Current Path : /compat/linux/proc/self/root/usr/src/sys/opencrypto/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/sys/opencrypto/cast.c |
/* $OpenBSD: cast.c,v 1.2 2000/06/06 06:49:47 deraadt Exp $ */ /*- * CAST-128 in C * Written by Steve Reid <sreid@sea-to-sky.net> * 100% Public Domain - no warranty * Released 1997.10.11 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/opencrypto/cast.c 171238 2007-07-05 06:59:14Z peter $"); #include <sys/types.h> #include <opencrypto/cast.h> #include <opencrypto/castsb.h> /* Macros to access 8-bit bytes out of a 32-bit word */ #define U_INT8_Ta(x) ( (u_int8_t) (x>>24) ) #define U_INT8_Tb(x) ( (u_int8_t) ((x>>16)&255) ) #define U_INT8_Tc(x) ( (u_int8_t) ((x>>8)&255) ) #define U_INT8_Td(x) ( (u_int8_t) ((x)&255) ) /* Circular left shift */ #define ROL(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) ) /* CAST-128 uses three different round functions */ #define F1(l, r, i) \ t = ROL(key->xkey[i] + r, key->xkey[i+16]); \ l ^= ((cast_sbox1[U_INT8_Ta(t)] ^ cast_sbox2[U_INT8_Tb(t)]) - \ cast_sbox3[U_INT8_Tc(t)]) + cast_sbox4[U_INT8_Td(t)]; #define F2(l, r, i) \ t = ROL(key->xkey[i] ^ r, key->xkey[i+16]); \ l ^= ((cast_sbox1[U_INT8_Ta(t)] - cast_sbox2[U_INT8_Tb(t)]) + \ cast_sbox3[U_INT8_Tc(t)]) ^ cast_sbox4[U_INT8_Td(t)]; #define F3(l, r, i) \ t = ROL(key->xkey[i] - r, key->xkey[i+16]); \ l ^= ((cast_sbox1[U_INT8_Ta(t)] + cast_sbox2[U_INT8_Tb(t)]) ^ \ cast_sbox3[U_INT8_Tc(t)]) - cast_sbox4[U_INT8_Td(t)]; /***** Encryption Function *****/ void cast_encrypt(cast_key* key, u_int8_t* inblock, u_int8_t* outblock) { u_int32_t t, l, r; /* Get inblock into l,r */ l = ((u_int32_t)inblock[0] << 24) | ((u_int32_t)inblock[1] << 16) | ((u_int32_t)inblock[2] << 8) | (u_int32_t)inblock[3]; r = ((u_int32_t)inblock[4] << 24) | ((u_int32_t)inblock[5] << 16) | ((u_int32_t)inblock[6] << 8) | (u_int32_t)inblock[7]; /* Do the work */ F1(l, r, 0); F2(r, l, 1); F3(l, r, 2); F1(r, l, 3); F2(l, r, 4); F3(r, l, 5); F1(l, r, 6); F2(r, l, 7); F3(l, r, 8); F1(r, l, 9); F2(l, r, 10); F3(r, l, 11); /* Only do full 16 rounds if key length > 80 bits */ if (key->rounds > 12) { F1(l, r, 12); F2(r, l, 13); F3(l, r, 14); F1(r, l, 15); } /* Put l,r into outblock */ outblock[0] = U_INT8_Ta(r); outblock[1] = U_INT8_Tb(r); outblock[2] = U_INT8_Tc(r); outblock[3] = U_INT8_Td(r); outblock[4] = U_INT8_Ta(l); outblock[5] = U_INT8_Tb(l); outblock[6] = U_INT8_Tc(l); outblock[7] = U_INT8_Td(l); /* