Current Path : /compat/linux/proc/self/root/usr/src/sys/nfsclient/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/sys/nfsclient/nfs_vnops.c |
/*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/nfsclient/nfs_vnops.c 236096 2012-05-26 13:12:14Z rmacklem $"); /* * vnode op calls for Sun NFS version 2 and 3 */ #include "opt_inet.h" #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/kernel.h> #include <sys/systm.h> #include <sys/resourcevar.h> #include <sys/proc.h> #include <sys/mount.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/jail.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/namei.h> #include <sys/socket.h> #include <sys/vnode.h> #include <sys/dirent.h> #include <sys/fcntl.h> #include <sys/lockf.h> #include <sys/stat.h> #include <sys/sysctl.h> #include <sys/signalvar.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/vm_object.h> #include <fs/fifofs/fifo.h> #include <nfs/nfsproto.h> #include <nfsclient/nfs.h> #include <nfsclient/nfsnode.h> #include <nfsclient/nfsmount.h> #include <nfs/nfs_kdtrace.h> #include <nfs/nfs_lock.h> #include <nfs/xdr_subs.h> #include <nfsclient/nfsm_subs.h> #include <net/if.h> #include <netinet/in.h> #include <netinet/in_var.h> #include <machine/stdarg.h> #ifdef KDTRACE_HOOKS #include <sys/dtrace_bsd.h> dtrace_nfsclient_accesscache_flush_probe_func_t dtrace_nfsclient_accesscache_flush_done_probe; uint32_t nfsclient_accesscache_flush_done_id; dtrace_nfsclient_accesscache_get_probe_func_t dtrace_nfsclient_accesscache_get_hit_probe, dtrace_nfsclient_accesscache_get_miss_probe; uint32_t nfsclient_accesscache_get_hit_id; uint32_t nfsclient_accesscache_get_miss_id; dtrace_nfsclient_accesscache_load_probe_func_t dtrace_nfsclient_accesscache_load_done_probe; uint32_t nfsclient_accesscache_load_done_id; #endif /* !KDTRACE_HOOKS */ /* Defs */ #define TRUE 1 #define FALSE 0 /* * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these * calls are not in getblk() and brelse() so that they would not be necessary * here. */ #ifndef B_VMIO #define vfs_busy_pages(bp, f) #endif static vop_read_t nfsfifo_read; static vop_write_t nfsfifo_write; static vop_close_t nfsfifo_close; static int nfs_flush(struct vnode *, int, int); static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *); static vop_lookup_t nfs_lookup; static vop_create_t nfs_create; static vop_mknod_t nfs_mknod; static vop_open_t nfs_open; static vop_close_t nfs_close; static vop_access_t nfs_access; static vop_getattr_t nfs_getattr; static vop_setattr_t nfs_setattr; static vop_read_t nfs_read; static vop_fsync_t nfs_fsync; static vop_remove_t nfs_remove; static vop_link_t nfs_link; static vop_rename_t nfs_rename; static vop_mkdir_t nfs_mkdir; static vop_rmdir_t nfs_rmdir; static vop_symlink_t nfs_symlink; static vop_readdir_t nfs_readdir; static vop_strategy_t nfs_strategy; static int nfs_lookitup(struct vnode *, const char *, int, struct ucred *, struct thread *, struct nfsnode **); static int nfs_sillyrename(struct vnode *, struct vnode *, struct componentname *); static vop_access_t nfsspec_access; static vop_readlink_t nfs_readlink; static vop_print_t nfs_print; static vop_advlock_t nfs_advlock; static vop_advlockasync_t nfs_advlockasync; /* * Global vfs data structures for nfs */ struct vop_vector nfs_vnodeops = { .vop_default = &default_vnodeops, .vop_access = nfs_access, .vop_advlock = nfs_advlock, .vop_advlockasync = nfs_advlockasync, .vop_close = nfs_close, .vop_create = nfs_create, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_getpages = nfs_getpages, .vop_putpages = nfs_putpages, .vop_inactive = nfs_inactive, .vop_link = nfs_link, .vop_lookup = nfs_lookup, .vop_mkdir = nfs_mkdir, .vop_mknod = nfs_mknod, .vop_open = nfs_open, .vop_print = nfs_print, .vop_read = nfs_read, .vop_readdir = nfs_readdir, .vop_readlink = nfs_readlink, .vop_reclaim = nfs_reclaim, .vop_remove = nfs_remove, .vop_rename = nfs_rename, .vop_rmdir = nfs_rmdir, .vop_setattr = nfs_setattr, .vop_strategy = nfs_strategy, .vop_symlink = nfs_symlink, .vop_write = nfs_write, }; struct vop_vector nfs_fifoops = { .vop_default = &fifo_specops, .vop_access = nfsspec_access, .vop_close = nfsfifo_close, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_inactive = nfs_inactive, .vop_print = nfs_print, .vop_read = nfsfifo_read, .vop_reclaim = nfs_reclaim, .vop_setattr = nfs_setattr, .vop_write = nfsfifo_write, }; static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap); static int nfs_removerpc(struct vnode *dvp, const char *name, int namelen, struct ucred *cred, struct thread *td); static int nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen, struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); static int nfs_renameit(struct vnode *sdvp, struct componentname *scnp, struct sillyrename *sp); /* * Global variables */ struct mtx nfs_iod_mtx; enum nfsiod_state nfs_iodwant[NFS_MAXASYNCDAEMON]; struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON]; int nfs_numasync = 0; #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) SYSCTL_DECL(_vfs_oldnfs); static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); static int nfs_prime_access_cache = 0; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, &nfs_prime_access_cache, 0, "Prime NFS ACCESS cache when fetching attributes"); static int nfsv3_commit_on_close = 0; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW, &nfsv3_commit_on_close, 0, "write+commit on close, else only write"); static int nfs_clean_pages_on_close = 1; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); int nfs_directio_enable = 0; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, &nfs_directio_enable, 0, "Enable NFS directio"); /* * This sysctl allows other processes to mmap a file that has been opened * O_DIRECT by a process. In general, having processes mmap the file while * Direct IO is in progress can lead to Data Inconsistencies. But, we allow * this by default to prevent DoS attacks - to prevent a malicious user from * opening up files O_DIRECT preventing other users from mmap'ing these * files. "Protected" environments where stricter consistency guarantees are * required can disable this knob. The process that opened the file O_DIRECT * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not * meaningful. */ int nfs_directio_allow_mmap = 1; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, &nfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); #if 0 SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); #endif #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \ | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \ | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP) /* * SMP Locking Note : * The list of locks after the description of the lock is the ordering * of other locks acquired with the lock held. * np->n_mtx : Protects the fields in the nfsnode. VM Object Lock VI_MTX (acquired indirectly) * nmp->nm_mtx : Protects the fields in the nfsmount. rep->r_mtx * nfs_iod_mtx : Global lock, protects shared nfsiod state. * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. nmp->nm_mtx rep->r_mtx * rep->r_mtx : Protects the fields in an nfsreq. */ static int nfs3_access_otw(struct vnode *vp, int wmode, struct thread *td, struct ucred *cred, uint32_t *retmode) { const int v3 = 1; u_int32_t *tl; int error = 0, attrflag, i, lrupos; struct mbuf *mreq, *mrep, *md, *mb; caddr_t bpos, dpos; u_int32_t rmode; struct nfsnode *np = VTONFS(vp); nfsstats.rpccnt[NFSPROC_ACCESS]++; mreq = nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED); *tl = txdr_unsigned(wmode); nfsm_request(vp, NFSPROC_ACCESS, td, cred); nfsm_postop_attr(vp, attrflag); if (!error) { lrupos = 0; tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); rmode = fxdr_unsigned(u_int32_t, *tl); mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (np->n_accesscache[i].uid == cred->cr_uid) { np->n_accesscache[i].mode = rmode; np->n_accesscache[i].stamp = time_second; break; } if (i > 0 && np->n_accesscache[i].stamp < np->n_accesscache[lrupos].stamp) lrupos = i; } if (i == NFS_ACCESSCACHESIZE) { np->n_accesscache[lrupos].uid = cred->cr_uid; np->n_accesscache[lrupos].mode = rmode; np->n_accesscache[lrupos].stamp = time_second; } mtx_unlock(&np->n_mtx); if (retmode != NULL) *retmode = rmode; KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); } m_freem(mrep); nfsmout: #ifdef KDTRACE_HOOKS if (error) { KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, error); } #endif return (error); } /* * nfs access vnode op. * For nfs version 2, just return ok. File accesses may fail later. * For nfs version 3, use the access rpc to check accessibility. If file modes * are changed on the server, accesses might still fail later. */ static int nfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; int error = 0, i, gotahit; u_int32_t mode, rmode, wmode; int v3 = NFS_ISV3(vp); struct nfsnode *np = VTONFS(vp); /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * For nfs v3, check to see if we have done this recently, and if * so return our cached result instead of making an ACCESS call. * If not, do an access rpc, otherwise you are stuck emulating * ufs_access() locally using the vattr. This may not be correct, * since the server may apply other access criteria such as * client uid-->server uid mapping that we do not know about. */ if (v3) { if (ap->a_accmode & VREAD) mode = NFSV3ACCESS_READ; else mode = 0; if (vp->v_type != VDIR) { if (ap->a_accmode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND); if (ap->a_accmode & VEXEC) mode |= NFSV3ACCESS_EXECUTE; } else { if (ap->a_accmode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | NFSV3ACCESS_DELETE); if (ap->a_accmode & VEXEC) mode |= NFSV3ACCESS_LOOKUP; } /* XXX safety belt, only make blanket request if caching */ if (nfsaccess_cache_timeout > 0) { wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP; } else { wmode = mode; } /* * Does our cached result allow us to give a definite yes to * this request? */ gotahit = 0; mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { if (time_second < (np->n_accesscache[i].stamp + nfsaccess_cache_timeout) && (np->n_accesscache[i].mode & mode) == mode) { nfsstats.accesscache_hits++; gotahit = 1; } break; } } mtx_unlock(&np->n_mtx); #ifdef KDTRACE_HOOKS if (gotahit) KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, ap->a_cred->cr_uid, mode); else KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, ap->a_cred->cr_uid, mode); #endif if (gotahit == 0) { /* * Either a no, or a don't know. Go to the wire. */ nfsstats.accesscache_misses++; error = nfs3_access_otw(vp, wmode, ap->a_td, ap->a_cred, &rmode); if (!error) { if ((rmode & mode) != mode) error = EACCES; } } return (error); } else { if ((error = nfsspec_access(ap)) != 0) { return (error); } /* * Attempt to prevent a mapped root from accessing a file * which it shouldn't. We try to read a byte from the file * if the user is root and the file is not zero length. * After calling nfsspec_access, we should have the correct * file size cached. */ mtx_lock(&np->n_mtx); if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) && VTONFS(vp)->n_size > 0) { struct iovec aiov; struct uio auio; char buf[1]; mtx_unlock(&np->n_mtx); aiov.iov_base = buf; aiov.iov_len = 1; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = 0; auio.uio_resid = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = ap->a_td; if (vp->v_type == VREG) error = nfs_readrpc(vp, &auio, ap->a_cred); else if (vp->v_type == VDIR) { char* bp; bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); aiov.iov_base = bp; aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; error = nfs_readdirrpc(vp, &auio, ap->a_cred); free(bp, M_TEMP); } else if (vp->v_type == VLNK) error = nfs_readlinkrpc(vp, &auio, ap->a_cred); else error = EACCES; } else mtx_unlock(&np->n_mtx); return (error); } } int nfs_otw_getattr_avoid = 0; /* * nfs open vnode op * Check to see if the type is ok * and that deletion is not in progress. * For paged in text files, you will need to flush the page cache * if consistency is lost. */ /* ARGSUSED */ static int nfs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; int error; int fmode = ap->a_mode; struct ucred *cred; if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) return (EOPNOTSUPP); /* * Get a valid lease. If cached data is stale, flush it. */ mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) return (error); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) return (error); mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; } else { mtx_unlock(&np->n_mtx); error = VOP_GETATTR(vp, &vattr, ap->a_cred); if (error) return (error); mtx_lock(&np->n_mtx); if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { if (vp->v_type == VDIR) np->n_direofoffset = 0; mtx_unlock(&np->n_mtx); error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error == EINTR || error == EIO) { return (error); } mtx_lock(&np->n_mtx); np->n_mtime = vattr.va_mtime; } } /* * If the object has >= 1 O_DIRECT active opens, we disable caching. */ if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { if (np->n_directio_opens == 0) { mtx_unlock(&np->n_mtx); error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); if (error) return (error); mtx_lock(&np->n_mtx); np->n_flag |= NNONCACHE; } np->n_directio_opens++; } /* * If this is an open for writing, capture a reference to the * credentials, so they can be used by nfs_putpages(). Using * these write credentials is preferable to the credentials of * whatever thread happens to be doing the VOP_PUTPAGES() since * the write RPCs are less likely to fail with EACCES. */ if ((fmode & FWRITE) != 0) { cred = np->n_writecred; np->n_writecred = crhold(ap->a_cred); } else cred = NULL; mtx_unlock(&np->n_mtx); if (cred != NULL) crfree(cred); vnode_create_vobject(vp, vattr.va_size, ap->a_td); return (0); } /* * nfs close vnode op * What an NFS client should do upon close after writing is a debatable issue. * Most NFS clients push delayed writes to the server upon close, basically for * two reasons: * 1 - So that any write errors may be reported back to the client process * doing the close system call. By far the two most likely errors are * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. * 2 - To put a worst case upper bound on cache inconsistency between * multiple clients for the file. * There is also a consistency problem for Version 2 of the protocol w.r.t. * not being able to tell if other clients are writing a file concurrently, * since there is no way of knowing if the changed modify time in the reply * is only due to the write for this client. * (NFS Version 3 provides weak cache consistency data in the reply that * should be sufficient to detect and handle this case.) * * The current code does the following: * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers * for NFS Version 3 - flush dirty buffers to the server but don't invalidate * or commit them (this satisfies 1 and 2 except for the * case where the server crashes after this close but * before the commit RPC, which is felt to be "good * enough". Changing the last argument to nfs_flush() to * a 1 would force a commit operation, if it is felt a * commit is necessary now. */ /* ARGSUSED */ static int nfs_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); int error = 0; int fmode = ap->a_fflag; if (vp->v_type == VREG) { /* * Examine and clean dirty pages, regardless of NMODIFIED. * This closes a major hole in close-to-open consistency. * We want to push out all dirty pages (and buffers) on * close, regardless of whether they were dirtied by * mmap'ed writes or via write(). */ if (nfs_clean_pages_on_close && vp->v_object) { VM_OBJECT_LOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_UNLOCK(vp->v_object); } mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { mtx_unlock(&np->n_mtx); if (NFS_ISV3(vp)) { /* * Under NFSv3 we have dirty buffers to dispose of. We * must flush them to the NFS server. We have the option * of waiting all the way through the commit rpc or just * waiting for the initial write. The default is to only * wait through the initial write so the data is in the * server's cache, which is roughly similar to the state * a standard disk subsystem leaves the file in on close(). * * We cannot clear the NMODIFIED bit in np->n_flag due to * potential races with other processes, and certainly * cannot clear it if we don't commit. */ int cm = nfsv3_commit_on_close ? 1 : 0; error = nfs_flush(vp, MNT_WAIT, cm); /* np->n_flag &= ~NMODIFIED; */ } else error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); mtx_lock(&np->n_mtx); } if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; error = np->n_error; } mtx_unlock(&np->n_mtx); } if (nfs_directio_enable) KASSERT((np->n_directio_asyncwr == 0), ("nfs_close: dirty unflushed (%d) directio buffers\n", np->n_directio_asyncwr)); if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { mtx_lock(&np->n_mtx); KASSERT((np->n_directio_opens > 0), ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); np->n_directio_opens--; if (np->n_directio_opens == 0) np->n_flag &= ~NNONCACHE; mtx_unlock(&np->n_mtx); } return (error); } /* * nfs getattr call from vfs. */ static int nfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct thread *td = curthread; struct vattr *vap = ap->a_vap; struct vattr vattr; caddr_t bpos, dpos; int error = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); /* * Update local times for special files. */ mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) np->n_flag |= NCHG; mtx_unlock(&np->n_mtx); /* * First look in the cache. */ if (nfs_getattrcache(vp, &vattr) == 0) goto nfsmout; if (v3 && nfs_prime_access_cache && nfsaccess_cache_timeout > 0) { nfsstats.accesscache_misses++; nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, ap->a_cred, NULL); if (nfs_getattrcache(vp, &vattr) == 0) goto nfsmout; } nfsstats.rpccnt[NFSPROC_GETATTR]++; mreq = nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); nfsm_request(vp, NFSPROC_GETATTR, td, ap->a_cred); if (!error) { nfsm_loadattr(vp, &vattr); } m_freem(mrep); nfsmout: vap->va_type = vattr.va_type; vap->va_mode = vattr.va_mode; vap->va_nlink = vattr.va_nlink; vap->va_uid = vattr.va_uid; vap->va_gid = vattr.va_gid; vap->va_fsid = vattr.va_fsid; vap->va_fileid = vattr.va_fileid; vap->va_size = vattr.va_size; vap->va_blocksize = vattr.va_blocksize; vap->va_atime = vattr.va_atime; vap->va_mtime = vattr.va_mtime; vap->va_ctime = vattr.va_ctime; vap->va_gen = vattr.va_gen; vap->va_flags = vattr.va_flags; vap->va_rdev = vattr.va_rdev; vap->va_bytes = vattr.va_bytes; vap->va_filerev = vattr.va_filerev; return (error); } /* * nfs setattr call. */ static int nfs_setattr(struct vop_setattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr *vap = ap->a_vap; struct thread *td = curthread; int error = 0; u_quad_t tsize; #ifndef nolint tsize = (u_quad_t)0; #endif /* * Setting of flags is not supported. */ if (vap->va_flags != VNOVAL) return (EOPNOTSUPP); /* * Disallow write attempts if the filesystem is mounted read-only. */ if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { error = EROFS; goto out; } if (vap->va_size != VNOVAL) { switch (vp->v_type) { case VDIR: return (EISDIR); case VCHR: case VBLK: case VSOCK: case VFIFO: if (vap->va_mtime.tv_sec == VNOVAL && vap->va_atime.tv_sec == VNOVAL && vap->va_mode == (mode_t)VNOVAL && vap->va_uid == (uid_t)VNOVAL && vap->va_gid == (gid_t)VNOVAL) return (0); vap->va_size = VNOVAL; break; default: /* * Disallow write attempts if the filesystem is * mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * We run vnode_pager_setsize() early (why?), * we must set np->n_size now to avoid vinvalbuf * V_SAVE races that might setsize a lower * value. */ mtx_lock(&np->n_mtx); tsize = np->n_size; mtx_unlock(&np->n_mtx); error = nfs_meta_setsize(vp, ap->a_cred, td, vap->va_size); mtx_lock(&np->n_mtx); if (np->n_flag & NMODIFIED) { tsize = np->n_size; mtx_unlock(&np->n_mtx); if (vap->va_size == 0) error = nfs_vinvalbuf(vp, 0, td, 1); else error = nfs_vinvalbuf(vp, V_SAVE, td, 1); if (error) { vnode_pager_setsize(vp, tsize); goto out; } } else mtx_unlock(&np->n_mtx); /* * np->n_size has already been set to vap->va_size * in nfs_meta_setsize(). We must set it again since * nfs_loadattrcache() could be called through * nfs_meta_setsize() and could modify np->n_size. */ mtx_lock(&np->n_mtx); np->n_vattr.va_size = np->n_size = vap->va_size; mtx_unlock(&np->n_mtx); }; } else { mtx_lock(&np->n_mtx); if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NMODIFIED) && vp->v_type == VREG) { mtx_unlock(&np->n_mtx); if ((error = nfs_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && (error == EINTR || error == EIO)) return error; } else mtx_unlock(&np->n_mtx); } error = nfs_setattrrpc(vp, vap, ap->a_cred); if (error && vap->va_size != VNOVAL) { mtx_lock(&np->n_mtx); np->n_size = np->n_vattr.va_size = tsize; vnode_pager_setsize(vp, tsize); mtx_unlock(&np->n_mtx); } out: return (error); } /* * Do an nfs setattr rpc. */ static int nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred) { struct nfsv2_sattr *sp; struct nfsnode *np = VTONFS(vp); caddr_t bpos, dpos; u_int32_t *tl; int error = 0, i, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_SETATTR]++; mreq = nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); if (v3) { nfsm_v3attrbuild(vap, TRUE); tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED); *tl = nfs_false; } else { sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR); if (vap->va_mode == (mode_t)VNOVAL) sp->sa_mode = nfs_xdrneg1; else sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode); if (vap->va_uid == (uid_t)VNOVAL) sp->sa_uid = nfs_xdrneg1; else sp->sa_uid = txdr_unsigned(vap->va_uid); if (vap->va_gid == (gid_t)VNOVAL) sp->sa_gid = nfs_xdrneg1; else sp->sa_gid = txdr_unsigned(vap->va_gid); sp->sa_size = txdr_unsigned(vap->va_size); txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } nfsm_request(vp, NFSPROC_SETATTR, curthread, cred); if (v3) { mtx_lock(&np->n_mtx); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) np->n_accesscache[i].stamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); nfsm_wcc_data(vp, wccflag); } else nfsm_loadattr(vp, NULL); m_freem(mrep); nfsmout: return (error); } /* * nfs lookup call, one step at a time... * First look in cache * If not found, unlock the directory nfsnode and do the rpc */ static int nfs_lookup(struct vop_lookup_args *ap) { struct componentname *cnp = ap->a_cnp; struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct mount *mp = dvp->v_mount; struct vattr dvattr, vattr; struct timespec nctime; int flags = cnp->cn_flags; struct vnode *newvp; struct nfsmount *nmp; caddr_t bpos, dpos; struct mbuf *mreq, *mrep, *md, *mb; long len; nfsfh_t *fhp; struct nfsnode *np, *newnp; int error = 0, attrflag, dattrflag, fhsize, ltype, ncticks; int v3 = NFS_ISV3(dvp); struct thread *td = cnp->cn_thread; *vpp = NULLVP; if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); if (dvp->v_type != VDIR) return (ENOTDIR); nmp = VFSTONFS(mp); np = VTONFS(dvp); if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) { *vpp = NULLVP; return (error); } error = cache_lookup_times(dvp, vpp, cnp, &nctime, &ncticks); if (error > 0 && error != ENOENT) return (error); if (error == -1) { /* * Lookups of "." are special and always return the * current directory. cache_lookup() already handles * associated locking bookkeeping, etc. */ if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { /* XXX: Is this really correct? */ if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } /* * We only accept a positive hit in the cache if the * change time of the file matches our cached copy. * Otherwise, we discard the cache entry and fallback * to doing a lookup RPC. We also only trust cache * entries for less than nm_nametimeo seconds. * * To better handle stale file handles and attributes, * clear the attribute cache of this node if it is a * leaf component, part of an open() call, and not * locally modified before fetching the attributes. * This should allow stale file handles to be detected * here where we can fall back to a LOOKUP RPC to * recover rather than having nfs_open() detect the * stale file handle and failing open(2) with ESTALE. */ newvp = *vpp; newnp = VTONFS(newvp); if (!(nmp->nm_flag & NFSMNT_NOCTO) && (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(newnp->n_flag & NMODIFIED)) { mtx_lock(&newnp->n_mtx); newnp->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&newnp->n_mtx); } if ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_ctime, &nctime, ==)) { nfsstats.lookupcache_hits++; if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; return (0); } cache_purge(newvp); if (dvp != newvp) vput(newvp); else vrele(newvp); *vpp = NULLVP; } else if (error == ENOENT) { if (dvp->v_iflag & VI_DOOMED) return (ENOENT); /* * We only accept a negative hit in the cache if the * modification time of the parent directory matches * the cached copy in the name cache entry. * Otherwise, we discard all of the negative cache * entries for this directory. We also only trust * negative cache entries for up to nm_negnametimeo * seconds. */ if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && timespeccmp(&vattr.va_mtime, &nctime, ==)) { nfsstats.lookupcache_hits++; return (ENOENT); } cache_purge_negative(dvp); } attrflag = dattrflag = 0; error = 0; newvp = NULLVP; nfsstats.lookupcache_misses++; nfsstats.rpccnt[NFSPROC_LOOKUP]++; len = cnp->cn_namelen; mreq = nfsm_reqhead(dvp, NFSPROC_LOOKUP, NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_thread, cnp->cn_cred); if (error) { if (v3) { nfsm_postop_attr_va(dvp, dattrflag, &vattr); m_freem(mrep); } goto nfsmout; } nfsm_getfh(fhp, fhsize, v3); /* * Handle RENAME case... */ if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { if (NFS_CMPFH(np, fhp, fhsize)) { m_freem(mrep); return (EISDIR); } error = nfs_nget(mp, fhp, fhsize, &np, LK_EXCLUSIVE); if (error) { m_freem(mrep); return (error); } newvp = NFSTOV(np); if (v3) { nfsm_postop_attr(newvp, attrflag); nfsm_postop_attr(dvp, attrflag); } else nfsm_loadattr(newvp, NULL); *vpp = newvp; m_freem(mrep); cnp->cn_flags |= SAVENAME; return (0); } if (flags & ISDOTDOT) { ltype = VOP_ISLOCKED(dvp); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); VOP_UNLOCK(dvp, 0); error = vfs_busy(mp, 0); vn_lock(dvp, ltype | LK_RETRY); vfs_rel(mp); if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { vfs_unbusy(mp); error = ENOENT; } if (error != 0) { m_freem(mrep); return (error); } } VOP_UNLOCK(dvp, 0); error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags); if (error == 0) newvp = NFSTOV(np); vfs_unbusy(mp); if (newvp != dvp) vn_lock(dvp, ltype | LK_RETRY); if (dvp->v_iflag & VI_DOOMED) { if (error == 0) { if (newvp == dvp) vrele(newvp); else vput(newvp); } error = ENOENT; } if (error) { m_freem(mrep); return (error); } } else if (NFS_CMPFH(np, fhp, fhsize)) { VREF(dvp); newvp = dvp; } else { error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags); if (error) { m_freem(mrep); return (error); } newvp = NFSTOV(np); /* * Flush the attribute cache when opening a leaf node * to ensure that fresh attributes are fetched in * nfs_open() if we are unable to fetch attributes * from the LOOKUP reply. */ if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && !(np->n_flag & NMODIFIED)) { mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); mtx_unlock(&np->n_mtx); } } if (v3) { nfsm_postop_attr_va(newvp, attrflag, &vattr); nfsm_postop_attr_va(dvp, dattrflag, &dvattr); } else { nfsm_loadattr(newvp, &vattr); attrflag = 1; } if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; if ((cnp->cn_flags & MAKEENTRY) && (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) cache_enter_time(dvp, newvp, cnp, &vattr.va_ctime, newvp->v_type != VDIR ? NULL : &dvattr.va_ctime); *vpp = newvp; m_freem(mrep); nfsmout: if (error) { if (newvp != NULLVP) { vput(newvp); *vpp = NULLVP; } if (error != ENOENT) goto done; /* The requested file was not found. */ if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && (flags & ISLASTCN)) { /* * XXX: UFS does a full VOP_ACCESS(dvp, * VWRITE) here instead of just checking * MNT_RDONLY. */ if (mp->mnt_flag & MNT_RDONLY) return (EROFS); cnp->cn_flags |= SAVENAME; return (EJUSTRETURN); } if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE && dattrflag) { /* * Cache the modification time of the parent * directory from the post-op attributes in * the name cache entry. The negative cache * entry will be ignored once the directory * has changed. Don't bother adding the entry * if the directory has already changed. */ mtx_lock(&np->n_mtx); if (timespeccmp(&np->n_vattr.va_mtime, &vattr.va_mtime, ==)) { mtx_unlock(&np->n_mtx); cache_enter_time(dvp, NULL, cnp, &vattr.va_mtime, NULL); } else mtx_unlock(&np->n_mtx); } return (ENOENT); } done: return (error); } /* * nfs read call. * Just call nfs_bioread() to do the work. */ static int nfs_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; switch (vp->v_type) { case VREG: return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); case VDIR: return (EISDIR); default: return (EOPNOTSUPP); } } /* * nfs readlink call */ static int nfs_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; if (vp->v_type != VLNK) return (EINVAL); return (nfs_bioread(vp, ap->a_uio, 0, ap->a_cred)); } /* * Do a readlink rpc. * Called by nfs_doio() from below the buffer cache. */ int nfs_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { caddr_t bpos, dpos; int error = 0, len, attrflag; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_READLINK]++; mreq = nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, cred); if (v3) nfsm_postop_attr(vp, attrflag); if (!error) { nfsm_strsiz(len, NFS_MAXPATHLEN); if (len == NFS_MAXPATHLEN) { struct nfsnode *np = VTONFS(vp); mtx_lock(&np->n_mtx); if (np->n_size && np->n_size < NFS_MAXPATHLEN) len = np->n_size; mtx_unlock(&np->n_mtx); } nfsm_mtouio(uiop, len); } m_freem(mrep); nfsmout: return (error); } /* * nfs read rpc call * Ditto above */ int nfs_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { u_int32_t *tl; caddr_t bpos, dpos; struct mbuf *mreq, *mrep, *md, *mb; struct nfsmount *nmp; off_t end; int error = 0, len, retlen, tsiz, eof, attrflag; int v3 = NFS_ISV3(vp); int rsize; #ifndef nolint eof = 0; #endif nmp = VFSTONFS(vp->v_mount); tsiz = uiop->uio_resid; mtx_lock(&nmp->nm_mtx); end = uiop->uio_offset + tsiz; if (end > nmp->nm_maxfilesize || end < uiop->uio_offset) { mtx_unlock(&nmp->nm_mtx); return (EFBIG); } rsize = nmp->nm_rsize; mtx_unlock(&nmp->nm_mtx); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_READ]++; len = (tsiz > rsize) ? rsize : tsiz; mreq = nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED * 3); if (v3) { txdr_hyper(uiop->uio_offset, tl); *(tl + 2) = txdr_unsigned(len); } else { *tl++ = txdr_unsigned(uiop->uio_offset); *tl++ = txdr_unsigned(len); *tl = 0; } nfsm_request(vp, NFSPROC_READ, uiop->uio_td, cred); if (v3) { nfsm_postop_attr(vp, attrflag); if (error) { m_freem(mrep); goto nfsmout; } tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED); eof = fxdr_unsigned(int, *(tl + 1)); } else { nfsm_loadattr(vp, NULL); } nfsm_strsiz(retlen, rsize); nfsm_mtouio(uiop, retlen); m_freem(mrep); tsiz -= retlen; if (v3) { if (eof || retlen == 0) { tsiz = 0; } } else if (retlen < len) { tsiz = 0; } } nfsmout: return (error); } /* * nfs write call */ int nfs_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, int *iomode, int *must_commit) { u_int32_t *tl; int32_t backup; caddr_t bpos, dpos; struct mbuf *mreq, *mrep, *md, *mb; struct nfsmount *nmp = VFSTONFS(vp->v_mount); off_t end; int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit; int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC; int wsize; KASSERT(uiop->uio_iovcnt == 1, ("nfs: writerpc iovcnt > 1")); *must_commit = 0; tsiz = uiop->uio_resid; mtx_lock(&nmp->nm_mtx); end = uiop->uio_offset + tsiz; if (end > nmp->nm_maxfilesize || end < uiop->uio_offset) { mtx_unlock(&nmp->nm_mtx); return (EFBIG); } wsize = nmp->nm_wsize; mtx_unlock(&nmp->nm_mtx); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_WRITE]++; len = (tsiz > wsize) ? wsize : tsiz; mreq = nfsm_reqhead(vp, NFSPROC_WRITE, NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); if (v3) { tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED); txdr_hyper(uiop->uio_offset, tl); tl += 2; *tl++ = txdr_unsigned(len); *tl++ = txdr_unsigned(*iomode); *tl = txdr_unsigned(len); } else { u_int32_t x; tl = nfsm_build(u_int32_t *, 4 * NFSX_UNSIGNED); /* Set both "begin" and "current" to non-garbage. */ x = txdr_unsigned((u_int32_t)uiop->uio_offset); *tl++ = x; /* "begin offset" */ *tl++ = x; /* "current offset" */ x = txdr_unsigned(len); *tl++ = x; /* total to this offset */ *tl = x; /* size of this write */ } nfsm_uiotom(uiop, len); nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, cred); if (v3) { wccflag = NFSV3_WCCCHK; nfsm_wcc_data(vp, wccflag); if (!error) { tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF); rlen = fxdr_unsigned(int, *tl++); if (rlen == 0) { error = NFSERR_IO; m_freem(mrep); break; } else if (rlen < len) { backup = len - rlen; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; uiop->uio_iov->iov_len += backup; uiop->uio_offset -= backup; uiop->uio_resid += backup; len = rlen; } commit = fxdr_unsigned(int, *tl++); /* * Return the lowest committment level * obtained by any of the RPCs. */ if (committed == NFSV3WRITE_FILESYNC) committed = commit; else if (committed == NFSV3WRITE_DATASYNC && commit == NFSV3WRITE_UNSTABLE) committed = commit; mtx_lock(&nmp->nm_mtx); if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); nmp->nm_state |= NFSSTA_HASWRITEVERF; } else if (bcmp((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) { *must_commit = 1; bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); } mtx_unlock(&nmp->nm_mtx); } } else { nfsm_loadattr(vp, NULL); } if (wccflag) { mtx_lock(&(VTONFS(vp))->n_mtx); VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime; mtx_unlock(&(VTONFS(vp))->n_mtx); } m_freem(mrep); if (error) break; tsiz -= len; } nfsmout: if (DOINGASYNC(vp)) committed = NFSV3WRITE_FILESYNC; *iomode = committed; if (error) uiop->uio_resid = tsiz; return (error); } /* * nfs mknod rpc * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the * mode set to specify the file type and the size field for rdev. */ static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap) { struct nfsv2_sattr *sp; u_int32_t *tl; struct vnode *newvp = NULL; struct nfsnode *np = NULL; struct vattr vattr; caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0; struct mbuf *mreq, *mrep, *md, *mb; u_int32_t rdev; int v3 = NFS_ISV3(dvp); if (vap->va_type == VCHR || vap->va_type == VBLK) rdev = txdr_unsigned(vap->va_rdev); else if (vap->va_type == VFIFO || vap->va_type == VSOCK) rdev = nfs_xdrneg1; else { return (EOPNOTSUPP); } if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) return (error); nfsstats.rpccnt[NFSPROC_MKNOD]++; mreq = nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED + + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) { tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED); *tl++ = vtonfsv3_type(vap->va_type); nfsm_v3attrbuild(vap, FALSE); if (vap->va_type == VCHR || vap->va_type == VBLK) { tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(major(vap->va_rdev)); *tl = txdr_unsigned(minor(vap->va_rdev)); } } else { sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = rdev; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_thread, cnp->cn_cred); if (!error) { nfsm_mtofh(dvp, newvp, v3, gotvp); if (!gotvp) { if (newvp) { vput(newvp); newvp = NULL; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) newvp = NFSTOV(np); } } if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: if (error) { if (newvp) vput(newvp); } else { *vpp = newvp; } mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&(VTONFS(dvp))->n_mtx); return (error); } /* * nfs mknod vop * just call nfs_mknodrpc() to do the work. */ /* ARGSUSED */ static int nfs_mknod(struct vop_mknod_args *ap) { return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); } static u_long create_verf; /* * nfs file create call */ static int nfs_create(struct vop_create_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; u_int32_t *tl; struct nfsnode *np = NULL; struct vnode *newvp = NULL; caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0; struct mbuf *mreq, *mrep, *md, *mb; struct vattr vattr; int v3 = NFS_ISV3(dvp); /* * Oops, not for me.. */ if (vap->va_type == VSOCK) { error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap); return (error); } if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) { return (error); } if (vap->va_vaflags & VA_EXCLUSIVE) fmode |= O_EXCL; again: nfsstats.rpccnt[NFSPROC_CREATE]++; mreq = nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) { tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED); if (fmode & O_EXCL) { *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE); tl = nfsm_build(u_int32_t *, NFSX_V3CREATEVERF); #ifdef INET CURVNET_SET(CRED_TO_VNET(cnp->cn_cred)); IN_IFADDR_RLOCK(); if (!TAILQ_EMPTY(&V_in_ifaddrhead)) *tl++ = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr.s_addr; else #endif *tl++ = create_verf; #ifdef INET IN_IFADDR_RUNLOCK(); CURVNET_RESTORE(); #endif *tl = ++create_verf; } else { *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED); nfsm_v3attrbuild(vap, FALSE); } } else { sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = 0; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_thread, cnp->cn_cred); if (!error) { nfsm_mtofh(dvp, newvp, v3, gotvp); if (!gotvp) { if (newvp) { vput(newvp); newvp = NULL; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) newvp = NFSTOV(np); } } if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: if (error) { if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { fmode &= ~O_EXCL; goto again; } if (newvp) vput(newvp); } else if (v3 && (fmode & O_EXCL)) { /* * We are normally called with only a partially initialized * VAP. Since the NFSv3 spec says that server may use the * file attributes to store the verifier, the spec requires * us to do a SETATTR RPC. FreeBSD servers store the verifier * in atime, but we can't really assume that all servers will * so we ensure that our SETATTR sets both atime and mtime. */ if (vap->va_mtime.tv_sec == VNOVAL) vfs_timestamp(&vap->va_mtime); if (vap->va_atime.tv_sec == VNOVAL) vap->va_atime = vap->va_mtime; error = nfs_setattrrpc(newvp, vap, cnp->cn_cred); if (error) vput(newvp); } if (!error) { *ap->a_vpp = newvp; } mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&(VTONFS(dvp))->n_mtx); return (error); } /* * nfs file remove call * To try and make nfs semantics closer to ufs semantics, a file that has * other processes using the vnode is renamed instead of removed and then * removed later on the last close. * - If v_usecount > 1 * If a rename is not already in the works * call nfs_sillyrename() to set it up * else * do the remove rpc */ static int nfs_remove(struct vop_remove_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = VTONFS(vp); int error = 0; struct vattr vattr; KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); if (vp->v_type == VDIR) error = EPERM; else if (vrefcnt(vp) == 1 || (np->n_sillyrename && !VOP_GETATTR(vp, &vattr, cnp->cn_cred) && vattr.va_nlink > 1)) { /* * Purge the name cache so that the chance of a lookup for * the name succeeding while the remove is in progress is * minimized. Without node locking it can still happen, such * that an I/O op returns ESTALE, but since you get this if * another host removes the file.. */ cache_purge(vp); /* * throw away biocache buffers, mainly to avoid * unnecessary delayed writes later. */ error = nfs_vinvalbuf(vp, 0, cnp->cn_thread, 1); /* Do the rpc */ if (error != EINTR && error != EIO) error = nfs_removerpc(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); /* * Kludge City: If the first reply to the remove rpc is lost.. * the reply to the retransmitted request will be ENOENT * since the file was in fact removed * Therefore, we cheat and return success. */ if (error == ENOENT) error = 0; } else if (!np->n_sillyrename) error = nfs_sillyrename(dvp, vp, cnp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; mtx_unlock(&np->n_mtx); KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); return (error); } /* * nfs file remove rpc called from nfs_inactive */ int nfs_removeit(struct sillyrename *sp) { /* * Make sure that the directory vnode is still valid. * XXX we should lock sp->s_dvp here. */ if (sp->s_dvp->v_type == VBAD) return (0); return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, sp->s_cred, NULL)); } /* * Nfs remove rpc, called from nfs_remove() and nfs_removeit(). */ static int nfs_removerpc(struct vnode *dvp, const char *name, int namelen, struct ucred *cred, struct thread *td) { caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_REMOVE]++; mreq = nfsm_reqhead(dvp, NFSPROC_REMOVE, NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(name, namelen, NFS_MAXNAMLEN); nfsm_request(dvp, NFSPROC_REMOVE, td, cred); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } mtx_unlock(&(VTONFS(dvp))->n_mtx); return (error); } /* * nfs file rename call */ static int nfs_rename(struct vop_rename_args *ap) { struct vnode *fvp = ap->a_fvp; struct vnode *tvp = ap->a_tvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *tdvp = ap->a_tdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; int error; KASSERT((tcnp->cn_flags & HASBUF) != 0 && (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); /* Check for cross-device rename */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto out; } if (fvp == tvp) { nfs_printf("nfs_rename: fvp == tvp (can't happen)\n"); error = 0; goto out; } if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0) goto out; /* * We have to flush B_DELWRI data prior to renaming * the file. If we don't, the delayed-write buffers * can be flushed out later after the file has gone stale * under NFSV3. NFSV2 does not have this problem because * ( as far as I can tell ) it flushes dirty buffers more * often. * * Skip the rename operation if the fsync fails, this can happen * due to the server's volume being full, when we pushed out data * that was written back to our cache earlier. Not checking for * this condition can result in potential (silent) data loss. */ error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); VOP_UNLOCK(fvp, 0); if (!error && tvp) error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); if (error) goto out; /* * If the tvp exists and is in use, sillyrename it before doing the * rename of the new file over it. * XXX Can't sillyrename a directory. */ if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { vput(tvp); tvp = NULL; } error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, tcnp->cn_thread); if (fvp->v_type == VDIR) { if (tvp != NULL && tvp->v_type == VDIR) cache_purge(tdvp); cache_purge(fdvp); } out: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); /* * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs file rename rpc called from nfs_remove() above */ static int nfs_renameit(struct vnode *sdvp, struct componentname *scnp, struct sillyrename *sp) { return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_thread)); } /* * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). */ static int nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen, struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td) { caddr_t bpos, dpos; int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(fdvp); nfsstats.rpccnt[NFSPROC_RENAME]++; mreq = nfsm_reqhead(fdvp, NFSPROC_RENAME, (NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(fdvp, v3); nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN); nfsm_fhtom(tdvp, v3); nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN); nfsm_request(fdvp, NFSPROC_RENAME, td, cred); if (v3) { nfsm_wcc_data(fdvp, fwccflag); nfsm_wcc_data(tdvp, twccflag); } m_freem(mrep); nfsmout: mtx_lock(&(VTONFS(fdvp))->n_mtx); VTONFS(fdvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(fdvp))->n_mtx); mtx_lock(&(VTONFS(tdvp))->n_mtx); VTONFS(tdvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(tdvp))->n_mtx); if (!fwccflag) { VTONFS(fdvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); } if (!twccflag) { VTONFS(tdvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } return (error); } /* * nfs hard link create call */ static int nfs_link(struct vop_link_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3; if (vp->v_mount != tdvp->v_mount) { return (EXDEV); } /* * Push all writes to the server, so that the attribute cache * doesn't get "out of sync" with the server. * XXX There should be a better way! */ VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_LINK]++; mreq = nfsm_reqhead(vp, NFSPROC_LINK, NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); nfsm_fhtom(tdvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); nfsm_request(vp, NFSPROC_LINK, cnp->cn_thread, cnp->cn_cred); if (v3) { nfsm_postop_attr(vp, attrflag); nfsm_wcc_data(tdvp, wccflag); } m_freem(mrep); nfsmout: mtx_lock(&(VTONFS(tdvp))->n_mtx); VTONFS(tdvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(tdvp))->n_mtx); if (!attrflag) { VTONFS(vp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } if (!wccflag) { VTONFS(tdvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); } return (error); } /* * nfs symbolic link create call */ static int nfs_symlink(struct vop_symlink_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; caddr_t bpos, dpos; int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp; struct mbuf *mreq, *mrep, *md, *mb; struct vnode *newvp = NULL; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_SYMLINK]++; slen = strlen(ap->a_target); mreq = nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) { nfsm_v3attrbuild(vap, FALSE); } nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN); if (!v3) { sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } /* * Issue the NFS request and get the rpc response. * * Only NFSv3 responses returning an error of 0 actually return * a file handle that can be converted into newvp without having * to do an extra lookup rpc. */ nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_thread, cnp->cn_cred); if (v3) { if (error == 0) nfsm_mtofh(dvp, newvp, v3, gotvp); nfsm_wcc_data(dvp, wccflag); } /* * out code jumps -> here, mrep is also freed. */ m_freem(mrep); nfsmout: /* * If we do not have an error and we could not extract the newvp from * the response due to the request being NFSv2, we have to do a * lookup in order to obtain a newvp to return. */ if (error == 0 && newvp == NULL) { struct nfsnode *np = NULL; error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np); if (!error) newvp = NFSTOV(np); } if (error) { if (newvp) vput(newvp); } else { *ap->a_vpp = newvp; } mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(dvp))->n_mtx); if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } return (error); } /* * nfs make dir call */ static int nfs_mkdir(struct vop_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; int len; struct nfsnode *np = NULL; struct vnode *newvp = NULL; caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR; int gotvp = 0; struct mbuf *mreq, *mrep, *md, *mb; struct vattr vattr; int v3 = NFS_ISV3(dvp); if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) return (error); len = cnp->cn_namelen; nfsstats.rpccnt[NFSPROC_MKDIR]++; mreq = nfsm_reqhead(dvp, NFSPROC_MKDIR, NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); if (v3) { nfsm_v3attrbuild(vap, FALSE); } else { sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_thread, cnp->cn_cred); if (!error) nfsm_mtofh(dvp, newvp, v3, gotvp); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(dvp))->n_mtx); if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } if (error == 0 && newvp == NULL) { error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred, cnp->cn_thread, &np); if (!error) { newvp = NFSTOV(np); if (newvp->v_type != VDIR) error = EEXIST; } } if (error) { if (newvp) vput(newvp); } else *ap->a_vpp = newvp; return (error); } /* * nfs remove directory call */ static int nfs_rmdir(struct vop_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); if (dvp == vp) return (EINVAL); nfsstats.rpccnt[NFSPROC_RMDIR]++; mreq = nfsm_reqhead(dvp, NFSPROC_RMDIR, NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_thread, cnp->cn_cred); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: mtx_lock(&(VTONFS(dvp))->n_mtx); VTONFS(dvp)->n_flag |= NMODIFIED; mtx_unlock(&(VTONFS(dvp))->n_mtx); if (!wccflag) { VTONFS(dvp)->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); } cache_purge(dvp); cache_purge(vp); /* * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs readdir call */ static int nfs_readdir(struct vop_readdir_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uio *uio = ap->a_uio; int tresid, error = 0; struct vattr vattr; if (vp->v_type != VDIR) return(EPERM); /* * First, check for hit on the EOF offset cache */ if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && (np->n_flag & NMODIFIED) == 0) { if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { mtx_lock(&np->n_mtx); if (!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { mtx_unlock(&np->n_mtx); nfsstats.direofcache_hits++; goto out; } else mtx_unlock(&np->n_mtx); } } /* * Call nfs_bioread() to do the real work. */ tresid = uio->uio_resid; error = nfs_bioread(vp, uio, 0, ap->a_cred); if (!error && uio->uio_resid == tresid) { nfsstats.direofcache_misses++; } out: return (error); } /* * Readdir rpc call. * Called from below the buffer cache by nfs_doio(). */ int nfs_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int len, left; struct dirent *dp = NULL; u_int32_t *tl; caddr_t cp; nfsuint64 *cookiep; caddr_t bpos, dpos; struct mbuf *mreq, *mrep, *md, *mb; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp); u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1; int attrflag; int v3 = NFS_ISV3(vp); KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirrpc bad uio")); /* * If there is no cookie, assume directory was stale. */ nfs_dircookie_lock(dnp); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; nfs_dircookie_unlock(dnp); } else { nfs_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of DIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIR]++; mreq = nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) + NFSX_READDIR(v3)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, v3); if (v3) { tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; mtx_lock(&dnp->n_mtx); *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; mtx_unlock(&dnp->n_mtx); } else { tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; } *tl = txdr_unsigned(nmp->nm_readdirsize); nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, cred); if (v3) { nfsm_postop_attr(vp, attrflag); if (!error) { tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED); mtx_lock(&dnp->n_mtx); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl; mtx_unlock(&dnp->n_mtx); } else { m_freem(mrep); goto nfsmout; } } tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, doctoring them to 4bsd form */ while (more_dirs && bigenough) { if (v3) { tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); } else { tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED); fileno = fxdr_unsigned(u_quad_t, *tl++); len = fxdr_unsigned(int, *tl); } if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(mrep); goto nfsmout; } tlen = nfsm_rndup(len); if (tlen == len) tlen += 4; /* To ensure null termination */ left = DIRBLKSIZ - blksiz; if ((tlen + DIRHDSIZ) > left) { dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + DIRHDSIZ) > uiop->uio_resid) bigenough = 0; if (bigenough) { dp = (struct dirent *)uiop->uio_iov->iov_base; dp->d_fileno = (int)fileno; dp->d_namlen = len; dp->d_reclen = tlen + DIRHDSIZ; dp->d_type = DT_UNKNOWN; blksiz += dp->d_reclen; if (blksiz == DIRBLKSIZ) blksiz = 0; uiop->uio_offset += DIRHDSIZ; uiop->uio_resid -= DIRHDSIZ; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + DIRHDSIZ; uiop->uio_iov->iov_len -= DIRHDSIZ; nfsm_mtouio(uiop, len); cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; /* null terminate */ uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_offset += tlen; uiop->uio_resid -= tlen; } else nfsm_adv(nfsm_rndup(len)); if (v3) { tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); } else { tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED); } if (bigenough) { cookie.nfsuquad[0] = *tl++; if (v3) cookie.nfsuquad[1] = *tl++; } else if (v3) tl += 2; else tl++; more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(mrep); } /* * Fill last record, iff any, out to a multiple of DIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = DIRBLKSIZ - blksiz; dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; } /* * We are now either at the end of the directory or have filled the * block. */ if (bigenough) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) nfs_printf("EEK! readdirrpc resid > 0\n"); nfs_dircookie_lock(dnp); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; nfs_dircookie_unlock(dnp); } nfsmout: return (error); } /* * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc(). */ int nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) { int len, left; struct dirent *dp; u_int32_t *tl; caddr_t cp; struct vnode *newvp; nfsuint64 *cookiep; caddr_t bpos, dpos, dpossav1, dpossav2; struct mbuf *mreq, *mrep, *md, *mb, *mdsav1, *mdsav2; struct nameidata nami, *ndp = &nami; struct componentname *cnp = &ndp->ni_cnd; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp), *np; struct vattr vattr, dvattr; nfsfh_t *fhp; u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i; int attrflag, dattrflag, fhsize; #ifndef nolint dp = NULL; #endif KASSERT(uiop->uio_iovcnt == 1 && (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, ("nfs readdirplusrpc bad uio")); ndp->ni_dvp = vp; newvp = NULLVP; /* * If there is no cookie, assume directory was stale. */ nfs_dircookie_lock(dnp); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) { cookie = *cookiep; nfs_dircookie_unlock(dnp); } else { nfs_dircookie_unlock(dnp); return (NFSERR_BAD_COOKIE); } /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of DIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIRPLUS]++; mreq = nfsm_reqhead(vp, NFSPROC_READDIRPLUS, NFSX_FH(1) + 6 * NFSX_UNSIGNED); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, 1); tl = nfsm_build(u_int32_t *, 6 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; mtx_lock(&dnp->n_mtx); *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; mtx_unlock(&dnp->n_mtx); *tl++ = txdr_unsigned(nmp->nm_readdirsize); *tl = txdr_unsigned(nmp->nm_rsize); nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, cred); nfsm_postop_attr_va(vp, dattrflag, &dvattr); if (error) { m_freem(mrep); goto nfsmout; } tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); mtx_lock(&dnp->n_mtx); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl++; mtx_unlock(&dnp->n_mtx); more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, doctoring them to 4bsd form */ while (more_dirs && bigenough) { tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(mrep); goto nfsmout; } tlen = nfsm_rndup(len); if (tlen == len) tlen += 4; /* To ensure null termination*/ left = DIRBLKSIZ - blksiz; if ((tlen + DIRHDSIZ) > left) { dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + DIRHDSIZ) > uiop->uio_resid) bigenough = 0; if (bigenough) { dp = (struct dirent *)uiop->uio_iov->iov_base; dp->d_fileno = (int)fileno; dp->d_namlen = len; dp->d_reclen = tlen + DIRHDSIZ; dp->d_type = DT_UNKNOWN; blksiz += dp->d_reclen; if (blksiz == DIRBLKSIZ) blksiz = 0; uiop->uio_offset += DIRHDSIZ; uiop->uio_resid -= DIRHDSIZ; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + DIRHDSIZ; uiop->uio_iov->iov_len -= DIRHDSIZ; cnp->cn_nameptr = uiop->uio_iov->iov_base; cnp->cn_namelen = len; nfsm_mtouio(uiop, len); cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_offset += tlen; uiop->uio_resid -= tlen; } else