handle bus rescans */ static void xpt_scanner_thread(void *dummy) { union ccb *ccb; struct cam_sim *sim; xpt_lock_buses(); for (;;) { if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, "ccb_scanq", 0); if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_unlock_buses(); sim = ccb->ccb_h.path->bus->sim; CAM_SIM_LOCK(sim); xpt_action(ccb); CAM_SIM_UNLOCK(sim); xpt_lock_buses(); } } } void xpt_rescan(union ccb *ccb) { struct ccb_hdr *hdr; /* Prepare request */ if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_BUS; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_TGT; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_LUN; else { xpt_print(ccb->ccb_h.path, "illegal scan path\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; ccb->ccb_h.cbfcnp = xpt_rescan_done; xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); /* Don't make duplicate entries for the same paths. */ xpt_lock_buses(); if (ccb->ccb_h.ppriv_ptr1 == NULL) { TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); xpt_print(ccb->ccb_h.path, "rescan already queued\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } } } TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xsoftc.buses_to_config++; wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); } /* Functions accessed by the peripheral drivers */ static int xpt_init(void *dummy) { struct cam_sim *xpt_sim; struct cam_path *path; struct cam_devq *devq; cam_status status; TAILQ_INIT(&xsoftc.xpt_busses); TAILQ_INIT(&cam_simq); TAILQ_INIT(&xsoftc.ccb_scanq); STAILQ_INIT(&xsoftc.highpowerq); xsoftc.num_highpower = CAM_MAX_HIGHPOWER; mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); /* * The xpt layer is, itself, the equivelent of a SIM. * Allow 16 ccbs in the ccb pool for it. This should * give decent parallelism when we probe busses and * perform other XPT functions. */ devq = cam_simq_alloc(16); xpt_sim = cam_sim_alloc(xptaction, xptpoll, "xpt", /*softc*/NULL, /*unit*/0, /*mtx*/&xsoftc.xpt_lock, /*max_dev_transactions*/0, /*max_tagged_dev_transactions*/0, devq); if (xpt_sim == NULL) return (ENOMEM); mtx_lock(&xsoftc.xpt_lock); if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { mtx_unlock(&xsoftc.xpt_lock); printf("xpt_init: xpt_bus_register failed with status %#x," " failing attach\n", status); return (EINVAL); } /* * Looking at the XPT from the SIM layer, the XPT is * the equivelent of a peripheral driver. Allocate * a peripheral driver entry for us. */ if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { mtx_unlock(&xsoftc.xpt_lock); printf("xpt_init: xpt_create_path failed with status %#x," " failing attach\n", status); return (EINVAL); } cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, path, NULL, 0, xpt_sim); xpt_free_path(path); mtx_unlock(&xsoftc.xpt_lock); /* Install our software interrupt handlers */ swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); /* * Register a callback for when interrupts are enabled. */ xsoftc.xpt_config_hook = (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), M_CAMXPT, M_NOWAIT | M_ZERO); if (xsoftc.xpt_config_hook == NULL) { printf("xpt_init: Cannot malloc config hook " "- failing attach\n"); return (ENOMEM); } xsoftc.xpt_config_hook->ich_func = xpt_config; if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { free (xsoftc.xpt_config_hook, M_CAMXPT); printf("xpt_init: config_intrhook_establish failed " "- failing attach\n"); } return (0); } static cam_status xptregister(struct cam_periph *periph, void *arg) { struct cam_sim *xpt_sim; if (periph == NULL) { printf("xptregister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } xpt_sim = (struct cam_sim *)arg; xpt_sim->softc = periph; xpt_periph = periph; periph->softc = NULL; return(CAM_REQ_CMP); } int32_t xpt_add_periph(struct cam_periph *periph) { struct cam_ed *device; int32_t status; struct periph_list *periph_head; mtx_assert(periph->sim->mtx, MA_OWNED); device = periph->path->device; periph_head = &device->periphs; status = CAM_REQ_CMP; if (device != NULL) { /* * Make room for this peripheral * so it will fit in the queue * when it's scheduled to run */ status = camq_resize(&device->drvq, device->drvq.array_size + 1); device->generation++; SLIST_INSERT_HEAD(periph_head, periph, periph_links); } mtx_lock(&xsoftc.xpt_topo_lock); xsoftc.xpt_generation++; mtx_unlock(&xsoftc.xpt_topo_lock); return (status); } void xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) { struct cam_ed *device; mtx_assert(periph->sim->mtx, MA_OWNED); device = periph->path->device; if (device != NULL) { struct periph_list *periph_head; periph_head = &device->periphs; /* Release the slot for this peripheral */ camq_resize(&device->drvq, device->drvq.array_size - 1); device->generation++; SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); } if (topology_lock_held == 0) mtx_lock(&xsoftc.xpt_topo_lock); xsoftc.xpt_generation++; if (topology_lock_held == 0) mtx_unlock(&xsoftc.xpt_topo_lock); } void xpt_announce_periph(struct cam_periph *periph, char *announce_string) { struct cam_path *path = periph->path; mtx_assert(periph->sim->mtx, MA_OWNED); printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); if (path->device->protocol == PROTO_SCSI) scsi_print_inquiry(&path->device->inq_data); else if (path->device->protocol == PROTO_ATA || path->device->protocol == PROTO_SATAPM) ata_print_ident(&path->device->ident_data); else if (path->device->protocol == PROTO_SEMB) semb_print_ident( (struct sep_identify_data *)&path->device->ident_data); else printf("Unknown protocol device\n"); if (bootverbose && path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ printf("%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ (*(path->bus->xport->announce))(periph); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { printf("%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) printf("%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) { int ret = -1; struct ccb_dev_advinfo cdai; memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.bufsiz = len; if (!strcmp(attr, "GEOM::ident")) cdai.buftype = CDAI_TYPE_SERIAL_NUM; else if (!strcmp(attr, "GEOM::physpath")) cdai.buftype = CDAI_TYPE_PHYS_PATH; else goto out; cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); if (cdai.buf == NULL) { ret = ENOMEM; goto out; } xpt_action((union ccb *)&cdai); /* can only be synchronous */ if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.provsiz == 0) goto out; ret = 0; if (strlcpy(buf, cdai.buf, len) >= len) ret = EFAULT; out: if (cdai.buf != NULL) free(cdai.buf, M_CAMXPT); return ret; } static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus) { dev_match_ret retval; int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (bus == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this bus matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct bus_match_pattern *cur_pattern; /* * If the pattern in question isn't for a bus node, we * aren't interested. However, we do indicate to the * calling routine that we should continue descending the * tree, since the user wants to match against lower-level * EDT elements. */ if (patterns[i].type != DEV_MATCH_BUS) { if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.bus_pattern; /* * If they want to match any bus node, we give them any * device node. */ if (cur_pattern->flags == BUS_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * If we've already decided on an action, go ahead * and return. */ if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == BUS_MATCH_NONE) continue; if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) && (cur_pattern->path_id != bus->path_id)) continue; if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) && (cur_pattern->bus_id != bus->sim->bus_id)) continue; if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) && (cur_pattern->unit_number != bus->sim->unit_number)) continue; if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this bus. So tell the caller to copy the * data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a non-bus matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a non-bus * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen anything other than bus matching patterns. So * tell the caller to stop descending the tree -- the user doesn't * want to match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device) { dev_match_ret retval; int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (device == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this device matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct device_match_pattern *cur_pattern; struct scsi_vpd_device_id *device_id_page; /* * If the pattern in question isn't for a device node, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_DEVICE) { if ((patterns[i].type == DEV_MATCH_PERIPH) && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.device_pattern; /* Error out if mutually exclusive options are specified. */ if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) return(DM_RET_ERROR); /* * If they want to match any device node, we give them any * device node. */ if (cur_pattern->flags == DEV_MATCH_ANY) goto copy_dev_node; /* * Not sure why someone would do this... */ if (cur_pattern->flags == DEV_MATCH_NONE) continue; if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) && (cur_pattern->path_id != device->target->bus->path_id)) continue; if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) && (cur_pattern->target_id != device->target->target_id)) continue; if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) && (cur_pattern->target_lun != device->lun_id)) continue; if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) && (cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)&cur_pattern->data.inq_pat, 1, sizeof(cur_pattern->data.inq_pat), scsi_static_inquiry_match) == NULL)) continue; device_id_page = (struct scsi_vpd_device_id *)device->device_id; if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN || scsi_devid_match((uint8_t *)device_id_page->desc_list, device->device_id_len - SVPD_DEVICE_ID_HDR_LEN, cur_pattern->data.devid_pat.id, cur_pattern->data.devid_pat.id_len) != 0)) continue; copy_dev_node: /* * If we get to this point, the user definitely wants * information on this device. So tell the caller to copy * the data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a peripheral matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a peripheral * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen any peripheral matching patterns. So tell the * caller to stop descending the tree -- the user doesn't want to * match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } /* * Match