nfsm_adv(nfsm_rndup(len)); tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); if (bigenough) { cookie.nfsuquad[0] = *tl++; cookie.nfsuquad[1] = *tl++; } else tl += 2; /* * Since the attributes are before the file handle * (sigh), we must skip over the attributes and then * come back and get them. */ attrflag = fxdr_unsigned(int, *tl); if (attrflag) { dpossav1 = dpos; mdsav1 = md; nfsm_adv(NFSX_V3FATTR); tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); doit = fxdr_unsigned(int, *tl); /* * Skip loading the attrs for "..". There's a * race between loading the attrs here and * lookups that look for the directory currently * being read (in the parent). We try to acquire * the exclusive lock on ".." here, owning the * lock on the directory being read. Lookup will * hold the lock on ".." and try to acquire the * lock on the directory being read. * * There are other ways of fixing this, one would * be to do a trylock on the ".." vnode and skip * loading the attrs on ".." if it happens to be * locked by another process. But skipping the * attrload on ".." seems the easiest option. */ if (strcmp(dp->d_name, "..") == 0) { doit = 0; /* * We've already skipped over the attrs, * skip over the filehandle. And store d_type * as VDIR. */ tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); i = fxdr_unsigned(int, *tl); nfsm_adv(nfsm_rndup(i)); dp->d_type = IFTODT(VTTOIF(VDIR)); } if (doit) { nfsm_getfh(fhp, fhsize, 1); if (NFS_CMPFH(dnp, fhp, fhsize)) { VREF(vp); newvp = vp; np = dnp; } else { error = nfs_nget(vp->v_mount, fhp, fhsize, &np, LK_EXCLUSIVE); if (error) doit = 0; else newvp = NFSTOV(np); } } if (doit && bigenough) { dpossav2 = dpos; dpos = dpossav1; mdsav2 = md; md = mdsav1; nfsm_loadattr(newvp, &vattr); dpos = dpossav2; md = mdsav2; dp->d_type = IFTODT(VTTOIF(vattr.va_type)); ndp->ni_vp = newvp; if (newvp->v_type != VDIR || dattrflag != 0) cache_enter_time(ndp->ni_dvp, ndp->ni_vp, cnp, &vattr.va_ctime, newvp->v_type != VDIR ? NULL : &dvattr.va_ctime); } } else { /* Just skip over the file handle */ tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); i = fxdr_unsigned(int, *tl); if (i) { tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); fhsize = fxdr_unsigned(int, *tl); nfsm_adv(nfsm_rndup(fhsize)); } } if (newvp != NULLVP) { if (newvp == vp) vrele(newvp); else vput(newvp); newvp = NULLVP; } tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(mrep); } /* * Fill last record, iff any, out to a multiple of DIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = DIRBLKSIZ - blksiz; dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; } /* * We are now either at the end of the directory or have filled the * block. */ if (bigenough) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) nfs_printf("EEK! readdirplusrpc resid > 0\n"); nfs_dircookie_lock(dnp); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; nfs_dircookie_unlock(dnp); } nfsmout: if (newvp != NULLVP) { if (newvp == vp) vrele(newvp); else vput(newvp); newvp = NULLVP; } return (error); } /* * Silly rename. To make the NFS filesystem that is stateless look a little * more like the "ufs" a remove of an active vnode is translated to a rename * to a funny looking filename that is removed by nfs_inactive on the * nfsnode. There is the potential for another process on a different client * to create the same funny name between the nfs_lookitup() fails and the * nfs_rename() completes, but... */ static int nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct sillyrename *sp; struct nfsnode *np; int error; short pid; unsigned int lticks; cache_purge(dvp); np = VTONFS(vp); KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); sp = malloc(sizeof (struct sillyrename), M_NFSREQ, M_WAITOK); sp->s_cred = crhold(cnp->cn_cred); sp->s_dvp = dvp; sp->s_removeit = nfs_removeit; VREF(dvp); /* * Fudge together a funny name. * Changing the format of the funny name to accomodate more * sillynames per directory. * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is * CPU ticks since boot. */ pid = cnp->cn_thread->td_proc->p_pid; lticks = (unsigned int)ticks; for ( ; ; ) { sp->s_namlen = sprintf(sp->s_name, ".nfs.%08x.%04x4.4", lticks, pid); if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, NULL)) break; lticks++; } error = nfs_renameit(dvp, cnp, sp); if (error) goto bad; error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_thread, &np); np->n_sillyrename = sp; return (0); bad: vrele(sp->s_dvp); crfree(sp->s_cred); free((caddr_t)sp, M_NFSREQ); return (error); } /* * Look up a file name and optionally either update the file handle or * allocate an nfsnode, depending on the value of npp. * npp == NULL --> just do the lookup * *npp == NULL --> allocate a new nfsnode and make sure attributes are * handled too * *npp != NULL --> update the file handle in the vnode */ static int nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred, struct thread *td, struct nfsnode **npp) { struct vnode *newvp = NULL; struct nfsnode *np, *dnp = VTONFS(dvp); caddr_t bpos, dpos; int error = 0, fhlen, attrflag; struct mbuf *mreq, *mrep, *md, *mb; nfsfh_t *nfhp; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_LOOKUP]++; mreq = nfsm_reqhead(dvp, NFSPROC_LOOKUP, NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(dvp, v3); nfsm_strtom(name, len, NFS_MAXNAMLEN); nfsm_request(dvp, NFSPROC_LOOKUP, td, cred); if (npp && !error) { nfsm_getfh(nfhp, fhlen, v3); if (*npp) { np = *npp; if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) { free((caddr_t)np->n_fhp, M_NFSBIGFH); np->n_fhp = &np->n_fh; } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH) np->n_fhp =(nfsfh_t *)malloc(fhlen, M_NFSBIGFH, M_WAITOK); bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen); np->n_fhsize = fhlen; newvp = NFSTOV(np); } else if (NFS_CMPFH(dnp, nfhp, fhlen)) { VREF(dvp); newvp = dvp; } else { error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, LK_EXCLUSIVE); if (error) { m_freem(mrep); return (error); } newvp = NFSTOV(np); } if (v3) { nfsm_postop_attr(newvp, attrflag); if (!attrflag && *npp == NULL) { m_freem(mrep); if (newvp == dvp) vrele(newvp); else vput(newvp); return (ENOENT); } } else nfsm_loadattr(newvp, NULL); } m_freem(mrep); nfsmout: if (npp && *npp == NULL) { if (error) { if (newvp) { if (newvp == dvp) vrele(newvp); else vput(newvp); } } else *npp = np; } return (error); } /* * Nfs Version 3 commit rpc */ int nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, struct thread *td) { u_int32_t *tl; struct nfsmount *nmp = VFSTONFS(vp->v_mount); caddr_t bpos, dpos; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; mtx_lock(&nmp->nm_mtx); if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { mtx_unlock(&nmp->nm_mtx); return (0); } mtx_unlock(&nmp->nm_mtx); nfsstats.rpccnt[NFSPROC_COMMIT]++; mreq = nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1)); mb = mreq; bpos = mtod(mb, caddr_t); nfsm_fhtom(vp, 1); tl = nfsm_build(u_int32_t *, 3 * NFSX_UNSIGNED); txdr_hyper(offset, tl); tl += 2; *tl = txdr_unsigned(cnt); nfsm_request(vp, NFSPROC_COMMIT, td, cred); nfsm_wcc_data(vp, wccflag); if (!error) { tl = nfsm_dissect(u_int32_t *, NFSX_V3WRITEVERF); if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl, NFSX_V3WRITEVERF)) { bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); error = NFSERR_STALEWRITEVERF; } } m_freem(mrep); nfsmout: return (error); } /* * Strategy routine. * For async requests when nfsiod(s) are running, queue the request by * calling nfs_asyncio(), otherwise just all nfs_doio() to do the * request. */ static int nfs_strategy(struct vop_strategy_args *ap) { struct buf *bp = ap->a_bp; struct ucred *cr; KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); BUF_ASSERT_HELD(bp); if (bp->b_iocmd == BIO_READ) cr = bp->b_rcred; else cr = bp->b_wcred; /* * If the op is asynchronous and an i/o daemon is waiting * queue the request, wake it up and wait for completion * otherwise just do it ourselves. */ if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) (void)nfs_doio(ap->a_vp, bp, cr, curthread); return (0); } /* * fsync vnode op. Just call nfs_flush() with commit == 1. */ /* ARGSUSED */ static int nfs_fsync(struct vop_fsync_args *ap) { return (nfs_flush(ap->a_vp, ap->a_waitfor, 1)); } /* * Flush all the blocks associated with a vnode. * Walk through the buffer pool and push any dirty pages * associated with the vnode. */ static int nfs_flush(struct vnode *vp, int waitfor, int commit) { struct nfsnode *np = VTONFS(vp); struct buf *bp; int i; struct buf *nbp; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; int passone = 1; u_quad_t off, endoff, toff; struct ucred* wcred = NULL; struct buf **bvec = NULL; struct bufobj *bo; struct thread *td = curthread; #ifndef NFS_COMMITBVECSIZ #define NFS_COMMITBVECSIZ 20 #endif struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; int bvecsize = 0, bveccount; if (nmp->nm_flag & NFSMNT_INT) slpflag = NFS_PCATCH; if (!commit) passone = 0; bo = &vp->v_bufobj; /* * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the * server, but has not been committed to stable storage on the server * yet. On the first pass, the byte range is worked out and the commit * rpc is done. On the second pass, nfs_writebp() is called to do the * job. */ again: off = (u_quad_t)-1; endoff = 0; bvecpos = 0; if (NFS_ISV3(vp) && commit) { if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); /* * Count up