a single peripheral against any number of match patterns. */ static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph) { dev_match_ret retval; int i; /* * If we aren't given something to match against, that's an error. */ if (periph == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this peripheral matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_STOP | DM_RET_COPY); /* * There aren't any nodes below a peripheral node, so there's no * reason to descend the tree any further. */ retval = DM_RET_STOP; for (i = 0; i < num_patterns; i++) { struct periph_match_pattern *cur_pattern; /* * If the pattern in question isn't for a peripheral, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_PERIPH) continue; cur_pattern = &patterns[i].pattern.periph_pattern; /* * If they want to match on anything, then we will do so. */ if (cur_pattern->flags == PERIPH_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * We've already set the return action to stop, * since there are no nodes below peripherals in * the tree. */ return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == PERIPH_MATCH_NONE) continue; if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) && (cur_pattern->path_id != periph->path->bus->path_id)) continue; /* * For the target and lun id's, we have to make sure the * target and lun pointers aren't NULL. The xpt peripheral * has a wildcard target and device. */ if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) && ((periph->path->target == NULL) ||(cur_pattern->target_id != periph->path->target->target_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) && ((periph->path->device == NULL) || (cur_pattern->target_lun != periph->path->device->lun_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) && (cur_pattern->unit_number != periph->unit_number)) continue; if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) && (strncmp(cur_pattern->periph_name, periph->periph_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this peripheral. So tell the caller to * copy the data out. */ retval |= DM_RET_COPY; /* * The return action has already been set to stop, since * peripherals don't have any nodes below them in the EDT. */ return(retval); } /* * If we get to this point, the peripheral that was passed in * doesn't match any of the patterns. */ return(retval); } static int xptedtbusfunc(struct cam_eb *bus, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) retval = DM_RET_DESCEND; else retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); /* * If we got an error, bail out of the search. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this bus out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; cdm->pos.cookie.bus = bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_BUS; cdm->matches[j].result.bus_result.path_id = bus->path_id; cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; cdm->matches[j].result.bus_result.unit_number = bus->sim->unit_number; strncpy(cdm->matches[j].result.bus_result.dev_name, bus->sim->sim_name, DEV_IDLEN); } /* * If the user is only interested in busses, there's no * reason to descend to the next level in the tree. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a target generation recorded, check it to * make sure the target list hasn't changed. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (bus == cdm->pos.cookie.bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) && (cdm->pos.generations[CAM_TARGET_GENERATION] != bus->generation)) { cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) return(xpttargettraverse(bus, (struct cam_et *)cdm->pos.cookie.target, xptedttargetfunc, arg)); else return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); } static int xptedttargetfunc(struct cam_et *target, void *arg) { struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; /* * If there is a device list generation recorded, check it to * make sure the device list hasn't changed. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == target->bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) && (cdm->pos.generations[CAM_DEV_GENERATION] != target->generation)) { cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == target->bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device != NULL)) return(xptdevicetraverse(target, (struct cam_ed *)cdm->pos.cookie.device, xptedtdevicefunc, arg)); else return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); } static int xptedtdevicefunc(struct cam_ed *device, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) retval = DM_RET_DESCEND; else retval = xptdevicematch(cdm->patterns, cdm->num_patterns, device); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this device out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; cdm->pos.cookie.bus = device->target->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = device->target; cdm->pos.generations[CAM_TARGET_GENERATION] = device->target->bus->generation; cdm->pos.cookie.device = device; cdm->pos.generations[CAM_DEV_GENERATION] = device->target->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_DEVICE; cdm->matches[j].result.device_result.path_id = device->target->bus->path_id; cdm->matches[j].result.device_result.target_id = device->target->target_id; cdm->matches[j].result.device_result.target_lun = device->lun_id; cdm->matches[j].result.device_result.protocol = device->protocol; bcopy(&device->inq_data, &cdm->matches[j].result.device_result.inq_data, sizeof(struct scsi_inquiry_data)); bcopy(&device->ident_data, &cdm->matches[j].result.device_result.ident_data, sizeof(struct ata_params)); /* Let the user know whether this device is unconfigured */ if (device->flags & CAM_DEV_UNCONFIGURED) cdm->matches[j].result.device_result.flags = DEV_RESULT_UNCONFIGURED; else cdm->matches[j].result.device_result.flags = DEV_RESULT_NOFLAG; } /* * If the user isn't interested in peripherals, don't descend * the tree any further. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a peripheral list generation recorded, make sure * it hasn't changed. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (device->target->bus == cdm->pos.cookie.bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (device->target == cdm->pos.cookie.target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (device == cdm->pos.cookie.device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) && (cdm->pos.generations[CAM_PERIPH_GENERATION] != device->generation)){ cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == device->target->bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == device->target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) return(xptperiphtraverse(device, (struct cam_periph *)cdm->pos.cookie.periph, xptedtperiphfunc, arg)); else return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); } static int xptedtperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | CAM_DEV_POS_PERIPH; cdm->pos.cookie.bus = periph->path->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = periph->path->target; cdm->pos.generations[CAM_TARGET_GENERATION] = periph->path->bus->generation; cdm->pos.cookie.device = periph->path->device; cdm->pos.generations[CAM_DEV_GENERATION] = periph->path->target->generation; cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = periph->path->device->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptedtmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * Check the bus list generation. If it has changed, the user * needs to reset everything and start over. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus != NULL)) ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, xptedtbusfunc, cdm); else ret = xptbustraverse(NULL, xptedtbusfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the EDT. It also means that one of the subroutines * has set the status field to the proper value. If we get back 1, * we've fully traversed the EDT and copied out any matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) { struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) && (cdm->pos.generations[CAM_PERIPH_GENERATION] != (*pdrv)->generation)) { cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) return(xptpdperiphtraverse(pdrv, (struct cam_periph *)cdm->pos.cookie.periph, xptplistperiphfunc, arg)); else return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); } static int xptplistperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { struct periph_driver **pdrv; pdrv = NULL; bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | CAM_DEV_POS_PERIPH; /* * This may look a bit non-sensical, but it is * actually quite logical. There are very few * peripheral drivers, and bloating every peripheral * structure with a pointer back to its parent * peripheral driver linker set entry would cost * more in the long run than doing this quick lookup. */ for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { if (strcmp((*pdrv)->driver_name, periph->periph_name) == 0) break; } if (*pdrv == NULL) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } cdm->pos.cookie.pdrv = pdrv; /* * The periph generation slot does double duty, as * does the periph pointer slot. They are used for * both edt and pdrv lookups and positioning. */ cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = (*pdrv)->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; /* * The transport layer peripheral doesn't have a target or * lun. */ if (periph->path->target) cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; else cdm->matches[j].result.periph_result.target_id = -1; if (periph->path->device) cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; else cdm->matches[j].result.periph_result.target_lun = -1; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptperiphlistmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * At this point in the edt traversal function, we check the bus * list generation to make sure that no busses have been added or * removed since the user last sent a XPT_DEV_MATCH ccb through. * For the peripheral driver list traversal function, however, we * don't have to worry about new peripheral driver types coming or * going; they're in a linker set, and therefore can't change * without a recompile. */ if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv != NULL)) ret = xptpdrvtraverse( (struct periph_driver **)cdm->pos.cookie.pdrv, xptplistpdrvfunc, cdm); else ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the peripheral driver tree. It also means that one of * the subroutines has set the status field to the proper value. If * we get back 1, we've fully traversed the EDT and copied out any * matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) { struct cam_eb *bus, *next_bus; int retval; retval = 1; mtx_lock(&xsoftc.xpt_topo_lock); for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); bus != NULL; bus = next_bus) { bus->refcount++; /* * XXX The locking here is obviously very complex. We * should work to simplify it. */ mtx_unlock(&xsoftc.xpt_topo_lock); CAM_SIM_LOCK(bus->sim); retval = tr_func(bus, arg); CAM_SIM_UNLOCK(bus->sim); mtx_lock(&xsoftc.xpt_topo_lock); next_bus = TAILQ_NEXT(bus, links); mtx_unlock(&xsoftc.xpt_topo_lock); xpt_release_bus(bus); if (retval == 0) return(retval); mtx_lock(&xsoftc.xpt_topo_lock); } mtx_unlock(&xsoftc.xpt_topo_lock); return(retval); } int xpt_sim_opened(struct cam_sim *sim) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; struct cam_periph *periph; KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); mtx_assert(sim->mtx, MA_OWNED); mtx_lock(&xsoftc.xpt_topo_lock); TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { if (bus->sim != sim) continue; TAILQ_FOREACH(target, &bus->et_entries, links) { TAILQ_FOREACH(device, &target->ed_entries, links) { SLIST_FOREACH(periph, &device->periphs, periph_links) { if (periph->refcount > 0) { mtx_unlock(&xsoftc.xpt_topo_lock); return (1); } } } } } mtx_unlock(&xsoftc.xpt_topo_lock); return (0); } static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg) { struct cam_et *target, *next_target; int retval; retval = 1; for (target = (start_target ? start_target : TAILQ_FIRST(&bus->et_entries)); target != NULL; target = next_target) { target->refcount++; retval = tr_func(target, arg); next_target = TAILQ_NEXT(target, links); xpt_release_target(target); if (retval == 0) return(retval); } return(retval); } static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg) { struct cam_ed *device, *next_device; int retval; retval = 1; for (device = (start_device ? start_device : TAILQ_FIRST(&target->ed_entries)); device != NULL; device = next_device) { /* * Hold a reference so the current device does not go away * on us. */ device->refcount++; retval = tr_func(device, arg); /* * Grab our next pointer before we release the current * device. */ next_device = TAILQ_NEXT(device, links); xpt_release_device(device); if (retval == 0) return(retval); } return(retval); } static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; xpt_lock_buses(); for (periph = (start_periph ? start_periph : SLIST_FIRST(&device->periphs)); periph != NULL; periph = next_periph) { /* * In this case, we want to show peripherals that have been * invalidated, but not peripherals that are scheduled to * be freed. So instead of calling cam_periph_acquire(), * which will fail if the periph has been invalidated, we * just check for the free flag here. If it is free, we * skip to the next periph. */ if (periph->flags & CAM_PERIPH_FREE) { next_periph = SLIST_NEXT(periph, periph_links); continue; } /* * Acquire a reference to this periph while we call the * traversal function, so it can't go away. */ periph->refcount++; xpt_unlock_buses(); retval = tr_func(periph, arg); /* * We need the lock for list traversal. */ xpt_lock_buses(); /* * Grab the next peripheral before we release this one, so * our next pointer is still valid. */ next_periph = SLIST_NEXT(periph, periph_links); cam_periph_release_locked_buses(periph); if (retval == 0) goto bailout_done; } bailout_done: xpt_unlock_buses(); return(retval); } static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg) { struct periph_driver **pdrv; int retval; retval = 1; /* * We don't traverse the peripheral driver list like we do the * other lists, because it is a linker set, and therefore cannot be * changed during runtime. If the peripheral driver list is ever * re-done to be something other than a linker set (i.e. it can * change while the system is running), the list traversal should * be modified to work like the other traversal functions. */ for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); *pdrv != NULL; pdrv++) { retval = tr_func(pdrv, arg); if (retval == 0) return(retval); } return(retval); } static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; xpt_lock_buses(); for (periph = (start_periph ? start_periph : TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; periph = next_periph) { /* * In this case, we want to show peripherals that have been * invalidated, but not peripherals that are scheduled to * be freed. So instead of calling cam_periph_acquire(), * which will fail if the periph has been invalidated, we * just check for the free flag here. If it is free, we * skip to the next periph. */ if (periph->flags & CAM_PERIPH_FREE) { next_periph = TAILQ_NEXT(periph, unit_links); continue; } /* * Acquire a reference to this periph while we call the * traversal function, so it can't go away. */ periph->refcount++; /* * XXX KDM we have the toplogy lock here, but in * xptperiphtraverse(), we drop it before calling the * traversal function. Which is correct? */ retval = tr_func(periph, arg); /* * Grab the next peripheral before we release this one, so * our next pointer is still valid. */ next_periph = TAILQ_NEXT(periph, unit_links); cam_periph_release_locked_buses(periph); if (retval == 0) goto bailout_done; } bailout_done: xpt_unlock_buses(); return(retval); } static int xptdefbusfunc(struct cam_eb *bus, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_BUS) { xpt_busfunc_t *tr_func; tr_func = (xpt_busfunc_t *)tr_config->tr_func; return(tr_func(bus, tr_config->tr_arg)); } else return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); } static int xptdeftargetfunc(struct cam_et *target, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_TARGET) { xpt_targetfunc_t *tr_func; tr_func = (xpt_targetfunc_t *)tr_config->tr_func; return(tr_func(target, tr_config->tr_arg)); } else return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); } static int xptdefdevicefunc(struct cam_ed *device, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_DEVICE) { xpt_devicefunc_t *tr_func; tr_func = (xpt_devicefunc_t *)tr_config->tr_func; return(tr_func(device, tr_config->tr_arg)); } else return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); } static int xptdefperiphfunc(struct cam_periph *periph, void *arg) { struct xpt_traverse_config *tr_config; xpt_periphfunc_t *tr_func; tr_config = (struct xpt_traverse_config *)arg; tr_func = (xpt_periphfunc_t *)tr_config->tr_func; /* * Unlike the other default functions, we don't check for depth * here. The peripheral driver level is the last level in the EDT, * so if we're here, we should execute the function in question. */ return(tr_func(periph, tr_config->tr_arg)); } /* * Execute the given function for every bus in the EDT. */ static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_BUS; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } /* * Execute the given function for every device in the EDT. */ static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_DEVICE; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } static int xptsetasyncfunc(struct cam_ed *device, void *arg) { struct cam_path path; struct ccb_getdev cgd; struct ccb_setasync *csa = (struct ccb_setasync *)arg; /* * Don't report unconfigured devices (Wildcard devs, * devices only for target mode, device instances * that have been invalidated but are waiting for * their last reference count to be released). */ if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) return (1); xpt_compile_path(&path, NULL, device->target->bus->path_id, device->target->target_id, device->lun_id); xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); csa->callback(csa->callback_arg, AC_FOUND_DEVICE, &path, &cgd); xpt_release_path(&path); return(1); } static int xptsetasyncbusfunc(struct cam_eb *bus, void *arg) { struct cam_path path; struct ccb_pathinq cpi; struct ccb_setasync *csa = (struct ccb_setasync *)arg; xpt_compile_path(&path, /*periph*/NULL, bus->sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); csa->callback(csa->callback_arg, AC_PATH_REGISTERED, &path, &cpi); xpt_release_path(&path); return(1); } void xpt_action(union ccb *start_ccb) { CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); start_ccb->ccb_h.status = CAM_REQ_INPROG; /* Compatibility for RL-unaware code. */ if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); } void xpt_action_default(union ccb *start_ccb) { char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; struct cam_path *path; path = start_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); switch (start_ccb->ccb_h.func_code) { case XPT_SCSI_IO: { struct cam_ed *device; /* * For the sake of compatibility with SCSI-1 * devices that may not understand the identify * message, we include lun information in the * second byte of all commands. SCSI-1 specifies * that luns are a 3 bit value and reserves only 3 * bits for lun information in the CDB. Later * revisions of the SCSI spec allow for more than 8 * luns, but have deprecated lun information in the * CDB. So, if the lun won't fit, we must omit. * * Also be aware that during initial probing for devices, * the inquiry information is unknown but initialized to 0. * This means that this code will be exercised while probing * devices with an ANSI revision greater than 2. */ device = path->device; if (device->protocol_version <= SCSI_REV_2 && start_ccb->ccb_h.target_lun < 8 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { start_ccb->csio.cdb_io.cdb_bytes[1] |= start_ccb->ccb_h.target_lun << 5; } start_ccb->csio.scsi_status = SCSI_STATUS_OK; CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], &path->device->inq_data), scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, cdb_str, sizeof(cdb_str)))); } /* FALLTHROUGH */ case XPT_TARGET_IO: case XPT_CONT_TARGET_IO: start_ccb->csio.sense_resid = 0; start_ccb->csio.resid = 0; /* FALLTHROUGH */ case XPT_ATA_IO: if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { start_ccb->ataio.resid = 0; CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n", ata_op_string(&start_ccb->ataio.cmd), ata_cmd_string(&start_ccb->ataio.cmd, cdb_str, sizeof(cdb_str)))); } /* FALLTHROUGH */ case XPT_RESET_DEV: case XPT_ENG_EXEC: case XPT_SMP_IO: { int frozen; frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); path->device->sim->devq->alloc_openings += frozen; if (frozen > 0) xpt_run_dev_allocq(path->bus); if (xpt_schedule_dev_sendq(path->bus, path->device)) xpt_run_dev_sendq(path->bus); break; } case XPT_CALC_GEOMETRY: { struct cam_sim *sim; /* Filter out garbage */ if (start_ccb->ccg.block_size == 0 || start_ccb->ccg.volume_size == 0) { start_ccb->ccg.cylinders = 0; start_ccb->ccg.heads = 0; start_ccb->ccg.secs_per_track = 0; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #if defined(PC98) || defined(__sparc64__) /* * In a PC-98 system, geometry translation depens on * the "real" device geometry obtained from mode page 4. * SCSI geometry translation is performed in the * initialization routine of the SCSI BIOS and the result * stored in host memory. If the translation is available * in host memory, use it. If not, rely on the default * translation the device driver performs. * For sparc64, we may need adjust the geometry of large * disks in order to fit the limitations of the 16-bit * fields of the VTOC8 disk label. */ if (scsi_da_bios_params(&start_ccb->ccg) != 0) { start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #endif sim = path->bus->sim; (*(sim->sim_action))(sim, start_ccb); break; } case XPT_ABORT: { union ccb* abort_ccb; abort_ccb = start_ccb->cab.abort_ccb; if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { if (abort_ccb->ccb_h.pinfo.index >= 0) { struct cam_ccbq *ccbq; struct cam_ed *device; device = abort_ccb->ccb_h.path->device; ccbq = &device->ccbq; device->sim->devq->alloc_openings -= cam_ccbq_remove_ccb(ccbq, abort_ccb); abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); xpt_done(abort_ccb); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { /* * We've caught this ccb en route to * the SIM. Flag it for abort and the * SIM will do so just before starting * real work on the CCB. */ abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } } if (XPT_FC_IS_QUEUED(abort_ccb) && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { /* * It's already completed but waiting * for our SWI to get to it. */ start_ccb->ccb_h.status = CAM_UA_ABORT; break; } /* * If we weren't able to take care of the abort request * in the XPT, pass the request down to the SIM for processing. */ } /* FALLTHROUGH */ case XPT_ACCEPT_TARGET_IO: case XPT_EN_LUN: case XPT_IMMED_NOTIFY: case XPT_NOTIFY_ACK: case XPT_RESET_BUS: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: case XPT_GET_SIM_KNOB: case XPT_SET_SIM_KNOB: { struct cam_sim *sim; sim = path->bus->sim; (*(sim->sim_action))(sim, start_ccb); break; } case XPT_PATH_INQ: { struct cam_sim *sim; sim = path->bus->sim; (*(sim->sim_action))(sim, start_ccb); break; } case XPT_PATH_STATS: start_ccb->cpis.last_reset = path->bus->last_reset; start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_GDEV_TYPE: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdev *cgd; cgd = &start_ccb->cgd; cgd->protocol = dev->protocol; cgd->inq_data = dev->inq_data; cgd->ident_data = dev->ident_data; cgd->inq_flags = dev->inq_flags; cgd->ccb_h.status = CAM_REQ_CMP; cgd->serial_num_len = dev->serial_num_len; if ((dev->serial_num_len > 0) && (dev->serial_num != NULL)) bcopy(dev->serial_num, cgd->serial_num, dev->serial_num_len); } break; } case XPT_GDEV_STATS: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdevstats *cgds; struct cam_eb *bus; struct cam_et *tar; cgds = &start_ccb->cgds; bus = path->bus; tar = path->target; cgds->dev_openings = dev->ccbq.dev_openings; cgds->dev_active = dev->ccbq.dev_active; cgds->devq_openings = dev->ccbq.devq_openings; cgds->devq_queued = dev->ccbq.queue.entries; cgds->held = dev->ccbq.held; cgds->last_reset = tar->last_reset; cgds->maxtags = dev->maxtags; cgds->mintags = dev->mintags; if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) cgds->last_reset = bus->last_reset; cgds->ccb_h.status = CAM_REQ_CMP; } break; } case XPT_GDEVLIST: { struct cam_periph *nperiph; struct periph_list *periph_head; struct ccb_getdevlist *cgdl; u_int i; struct cam_ed *device; int found; found = 0; /* * Don't want anyone mucking with our data. */ device = path->device; periph_head = &device->periphs; cgdl = &start_ccb->cgdl; /* * Check and see if the list has changed since the user * last requested a list member. If so, tell them that the * list has changed, and therefore they need to start over * from the beginning. */ if ((cgdl->index != 0) && (cgdl->generation != device->generation)) { cgdl->status = CAM_GDEVLIST_LIST_CHANGED; break; } /* * Traverse the list of peripherals and attempt to find * the requested peripheral. */ for (nperiph = SLIST_FIRST(periph_head), i = 0; (nperiph != NULL) && (i <= cgdl->index); nperiph = SLIST_NEXT(nperiph, periph_links), i++) { if (i == cgdl->index) { strncpy(cgdl->periph_name, nperiph->periph_name, DEV_IDLEN); cgdl->unit_number = nperiph->unit_number; found = 1; } } if (found == 0) { cgdl->status = CAM_GDEVLIST_ERROR; break; } if (nperiph == NULL) cgdl->status = CAM_GDEVLIST_LAST_DEVICE; else cgdl->status = CAM_GDEVLIST_MORE_DEVS; cgdl->index++; cgdl->generation = device->generation; cgdl->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEV_MATCH: { dev_pos_type position_type; struct ccb_dev_match *cdm; cdm = &start_ccb->cdm; /* * There are two ways of getting at information in the EDT. * The first way is via the primary EDT tree. It starts * with a list of busses, then a list of targets on a bus, * then devices/luns on a target, and then peripherals on a * device/lun. The "other" way is by the peripheral driver * lists. The peripheral driver lists are organized by * peripheral driver. (obviously) So it makes sense to * use the peripheral driver list if the user is looking * for something like "da1", or all "da" devices. If the * user is looking for something on a particular bus/target * or lun, it's generally better to go through the EDT tree. */ if (cdm->pos.position_type != CAM_DEV_POS_NONE) position_type = cdm->pos.position_type; else { u_int i; position_type = CAM_DEV_POS_NONE; for (i = 0; i < cdm->num_patterns; i++) { if ((cdm->patterns[i].type == DEV_MATCH_BUS) ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ position_type = CAM_DEV_POS_EDT; break; } } if (cdm->num_patterns == 0) position_type = CAM_DEV_POS_EDT; else if (position_type == CAM_DEV_POS_NONE) position_type = CAM_DEV_POS_PDRV; } switch(position_type & CAM_DEV_POS_TYPEMASK) { case CAM_DEV_POS_EDT: xptedtmatch(cdm); break; case CAM_DEV_POS_PDRV: xptperiphlistmatch(cdm); break; default: cdm->status = CAM_DEV_MATCH_ERROR; break; } if (cdm->status == CAM_DEV_MATCH_ERROR) start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_SASYNC_CB: { struct ccb_setasync *csa; struct async_node *cur_entry; struct async_list *async_head; u_int32_t added; csa = &start_ccb->csa; added = csa->event_enable; async_head = &path->device->asyncs; /* * If there is already an entry for us, simply * update it. */ cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { if ((cur_entry->callback_arg == csa->callback_arg) && (cur_entry->callback == csa->callback)) break; cur_entry = SLIST_NEXT(cur_entry, links); } if (cur_entry != NULL) { /* * If the request has no flags set, * remove the entry. */ added &= ~cur_entry->event_enable; if (csa->event_enable == 0) { SLIST_REMOVE(async_head, cur_entry, async_node, links); xpt_release_device(path->device); free(cur_entry, M_CAMXPT); } else { cur_entry->event_enable = csa->event_enable; } csa->event_enable = added; } else { cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, M_NOWAIT); if (cur_entry == NULL) { csa->ccb_h.status = CAM_RESRC_UNAVAIL; break; } cur_entry->event_enable = csa->event_enable; cur_entry->callback_arg = csa->callback_arg; cur_entry->callback = csa->callback; SLIST_INSERT_HEAD(async_head, cur_entry, links); xpt_acquire_device(path->device); } start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_REL_SIMQ: { struct ccb_relsim *crs; struct cam_ed *dev; crs = &start_ccb->crs; dev = path->device; if (dev == NULL) { crs->ccb_h.status = CAM_DEV_NOT_THERE; break; } if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { /* Don't ever go below one opening */ if (crs->openings > 0) { xpt_dev_ccbq_resize(path, crs->openings); if (bootverbose) { xpt_print(path, "number of openings is now %d\n", crs->openings); } } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { /* * Just extend the old timeout and decrement * the freeze count so that a single timeout * is sufficient for releasing the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; callout_stop(&dev->callout); } else { start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } callout_reset(&dev->callout, (crs->release_timeout * hz) / 1000, xpt_release_devq_timeout, dev); dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; } if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { /* * Decrement the freeze count so that a single * completion is still sufficient to unfreeze * the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_COMPLETE; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 || (dev->ccbq.dev_active == 0)) { start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { xpt_release_devq_rl(path, /*runlevel*/ (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? crs->release_timeout : 0, /*count*/1, /*run_queue*/TRUE); } start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEBUG: { /* Check that all request bits are supported. */ if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; break; } cam_dflags = start_ccb->cdbg.flags; if (cam_dpath != NULL) { xpt_free_path(cam_dpath); cam_dpath = NULL; } if (cam_dflags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, xpt_periph, start_ccb->ccb_h.path_id, start_ccb->ccb_h.target_id, start_ccb->ccb_h.target_lun) != CAM_REQ_CMP) { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; cam_dflags = CAM_DEBUG_NONE; } else { start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_print(cam_dpath, "debugging flags now %x\n", cam_dflags); } } else { cam_dpath = NULL; start_ccb->ccb_h.status = CAM_REQ_CMP; } break; } case XPT_FREEZE_QUEUE: { struct ccb_relsim *crs = &start_ccb->crs; xpt_freeze_devq_rl(path, /*runlevel*/ (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? crs->release_timeout : 0, /*count*/1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_NOOP: if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) xpt_freeze_devq(path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; default: case XPT_SDEV_TYPE: case XPT_TERM_IO: case XPT_ENG_INQ: /* XXX Implement */ printf("%s: CCB type %#x not supported\n", __func__, start_ccb->ccb_h.func_code); start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { xpt_done(start_ccb); } break; } } void xpt_polled_action(union ccb *start_ccb) { u_int32_t timeout; struct cam_sim *sim; struct cam_devq *devq; struct cam_ed *dev; timeout = start_ccb->ccb_h.timeout * 10; sim = start_ccb->ccb_h.path->bus->sim; devq = sim->devq; dev = start_ccb->ccb_h.path->device; mtx_assert(sim->mtx, MA_OWNED); /* Don't use ISR for this SIM while polling. */ sim->flags |= CAM_SIM_POLLED; /* * Steal an opening so that no other queued requests * can get it before us while we simulate interrupts. */ dev->ccbq.devq_openings--; dev->ccbq.dev_openings--; while(((devq != NULL && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0) && (--timeout > 0)) { DELAY(100); (*(sim->sim_poll))(sim); camisr_runqueue(&sim->sim_doneq); } dev->ccbq.devq_openings++; dev->ccbq.dev_openings++; if (timeout != 0) { xpt_action(start_ccb); while(--timeout > 0) { (*(sim->sim_poll))(sim); camisr_runqueue(&sim->sim_doneq); if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; DELAY(100); } if (timeout == 0) { /* * XXX Is it worth adding a sim_timeout entry * point so we can attempt recovery? If * this is only used for dumps, I don't think * it is. */ start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; } } else { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } /* We will use CAM ISR for this SIM again. */ sim->flags &= ~CAM_SIM_POLLED; } /* * Schedule a peripheral driver to receive a ccb when it's * target device has space for more transactions. */ void xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) { struct cam_ed *device; int runq = 0; mtx_assert(perph->sim->mtx, MA_OWNED); CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); device = perph->path->device; if (periph_is_queued(perph)) { /* Simply reorder based on new priority */ CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, (" change priority to %d\n", new_priority)); if (new_priority < perph->pinfo.priority) { camq_change_priority(&device->drvq, perph->pinfo.index, new_priority); runq = xpt_schedule_dev_allocq(perph->path->bus, device); } } else { /* New entry on the queue */ CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, (" added periph to queue\n")); perph->pinfo.priority = new_priority; perph->pinfo.generation = ++device->drvq.generation; camq_insert(&device->drvq, &perph->pinfo); runq = xpt_schedule_dev_allocq(perph->path->bus, device); } if (runq != 0) { CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, (" calling xpt_run_devq\n")); xpt_run_dev_allocq(perph->path->bus); } } /* * Schedule a device to run on a given queue. * If the device was inserted as a new entry on the queue, * return 1 meaning the device queue should be run. If we * were already queued, implying someone else has already * started the queue, return 0 so the caller doesn't attempt * to run the queue. */ int xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, u_int32_t new_priority) { int retval; u_int32_t old_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); old_priority = pinfo->priority; /* * Are we already queued? */ if (pinfo->index != CAM_UNQUEUED_INDEX) { /* Simply reorder based on new priority */ if (new_priority < old_priority) { camq_change_priority(queue, pinfo->index, new_priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("changed priority to %d\n", new_priority)); retval = 1; } else retval = 0; } else { /* New entry on the queue */ if (new_priority < old_priority) pinfo->priority = new_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("Inserting onto queue\n")); pinfo->generation = ++queue->generation; camq_insert(queue, pinfo); retval = 1; } return (retval); } static void xpt_run_dev_allocq(struct cam_eb *bus) { struct cam_devq *devq; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); devq = bus->sim->devq; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, (" qfrozen_cnt == 0x%x, entries == %d, " "openings == %d, active == %d\n", devq->alloc_queue.qfrozen_cnt[0], devq->alloc_queue.entries, devq->alloc_openings, devq->alloc_active)); devq->alloc_queue.qfrozen_cnt[0]++; while ((devq->alloc_queue.entries > 0) && (devq->alloc_openings > 0) && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { struct cam_ed_qinfo *qinfo; struct cam_ed *device; union ccb *work_ccb; struct cam_periph *drv; struct camq *drvq; qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, CAMQ_HEAD); device = qinfo->device; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); drvq = &device->drvq; KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " "Device on queue without any work to do")); if ((work_ccb = xpt_get_ccb(device)) != NULL) { devq->alloc_openings--; devq->alloc_active++; drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); xpt_setup_ccb(&work_ccb->ccb_h, drv->path, drv->pinfo.priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("calling periph start\n")); drv->periph_start(drv, work_ccb); } else { /* * Malloc failure in alloc_ccb */ /* * XXX add us to a list to be run from free_ccb * if we don't have any ccbs active on this * device queue otherwise we may never get run * again. */ break; } /* We may have more work. Attempt to reschedule. */ xpt_schedule_dev_allocq(bus, device); } devq->alloc_queue.qfrozen_cnt[0]--; } static void xpt_run_dev_sendq(struct cam_eb *bus) { struct cam_devq *devq; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); devq = bus->sim->devq; devq->send_queue.qfrozen_cnt[0]++; while ((devq->send_queue.entries > 0) && (devq->send_openings > 0) && (devq->send_queue.qfrozen_cnt[0] <= 1)) { struct cam_ed_qinfo *qinfo; struct cam_ed *device; union ccb *work_ccb; struct cam_sim *sim; qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, CAMQ_HEAD); device = qinfo->device; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); if (work_ccb == NULL) { printf("device on run queue with no ccbs???\n"); continue; } if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { mtx_lock(&xsoftc.xpt_lock); if (xsoftc.num_highpower <= 0) { /* * We got a high power command, but we * don't have any available slots. Freeze * the device queue until we have a slot * available. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); STAILQ_INSERT_TAIL(&xsoftc.highpowerq, &work_ccb->ccb_h, xpt_links.stqe); mtx_unlock(&xsoftc.xpt_lock); continue; } else { /* * Consume a high power slot while * this ccb runs. */ xsoftc.num_highpower--; } mtx_unlock(&xsoftc.xpt_lock); } cam_ccbq_remove_ccb(&device->ccbq, work_ccb); cam_ccbq_send_ccb(&device->ccbq, work_ccb); devq->send_openings--; devq->send_active++; xpt_schedule_dev_sendq(bus, device); if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ /* * The client wants to freeze the queue * after this CCB is sent. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); } /* In Target mode, the peripheral driver knows best... */ if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { if ((device->inq_flags & SID_CmdQue) != 0 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; else /* * Clear this in case of a retried CCB that * failed due to a rejected tag. */ work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; } /* * Device queues can be shared among multiple sim instances * that reside on different busses. Use the SIM in the queue * CCB's path, rather than the one in the bus that was passed * into this function. */ sim = work_ccb->ccb_h.path->bus->sim; (*(sim->sim_action))(sim, work_ccb); } devq->send_queue.qfrozen_cnt[0]--; } /* * This function merges stuff from the slave ccb into the master ccb, while * keeping important fields in the master ccb constant. */ void xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) { /* * Pull fields that are valid for peripheral drivers to set * into the master CCB along with the CCB "payload". */ master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); } void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); ccb_h->pinfo.priority = priority; ccb_h->path = path; ccb_h->path_id = path->bus->path_id; if (path->target) ccb_h->target_id = path->target->target_id; else ccb_h->target_id = CAM_TARGET_WILDCARD; if (path->device) { ccb_h->target_lun = path->device->lun_id; ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; } else { ccb_h->target_lun = CAM_TARGET_WILDCARD; } ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; ccb_h->flags = 0; } /* Path manipulation functions */ cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; cam_status status; path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); if (path == NULL) { status = CAM_RESRC_UNAVAIL; return(status); } status = xpt_compile_path(path, perph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) { free(path, M_CAMXPT); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *periph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; struct cam_eb *bus = NULL; cam_status status; int need_unlock = 0; path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); if (path_id != CAM_BUS_WILDCARD) { bus = xpt_find_bus(path_id); if (bus != NULL) { need_unlock = 1; CAM_SIM_LOCK(bus->sim); } } status = xpt_compile_path(path, periph, path_id, target_id, lun_id); if (need_unlock) { CAM_SIM_UNLOCK(bus->sim); xpt_release_bus(bus); } if (status != CAM_REQ_CMP) { free(path, M_CAMXPT); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; cam_status status; status = CAM_REQ_CMP; /* Completed without error */ target = NULL; /* Wildcarded */ device = NULL; /* Wildcarded */ /* * We will potentially modify the EDT, so block interrupts * that may attempt to create cam paths. */ bus = xpt_find_bus(path_id); if (bus == NULL) { status = CAM_PATH_INVALID; } else { target = xpt_find_target(bus, target_id); if (target == NULL) { /* Create one */ struct cam_et *new_target; new_target = xpt_alloc_target(bus, target_id); if (new_target == NULL) { status = CAM_RESRC_UNAVAIL; } else { target = new_target; } } if (target != NULL) { device = xpt_find_device(target, lun_id); if (device == NULL) { /* Create one */ struct cam_ed *new_device; new_device = (*(bus->xport->alloc_device))(bus, target, lun_id); if (new_device == NULL) { status = CAM_RESRC_UNAVAIL; } else { device = new_device; } } } } /* * Only touch the user's data if we are successful. */ if (status == CAM_REQ_CMP) { new_path->periph = perph; new_path->bus = bus; new_path->target = target; new_path->device = device; CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); } else { if (device != NULL) xpt_release_device(device); if (target != NULL) xpt_release_target(target); if (bus != NULL) xpt_release_bus(bus); } return (status); } void xpt_release_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); if (path->device != NULL) { xpt_release_device(path->device); path->device = NULL; } if (path->target != NULL) { xpt_release_target(path->target); path->target = NULL; } if (path->bus != NULL) { xpt_release_bus(path->bus); path->bus = NULL; } } void xpt_free_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); xpt_release_path(path); free(path, M_CAMXPT); } void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) { mtx_lock(&xsoftc.xpt_topo_lock); if (bus_ref) { if (path->bus) *bus_ref = path->bus->refcount; else *bus_ref = 0; } mtx_unlock(&xsoftc.xpt_topo_lock); if (periph_ref) { if (path->periph) *periph_ref = path->periph->refcount; else *periph_ref = 0; } if (target_ref) { if (path->target) *target_ref = path->target->refcount; else *target_ref = 0; } if (device_ref) { if (path->device) *device_ref = path->device->refcount; else *device_ref = 0; } } /* * Return -1 for failure, 0 for exact match, 1 for match with wildcards * in path1, 2 for match with wildcards in path2. */ int xpt_path_comp(struct cam_path *path1, struct cam_path *path2) { int retval = 0; if (path1->bus != path2->bus) { if (path1->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (path2->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path1->target != path2->target) { if (path1->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path1->device != path2->device) { if (path1->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->device->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } void xpt_print_path(struct cam_path *path) { if (path == NULL) printf("(nopath): "); else { if (path->periph != NULL) printf("(%s%d:", path->periph->periph_name, path->periph->unit_number); else printf("(noperiph:"); if (path->bus != NULL) printf("%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else printf("nobus:"); if (path->target != NULL) printf("%d:", path->target->target_id); else printf("X:"); if (path->device != NULL) printf("%d): ", path->device->lun_id); else printf("X): "); } } void xpt_print(struct cam_path *path, const char *fmt, ...) { va_list ap; xpt_print_path(path); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } int xpt_path_string(struct cam_path *path, char *str, size_t str_len) { struct sbuf sb; #ifdef INVARIANTS if (path != NULL && path->bus != NULL) mtx_assert(path->bus->sim->mtx, MA_OWNED); #endif sbuf_new(&sb, str, str_len, 0); if (path == NULL) sbuf_printf(&sb, "(nopath): "); else { if (path->periph != NULL) sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, path->periph->unit_number); else sbuf_printf(&sb, "(noperiph:"); if (path->bus != NULL) sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else sbuf_printf(&sb, "nobus:"); if (path->target != NULL) sbuf_printf(&sb, "%d:", path->target->target_id); else sbuf_printf(&sb, "X:"); if (path->device != NULL) sbuf_printf(&sb, "%d): ", path->device->lun_id); else sbuf_printf(&sb, "X): "); } sbuf_finish(&sb); return(sbuf_len(&sb)); } path_id_t xpt_path_path_id(struct cam_path *path) { return(path->bus->path_id); } target_id_t xpt_path_target_id(struct cam_path *path) { if (path->target != NULL) return (path->target->target_id); else return (CAM_TARGET_WILDCARD); } lun_id_t xpt_path_lun_id(struct cam_path *path) { if (path->device != NULL) return (path->device->lun_id); else return (CAM_LUN_WILDCARD); } struct cam_sim * xpt_path_sim(struct cam_path *path) { return (path->bus->sim); } struct cam_periph* xpt_path_periph(struct cam_path *path) { mtx_assert(path->bus->sim->mtx, MA_OWNED); return (path->periph); } int xpt_path_legacy_ata_id(struct cam_path *path) { struct cam_eb *bus; int bus_id; if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && strcmp(path->bus->sim->sim_name, "ahcich") != 0 && strcmp(path->bus->sim->sim_name, "mvsch") != 0 && strcmp(path->bus->sim->sim_name, "siisch") != 0) return (-1); if (strcmp(path->bus->sim->sim_name, "ata") == 0 && path->bus->sim->unit_number < 2) { bus_id = path->bus->sim->unit_number; } else { bus_id = 2; xpt_lock_buses(); TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { if (bus == path->bus) break; if ((strcmp(bus->sim->sim_name, "ata") == 0 && bus->sim->unit_number >= 2) || strcmp(bus->sim->sim_name, "ahcich") == 0 || strcmp(bus->sim->sim_name, "mvsch") == 0 || strcmp(bus->sim->sim_name, "siisch") == 0) bus_id++; } xpt_unlock_buses(); } if (path->target != NULL) { if (path->target->target_id < 2) return (bus_id * 2 + path->target->target_id); else return (-1); } else return (bus_id * 2); } /* * Release a CAM control block for the caller. Remit the cost of the structure * to the device referenced by the path. If the this device had no 'credits' * and peripheral drivers have registered async callbacks for this notification * call them now. */ void xpt_release_ccb(union ccb *free_ccb) { struct cam_path *path; struct cam_ed *device; struct cam_eb *bus; struct cam_sim *sim; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); path = free_ccb->ccb_h.path; device = path->device; bus = path->bus; sim = bus->sim; mtx_assert(sim->mtx, MA_OWNED); cam_ccbq_release_opening(&device->ccbq); if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; cam_ccbq_resize(&device->ccbq, device->ccbq.dev_openings + device->ccbq.dev_active); } if (sim->ccb_count > sim->max_ccbs) { xpt_free_ccb(free_ccb); sim->ccb_count--; } else { SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); } if (sim->devq == NULL) { return; } sim->devq->alloc_openings++; sim->devq->alloc_active--; if (device_is_alloc_queued(device) == 0) xpt_schedule_dev_allocq(bus, device); xpt_run_dev_allocq(bus); } /* Functions accessed by SIM drivers */ static struct xpt_xport xport_default = { .alloc_device = xpt_alloc_device_default, .action = xpt_action_default, .async = xpt_dev_async_default, }; /* * A sim structure, listing the SIM entry points and instance * identification info is passed to xpt_bus_register to hook the SIM * into the CAM framework. xpt_bus_register creates a cam_eb entry * for this new bus and places it in the array of busses and assigns * it a path_id. The path_id may be influenced by "hard wiring" * information specified by the user. Once interrupt services are * available, the bus will be probed. */ int32_t xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) { struct cam_eb *new_bus; struct cam_eb *old_bus; struct ccb_pathinq cpi; struct cam_path *path; cam_status status; mtx_assert(sim->mtx, MA_OWNED); sim->bus_id = bus; new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), M_CAMXPT, M_NOWAIT); if (new_bus == NULL) { /* Couldn't satisfy request */ return (CAM_RESRC_UNAVAIL); } path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); if (path == NULL) { free(new_bus, M_CAMXPT); return (CAM_RESRC_UNAVAIL); } if (strcmp(sim->sim_name, "xpt") != 0) { sim->path_id = xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); } TAILQ_INIT(&new_bus->et_entries); new_bus->path_id = sim->path_id; cam_sim_hold(sim); new_bus->sim = sim; timevalclear(&new_bus->last_reset); new_bus->flags = 0; new_bus->refcount = 1; /* Held until a bus_deregister event */ new_bus->generation = 0; mtx_lock(&xsoftc.xpt_topo_lock); old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); while (old_bus != NULL && old_bus->path_id < new_bus->path_id) old_bus = TAILQ_NEXT(old_bus, links); if (old_bus != NULL) TAILQ_INSERT_BEFORE(old_bus, new_bus, links); else TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); xsoftc.bus_generation++; mtx_unlock(&xsoftc.xpt_topo_lock); /* * Set a default transport so that a PATH_INQ can be issued to * the SIM. This will then allow for probing and attaching of * a more appropriate transport. */ new_bus->xport = &xport_default; status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) printf("xpt_compile_path returned %d\n", status); xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status == CAM_REQ_CMP) { switch (cpi.transport) { case XPORT_SPI: case XPORT_SAS: case XPORT_FC: case XPORT_USB: case XPORT_ISCSI: case XPORT_PPB: new_bus->xport = scsi_get_xport(); break; case XPORT_ATA: case XPORT_SATA: new_bus->xport = ata_get_xport(); break; default: new_bus->xport = &xport_default; break; } } /* Notify interested parties */ if (sim->path_id != CAM_XPT_PATH_ID) { union ccb *scan_ccb; xpt_async(AC_PATH_REGISTERED, path, &cpi); /* Initiate bus rescan. */ scan_ccb = xpt_alloc_ccb_nowait(); scan_ccb->ccb_h.path = path; scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else xpt_free_path(path); return (CAM_SUCCESS); } int32_t xpt_bus_deregister(path_id_t pathid) { struct cam_path bus_path; cam_status status; status = xpt_compile_path(&bus_path, NULL, pathid, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_async(AC_LOST_DEVICE, &bus_path, NULL); xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); /* Release the reference count held while registered. */ xpt_release_bus(bus_path.bus); xpt_release_path(&bus_path); return (CAM_REQ_CMP); } static path_id_t xptnextfreepathid(void) { struct cam_eb *bus; path_id_t pathid; const char *strval; pathid = 0; mtx_lock(&xsoftc.xpt_topo_lock); bus = TAILQ_FIRST(&xsoftc.xpt_busses); retry: /* Find an unoccupied pathid */ while (bus != NULL && bus->path_id <= pathid) { if (bus->path_id == pathid) pathid++; bus = TAILQ_NEXT(bus, links); } mtx_unlock(&xsoftc.xpt_topo_lock); /* * Ensure that this pathid is not reserved for * a bus that may be registered in the future. */ if (resource_string_value("scbus", pathid, "at", &strval) == 0) { ++pathid; /* Start the search over */ mtx_lock(&xsoftc.xpt_topo_lock); goto retry; } return (pathid); } static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus) { path_id_t pathid; int i, dunit, val; char buf[32]; const char *dname; pathid = CAM_XPT_PATH_ID; snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { if (strcmp(dname, "scbus")) { /* Avoid a bit of foot shooting. */ continue; } if (dunit < 0) /* unwired?! */ continue; if (resource_int_value("scbus", dunit, "bus", &val) == 0) { if (sim_bus == val) { pathid = dunit; break; } } else if (sim_bus == 0) { /* Unspecified matches bus 0 */ pathid = dunit; break; } else { printf("Ambiguous scbus configuration for %s%d " "bus %d, cannot wire down. The kernel " "config entry for scbus%d should " "specify a controller bus.\n" "Scbus will be assigned dynamically.