how many buffers waiting for a commit. */ bveccount = 0; BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (!BUF_ISLOCKED(bp) && (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == (B_DELWRI | B_NEEDCOMMIT)) bveccount++; } /* * Allocate space to remember the list of bufs to commit. It is * important to use M_NOWAIT here to avoid a race with nfs_write. * If we can't get memory (for whatever reason), we will end up * committing the buffers one-by-one in the loop below. */ if (bveccount > NFS_COMMITBVECSIZ) { /* * Release the vnode interlock to avoid a lock * order reversal. */ BO_UNLOCK(bo); bvec = (struct buf **) malloc(bveccount * sizeof(struct buf *), M_TEMP, M_NOWAIT); BO_LOCK(bo); if (bvec == NULL) { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } else bvecsize = bveccount; } else { bvec = bvec_on_stack; bvecsize = NFS_COMMITBVECSIZ; } TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bvecpos >= bvecsize) break; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { nbp = TAILQ_NEXT(bp, b_bobufs); continue; } if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) { BUF_UNLOCK(bp); nbp = TAILQ_NEXT(bp, b_bobufs); continue; } BO_UNLOCK(bo); bremfree(bp); /* * Work out if all buffers are using the same cred * so we can deal with them all with one commit. * * NOTE: we are not clearing B_DONE here, so we have * to do it later on in this routine if we intend to * initiate I/O on the bp. * * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ if (wcred == NULL) wcred = bp->b_wcred; else if (wcred != bp->b_wcred) wcred = NOCRED; vfs_busy_pages(bp, 1); BO_LOCK(bo); /* * bp is protected by being locked, but nbp is not * and vfs_busy_pages() may sleep. We have to * recalculate nbp. */ nbp = TAILQ_NEXT(bp, b_bobufs); /* * A list of these buffers is kept so that the * second loop knows which buffers have actually * been committed. This is necessary, since there * may be a race between the commit rpc and new * uncommitted writes on the file. */ bvec[bvecpos++] = bp; toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; if (toff < off) off = toff; toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); if (toff > endoff) endoff = toff; } BO_UNLOCK(bo); } if (bvecpos > 0) { /* * Commit data on the server, as required. * If all bufs are using the same wcred, then use that with * one call for all of them, otherwise commit each one * separately. */ if (wcred != NOCRED) retv = nfs_commit(vp, off, (int)(endoff - off), wcred, td); else { retv = 0; for (i = 0; i < bvecpos; i++) { off_t off, size; bp = bvec[i]; off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; size = (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); retv = nfs_commit(vp, off, (int)size, bp->b_wcred, td); if (retv) break; } } if (retv == NFSERR_STALEWRITEVERF) nfs_clearcommit(vp->v_mount); /* * Now, either mark the blocks I/O done or mark the * blocks dirty, depending on whether the commit * succeeded. */ for (i = 0; i < bvecpos; i++) { bp = bvec[i]; bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); if (retv) { /* * Error, leave B_DELWRI intact */ vfs_unbusy_pages(bp); brelse(bp); } else { /* * Success, remove B_DELWRI ( bundirty() ). * * b_dirtyoff/b_dirtyend seem to be NFS * specific. We should probably move that * into bundirty(). XXX */ bufobj_wref(bo); bp->b_flags |= B_ASYNC; bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_dirtyoff = bp->b_dirtyend = 0; bufdone(bp); } } } /* * Start/do any write(s) that are required. */ loop: BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { if (waitfor != MNT_WAIT || passone) continue; error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo), "nfsfsync", slpflag, slptimeo); if (error == 0) { BUF_UNLOCK(bp); goto loop; } if (error == ENOLCK) { error = 0; goto loop; } if (nfs_sigintr(nmp, td)) { error = EINTR; goto done; } if (slpflag & PCATCH) { slpflag = 0; slptimeo = 2 * hz; } goto loop; } if ((bp->b_flags & B_DELWRI) == 0) panic("nfs_fsync: not dirty"); if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { BUF_UNLOCK(bp); continue; } BO_UNLOCK(bo); bremfree(bp); if (passone || !commit) bp->b_flags |= B_ASYNC; else bp->b_flags |= B_ASYNC; bwrite(bp); if (nfs_sigintr(nmp, td)) { error = EINTR; goto done; } goto loop; } if (passone) { passone = 0; BO_UNLOCK(bo); goto again; } if (waitfor == MNT_WAIT) { while (bo->bo_numoutput) { error = bufobj_wwait(bo, slpflag, slptimeo); if (error) { BO_UNLOCK(bo); error = nfs_sigintr(nmp, td); if (error) goto done; if (slpflag & PCATCH) { slpflag = 0; slptimeo = 2 * hz; } BO_LOCK(bo); } } if (bo->bo_dirty.bv_cnt != 0 && commit) { BO_UNLOCK(bo); goto loop; } /* * Wait for all the async IO requests to drain */ BO_UNLOCK(bo); mtx_lock(&np->n_mtx); while (np->n_directio_asyncwr > 0) { np->n_flag |= NFSYNCWAIT; error = nfs_msleep(td, (caddr_t)&np->n_directio_asyncwr, &np->n_mtx, slpflag | (PRIBIO + 1), "nfsfsync", 0); if (error) { if (nfs_sigintr(nmp, td)) { mtx_unlock(&np->n_mtx); error = EINTR; goto done; } } } mtx_unlock(&np->n_mtx); } else BO_UNLOCK(bo); mtx_lock(&np->n_mtx); if (np->n_flag & NWRITEERR) { error = np->n_error; np->n_flag &= ~NWRITEERR; } if (commit && bo->bo_dirty.bv_cnt == 0 && bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) np->n_flag &= ~NMODIFIED; mtx_unlock(&np->n_mtx); done: if (bvec != NULL && bvec != bvec_on_stack) free(bvec, M_TEMP); return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlock(struct vop_advlock_args *ap) { struct vnode *vp = ap->a_vp; u_quad_t size; int error; error = vn_lock(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; VOP_UNLOCK(vp, 0); error = lf_advlock(ap, &(vp->v_lockf), size); } else { if (nfs_advlock_p) error = nfs_advlock_p(ap); else error = ENOLCK; } return (error); } /* * NFS advisory byte-level locks. */ static int nfs_advlockasync(struct vop_advlockasync_args *ap) { struct vnode *vp = ap->a_vp; u_quad_t size; int error; error = vn_lock(vp, LK_SHARED); if (error) return (error); if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { size = VTONFS(vp)->n_size; VOP_UNLOCK(vp, 0); error = lf_advlockasync(ap, &(vp->v_lockf), size); } else { VOP_UNLOCK(vp, 0); error = EOPNOTSUPP; } return (error); } /* * Print out the contents of an nfsnode. */ static int nfs_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); nfs_printf("\tfileid %ld fsid 0x%x", np->n_vattr.va_fileid, np->n_vattr.va_fsid); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * This is the "real" nfs::bwrite(struct buf*). * We set B_CACHE if this is a VMIO buffer. */ int nfs_writebp(struct buf *bp, int force __unused, struct thread *td) { int s; int oldflags = bp->b_flags; #if 0 int retv = 1; off_t off; #endif BUF_ASSERT_HELD(bp); if (bp->b_flags & B_INVAL) { brelse(bp); return(0); } bp->b_flags |= B_CACHE; /* * Undirty the bp. We will redirty it later if the I/O fails. */ s = splbio(); bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_iocmd = BIO_WRITE; bufobj_wref(bp->b_bufobj); curthread->td_ru.ru_oublock++; splx(s); /* * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ vfs_busy_pages(bp, 1); BUF_KERNPROC(bp); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); if( (oldflags & B_ASYNC) == 0) { int rtval = bufwait(bp); if (oldflags & B_DELWRI) { s = splbio(); reassignbuf(bp); splx(s); } brelse(bp); return (rtval); } return (0); } /* * nfs special file access vnode op. * Essentially just get vattr and then imitate iaccess() since the device is * local to the client. */ static int nfsspec_access(struct vop_access_args *ap) { struct vattr *vap; struct ucred *cred = ap->a_cred; struct vnode *vp = ap->a_vp; accmode_t accmode = ap->a_accmode; struct vattr vattr; int error; /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } vap = &vattr; error = VOP_GETATTR(vp, vap, cred); if (error) goto out; error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, accmode, cred, NULL); out: return error; } /* * Read wrapper for fifos. */ static int nfsfifo_read(struct vop_read_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); int error; /* * Set access flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NACC; getnanotime(&np->n_atim); mtx_unlock(&np->n_mtx); error = fifo_specops.vop_read(ap); return error; } /* * Write wrapper for fifos. */ static int nfsfifo_write(struct vop_write_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ mtx_lock(&np->n_mtx); np->n_flag |= NUPD; getnanotime(&np->n_mtim); mtx_unlock(&np->n_mtx); return(fifo_specops.vop_write(ap)); } /* * Close wrapper for fifos. * * Update the times on the nfsnode then do fifo close. */ static int nfsfifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; struct timespec ts; mtx_lock(&np->n_mtx); if (np->n_flag & (NACC | NUPD)) { getnanotime(&ts); if (np->n_flag & NACC) np->n_atim = ts; if (np->n_flag & NUPD) np->n_mtim = ts; np->n_flag |= NCHG; if (vrefcnt(vp) == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; mtx_unlock(&np->n_mtx); (void)VOP_SETATTR(vp, &vattr, ap->a_cred); goto out; } } mtx_unlock(&np->n_mtx); out: return (fifo_specops.vop_close(ap)); } /* * Just call nfs_writebp() with the force argument set to 1. * * NOTE: B_DONE may or may not be set in a_bp on call. */ static int nfs_bwrite(struct buf *bp) { return (nfs_writebp(bp, 1, curthread)); } struct buf_ops buf_ops_nfs = { .bop_name = "buf_ops_nfs", .bop_write = nfs_bwrite, .bop_strategy = bufstrategy, .bop_sync = bufsync, .bop_bdflush = bufbdflush, };