\n", sim_name, sim_unit, sim_bus, dunit); break; } } if (pathid == CAM_XPT_PATH_ID) pathid = xptnextfreepathid(); return (pathid); } static const char * xpt_async_string(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return ("AC_BUS_RESET"); case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); case AC_SCSI_AEN: return ("AC_SCSI_AEN"); case AC_SENT_BDR: return ("AC_SENT_BDR"); case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); case AC_CONTRACT: return ("AC_CONTRACT"); case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); } return ("AC_UNKNOWN"); } void xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) { struct cam_eb *bus; struct cam_et *target, *next_target; struct cam_ed *device, *next_device; mtx_assert(path->bus->sim->mtx, MA_OWNED); CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, ("xpt_async(%s)\n", xpt_async_string(async_code))); /* * Most async events come from a CAM interrupt context. In * a few cases, the error recovery code at the peripheral layer, * which may run from our SWI or a process context, may signal * deferred events with a call to xpt_async. */ bus = path->bus; if (async_code == AC_BUS_RESET) { /* Update our notion of when the last reset occurred */ microtime(&bus->last_reset); } for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = next_target) { next_target = TAILQ_NEXT(target, links); if (path->target != target && path->target->target_id != CAM_TARGET_WILDCARD && target->target_id != CAM_TARGET_WILDCARD) continue; if (async_code == AC_SENT_BDR) { /* Update our notion of when the last reset occurred */ microtime(&path->target->last_reset); } for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = next_device) { next_device = TAILQ_NEXT(device, links); if (path->device != device && path->device->lun_id != CAM_LUN_WILDCARD && device->lun_id != CAM_LUN_WILDCARD) continue; /* * The async callback could free the device. * If it is a broadcast async, it doesn't hold * device reference, so take our own reference. */ xpt_acquire_device(device); (*(bus->xport->async))(async_code, bus, target, device, async_arg); xpt_async_bcast(&device->asyncs, async_code, path, async_arg); xpt_release_device(device); } } /* * If this wasn't a fully wildcarded async, tell all * clients that want all async events. */ if (bus != xpt_periph->path->bus) xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, path, async_arg); } static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg) { struct async_node *cur_entry; cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { struct async_node *next_entry; /* * Grab the next list entry before we call the current * entry's callback. This is because the callback function * can delete its async callback entry. */ next_entry = SLIST_NEXT(cur_entry, links); if ((cur_entry->event_enable & async_code) != 0) cur_entry->callback(cur_entry->callback_arg, async_code, path, async_arg); cur_entry = next_entry; } } static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { printf("%s called\n", __func__); } u_int32_t xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) { struct cam_ed *dev = path->device; mtx_assert(path->bus->sim->mtx, MA_OWNED); dev->sim->devq->alloc_openings += cam_ccbq_freeze(&dev->ccbq, rl, count); /* Remove frozen device from allocq. */ if (device_is_alloc_queued(dev) && cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( CAMQ_GET_PRIO(&dev->drvq)))) { camq_remove(&dev->sim->devq->alloc_queue, dev->alloc_ccb_entry.pinfo.index); } /* Remove frozen device from sendq. */ if (device_is_send_queued(dev) && cam_ccbq_frozen_top(&dev->ccbq)) { camq_remove(&dev->sim->devq->send_queue, dev->send_ccb_entry.pinfo.index); } return (dev->ccbq.queue.qfrozen_cnt[rl]); } u_int32_t xpt_freeze_devq(struct cam_path *path, u_int count) { return (xpt_freeze_devq_rl(path, 0, count)); } u_int32_t xpt_freeze_simq(struct cam_sim *sim, u_int count) { mtx_assert(sim->mtx, MA_OWNED); sim->devq->send_queue.qfrozen_cnt[0] += count; return (sim->devq->send_queue.qfrozen_cnt[0]); } static void xpt_release_devq_timeout(void *arg) { struct cam_ed *device; device = (struct cam_ed *)arg; xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); } void xpt_release_devq(struct cam_path *path, u_int count, int run_queue) { mtx_assert(path->bus->sim->mtx, MA_OWNED); xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); } void xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) { mtx_assert(path->bus->sim->mtx, MA_OWNED); xpt_release_devq_device(path->device, rl, count, run_queue); } static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) { if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { #ifdef INVARIANTS printf("xpt_release_devq(%d): requested %u > present %u\n", rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); #endif count = dev->ccbq.queue.qfrozen_cnt[rl]; } dev->sim->devq->alloc_openings -= cam_ccbq_release(&dev->ccbq, rl, count); if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( CAMQ_GET_PRIO(&dev->drvq))) == 0) { if (xpt_schedule_dev_allocq(dev->target->bus, dev)) xpt_run_dev_allocq(dev->target->bus); } if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { /* * No longer need to wait for a successful * command completion. */ dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; /* * Remove any timeouts that might be scheduled * to release this queue. */ if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { callout_stop(&dev->callout); dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; } if (run_queue == 0) return; /* * Now that we are unfrozen schedule the * device so any pending transactions are * run. */ if (xpt_schedule_dev_sendq(dev->target->bus, dev)) xpt_run_dev_sendq(dev->target->bus); } } void xpt_release_simq(struct cam_sim *sim, int run_queue) { struct camq *sendq; mtx_assert(sim->mtx, MA_OWNED); sendq = &(sim->devq->send_queue); if (sendq->qfrozen_cnt[0] <= 0) { #ifdef INVARIANTS printf("xpt_release_simq: requested 1 > present %u\n", sendq->qfrozen_cnt[0]); #endif } else sendq->qfrozen_cnt[0]--; if (sendq->qfrozen_cnt[0] == 0) { /* * If there is a timeout scheduled to release this * sim queue, remove it. The queue frozen count is * already at 0. */ if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ callout_stop(&sim->callout); sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; } if (run_queue) { struct cam_eb *bus; /* * Now that we are unfrozen run the send queue. */ bus = xpt_find_bus(sim->path_id); xpt_run_dev_sendq(bus); xpt_release_bus(bus); } } } /* * XXX Appears to be unused. */ static void xpt_release_simq_timeout(void *arg) { struct cam_sim *sim; sim = (struct cam_sim *)arg; xpt_release_simq(sim, /* run_queue */ TRUE); } void xpt_done(union ccb *done_ccb) { struct cam_sim *sim; int first; CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { /* * Queue up the request for handling by our SWI handler * any of the "non-immediate" type of ccbs. */ sim = done_ccb->ccb_h.path->bus->sim; TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, sim_links.tqe); done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | CAM_SIM_BATCH)) == 0) { mtx_lock(&cam_simq_lock); first = TAILQ_EMPTY(&cam_simq); TAILQ_INSERT_TAIL(&cam_simq, sim, links); mtx_unlock(&cam_simq_lock); sim->flags |= CAM_SIM_ON_DONEQ; if (first) swi_sched(cambio_ih, 0); } } } void xpt_batch_start(struct cam_sim *sim) { KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); sim->flags |= CAM_SIM_BATCH; } void xpt_batch_done(struct cam_sim *sim) { KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); sim->flags &= ~CAM_SIM_BATCH; if (!TAILQ_EMPTY(&sim->sim_doneq) && (sim->flags & CAM_SIM_ON_DONEQ) == 0) camisr_runqueue(&sim->sim_doneq); } union ccb * xpt_alloc_ccb() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); return (new_ccb); } union ccb * xpt_alloc_ccb_nowait() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); return (new_ccb); } void xpt_free_ccb(union ccb *free_ccb) { free(free_ccb, M_CAMXPT); } /* Private XPT functions */ /* * Get a CAM control block for the caller. Charge the structure to the device * referenced by the path. If the this device has no 'credits' then the * device already has the maximum number of outstanding operations under way * and we return NULL. If we don't have sufficient resources to allocate more * ccbs, we also return NULL. */ static union ccb * xpt_get_ccb(struct cam_ed *device) { union ccb *new_ccb; struct cam_sim *sim; sim = device->sim; if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { new_ccb = xpt_alloc_ccb_nowait(); if (new_ccb == NULL) { return (NULL); } if ((sim->flags & CAM_SIM_MPSAFE) == 0) callout_handle_init(&new_ccb->ccb_h.timeout_ch); SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, xpt_links.sle); sim->ccb_count++; } cam_ccbq_take_opening(&device->ccbq); SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); return (new_ccb); } static void xpt_release_bus(struct cam_eb *bus) { mtx_lock(&xsoftc.xpt_topo_lock); KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); if ((--bus->refcount == 0) && (TAILQ_FIRST(&bus->et_entries) == NULL)) { TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); xsoftc.bus_generation++; mtx_unlock(&xsoftc.xpt_topo_lock); cam_sim_release(bus->sim); free(bus, M_CAMXPT); } else mtx_unlock(&xsoftc.xpt_topo_lock); } static struct cam_et * xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT|M_ZERO); if (target != NULL) { struct cam_et *cur_target; TAILQ_INIT(&target->ed_entries); target->bus = bus; target->target_id = target_id; target->refcount = 1; target->generation = 0; target->luns = NULL; timevalclear(&target->last_reset); /* * Hold a reference to our parent bus so it * will not go away before we do. */ mtx_lock(&xsoftc.xpt_topo_lock); bus->refcount++; mtx_unlock(&xsoftc.xpt_topo_lock); /* Insertion sort into our bus's target list */ cur_target = TAILQ_FIRST(&bus->et_entries); while (cur_target != NULL && cur_target->target_id < target_id) cur_target = TAILQ_NEXT(cur_target, links); if (cur_target != NULL) { TAILQ_INSERT_BEFORE(cur_target, target, links); } else { TAILQ_INSERT_TAIL(&bus->et_entries, target, links); } bus->generation++; } return (target); } static void xpt_release_target(struct cam_et *target) { if (target->refcount == 1) { if (TAILQ_FIRST(&target->ed_entries) == NULL) { TAILQ_REMOVE(&target->bus->et_entries, target, links); target->bus->generation++; xpt_release_bus(target->bus); if (target->luns) free(target->luns, M_CAMXPT); free(target, M_CAMXPT); } } else target->refcount--; } static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device, *cur_device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); device->mintags = 1; device->maxtags = 1; bus->sim->max_ccbs += device->ccbq.devq_openings; cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) { TAILQ_INSERT_BEFORE(cur_device, device, links); } else { TAILQ_INSERT_TAIL(&target->ed_entries, device, links); } target->generation++; return (device); } struct cam_ed * xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; struct cam_devq *devq; cam_status status; /* Make space for us in the device queue on our bus */ devq = bus->sim->devq; status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); if (status != CAM_REQ_CMP) { device = NULL; } else { device = (struct cam_ed *)malloc(sizeof(*device), M_CAMXPT, M_NOWAIT|M_ZERO); } if (device != NULL) { cam_init_pinfo(&device->alloc_ccb_entry.pinfo); device->alloc_ccb_entry.device = device; cam_init_pinfo(&device->send_ccb_entry.pinfo); device->send_ccb_entry.device = device; device->target = target; device->lun_id = lun_id; device->sim = bus->sim; /* Initialize our queues */ if (camq_init(&device->drvq, 0) != 0) { free(device, M_CAMXPT); return (NULL); } if (cam_ccbq_init(&device->ccbq, bus->sim->max_dev_openings) != 0) { camq_fini(&device->drvq); free(device, M_CAMXPT); return (NULL); } SLIST_INIT(&device->asyncs); SLIST_INIT(&device->periphs); device->generation = 0; device->owner = NULL; device->flags = CAM_DEV_UNCONFIGURED; device->tag_delay_count = 0; device->tag_saved_openings = 0; device->refcount = 1; callout_init_mtx(&device->callout, bus->sim->mtx, 0); /* * Hold a reference to our parent target so it * will not go away before we do. */ target->refcount++; } return (device); } void xpt_acquire_device(struct cam_ed *device) { device->refcount++; } void xpt_release_device(struct cam_ed *device) { if (device->refcount == 1) { struct cam_devq *devq; if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) panic("Removing device while still queued for ccbs"); if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) callout_stop(&device->callout); TAILQ_REMOVE(&device->target->ed_entries, device,links); device->target->generation++; device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; /* Release our slot in the devq */ devq = device->target->bus->sim->devq; cam_devq_resize(devq, devq->alloc_queue.array_size - 1); camq_fini(&device->drvq); cam_ccbq_fini(&device->ccbq); xpt_release_target(device->target); free(device, M_CAMXPT); } else device->refcount--; } u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) { int diff; int result; struct cam_ed *dev; dev = path->device; diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); result = cam_ccbq_resize(&dev->ccbq, newopenings); if (result == CAM_REQ_CMP && (diff < 0)) { dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; } if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (dev->inq_flags & SID_CmdQue) != 0) dev->tag_saved_openings = newopenings; /* Adjust the global limit */ dev->sim->max_ccbs += diff; return (result); } static struct cam_eb * xpt_find_bus(path_id_t path_id) { struct cam_eb *bus; mtx_lock(&xsoftc.xpt_topo_lock); for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); bus != NULL; bus = TAILQ_NEXT(bus, links)) { if (bus->path_id == path_id) { bus->refcount++; break; } } mtx_unlock(&xsoftc.xpt_topo_lock); return (bus); } static struct cam_et * xpt_find_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = TAILQ_NEXT(target, links)) { if (target->target_id == target_id) { target->refcount++; break; } } return (target); } static struct cam_ed * xpt_find_device(struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = TAILQ_NEXT(device, links)) { if (device->lun_id == lun_id) { device->refcount++; break; } } return (device); } void xpt_start_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; int newopenings; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; xpt_freeze_devq(path, /*count*/1); device->inq_flags |= SID_CmdQue; if (device->tag_saved_openings != 0) newopenings = device->tag_saved_openings; else newopenings = min(device->maxtags, sim->max_tagged_dev_openings); xpt_dev_ccbq_resize(path, newopenings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } void xpt_stop_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; device->tag_delay_count = 0; xpt_freeze_devq(path, /*count*/1); device->inq_flags &= ~SID_CmdQue; xpt_dev_ccbq_resize(path, sim->max_dev_openings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } static void xpt_boot_delay(void *arg) { xpt_release_boot(); } static void xpt_config(void *arg) { /* * Now that interrupts are enabled, go find our devices */ /* Setup debugging path */ if (cam_dflags != CAM_DEBUG_NONE) { /* * Locking is specifically omitted here. No SIMs have * registered yet, so xpt_create_path will only be searching * empty lists of targets and devices. */ if (xpt_create_path(&cam_dpath, xpt_periph, CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN) != CAM_REQ_CMP) { printf("xpt_config: xpt_create_path() failed for debug" " target %d:%d:%d, debugging disabled\n", CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); cam_dflags = CAM_DEBUG_NONE; } } else cam_dpath = NULL; periphdriver_init(1); xpt_hold_boot(); callout_init(&xsoftc.boot_callout, 1); callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, xpt_boot_delay, NULL); /* Fire up rescan thread. */ if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { printf("xpt_config: failed to create rescan thread.\n"); } } void xpt_hold_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config++; xpt_unlock_buses(); } void xpt_release_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config--; if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { struct xpt_task *task; xsoftc.buses_config_done = 1; xpt_unlock_buses(); /* Call manually because we don't have any busses */ task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); if (task != NULL) { TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); taskqueue_enqueue(taskqueue_thread, &task->task); } } else xpt_unlock_buses(); } /* * If the given device only has one peripheral attached to it, and if that * peripheral is the passthrough driver, announce it. This insures that the * user sees some sort of announcement for every peripheral in their system. */ static int xptpassannouncefunc(struct cam_ed *device, void *arg) { struct cam_periph *periph; int i; for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++); periph = SLIST_FIRST(&device->periphs); if ((i == 1) && (strncmp(periph->periph_name, "pass", 4) == 0)) xpt_announce_periph(periph, NULL); return(1); } static void xpt_finishconfig_task(void *context, int pending) { periphdriver_init(2); /* * Check for devices with no "standard" peripheral driver * attached. For any devices like that, announce the * passthrough driver so the user will see something. */ if (!bootverbose) xpt_for_all_devices(xptpassannouncefunc, NULL); /* Release our hook so that the boot can continue. */ config_intrhook_disestablish(xsoftc.xpt_config_hook); free(xsoftc.xpt_config_hook, M_CAMXPT); xsoftc.xpt_config_hook = NULL; free(context, M_CAMXPT); } cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path) { struct ccb_setasync csa; cam_status status; int xptpath = 0; if (path == NULL) { mtx_lock(&xsoftc.xpt_lock); status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { mtx_unlock(&xsoftc.xpt_lock); return (status); } xptpath = 1; } xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = event; csa.callback = cbfunc; csa.callback_arg = cbarg; xpt_action((union ccb *)&csa); status = csa.ccb_h.status; if (xptpath) { xpt_free_path(path); mtx_unlock(&xsoftc.xpt_lock); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_FOUND_DEVICE)) { /* * Get this peripheral up to date with all * the currently existing devices. */ xpt_for_all_devices(xptsetasyncfunc, &csa); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_PATH_REGISTERED)) { /* * Get this peripheral up to date with all * the currently existing busses. */ xpt_for_all_busses(xptsetasyncbusfunc, &csa); } return (status); } static void xptaction(struct cam_sim *sim, union ccb *work_ccb) { CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); switch (work_ccb->ccb_h.func_code) { /* Common cases first */ case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi; cpi = &work_ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "", HBA_IDLEN); strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); cpi->unit_number = sim->unit_number; cpi->bus_id = sim->bus_id; cpi->base_transfer_speed = 0; cpi->protocol = PROTO_UNSPECIFIED; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->transport = XPORT_UNSPECIFIED; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(work_ccb); break; } default: work_ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(work_ccb); break; } } /* * The xpt as a "controller" has no interrupt sources, so polling * is a no-op. */ static void xptpoll(struct cam_sim *sim) { } void xpt_lock_buses(void) { mtx_lock(&xsoftc.xpt_topo_lock); } void xpt_unlock_buses(void) { mtx_unlock(&xsoftc.xpt_topo_lock); } static void camisr(void *dummy) { cam_simq_t queue; struct cam_sim *sim; mtx_lock(&cam_simq_lock); TAILQ_INIT(&queue); while (!TAILQ_EMPTY(&cam_simq)) { TAILQ_CONCAT(&queue, &cam_simq, links); mtx_unlock(&cam_simq_lock); while ((sim = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, sim, links); CAM_SIM_LOCK(sim); camisr_runqueue(&sim->sim_doneq); sim->flags &= ~CAM_SIM_ON_DONEQ; CAM_SIM_UNLOCK(sim); } mtx_lock(&cam_simq_lock); } mtx_unlock(&cam_simq_lock); } static void camisr_runqueue(void *V_queue) { cam_isrq_t *queue = V_queue; struct ccb_hdr *ccb_h; while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { int runq; TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, ("camisr\n")); runq = FALSE; if (ccb_h->flags & CAM_HIGH_POWER) { struct highpowerlist *hphead; union ccb *send_ccb; mtx_lock(&xsoftc.xpt_lock); hphead = &xsoftc.highpowerq; send_ccb = (union ccb *)STAILQ_FIRST(hphead); /* * Increment the count since this command is done. */ xsoftc.num_highpower++; /* * Any high powered commands queued up? */ if (send_ccb != NULL) { STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); mtx_unlock(&xsoftc.xpt_lock); xpt_release_devq(send_ccb->ccb_h.path, /*count*/1, /*runqueue*/TRUE); } else mtx_unlock(&xsoftc.xpt_lock); } if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { struct cam_ed *dev; dev = ccb_h->path->device; cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); ccb_h->path->bus->sim->devq->send_active--; ccb_h->path->bus->sim->devq->send_openings++; runq = TRUE; if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 && (dev->ccbq.dev_active == 0))) { dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/FALSE); } if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/FALSE); } if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 && (--dev->tag_delay_count == 0)) xpt_start_tags(ccb_h->path); if (!device_is_send_queued(dev)) { (void)xpt_schedule_dev_sendq(ccb_h->path->bus, dev); } } if (ccb_h->status & CAM_RELEASE_SIMQ) { xpt_release_simq(ccb_h->path->bus->sim, /*run_queue*/TRUE); ccb_h->status &= ~CAM_RELEASE_SIMQ; runq = FALSE; } if ((ccb_h->flags & CAM_DEV_QFRZDIS) && (ccb_h->status & CAM_DEV_QFRZN)) { xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); ccb_h->status &= ~CAM_DEV_QFRZN; } else if (runq) { xpt_run_dev_sendq(ccb_h->path->bus); } /* Call the peripheral driver's callback */ (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); } }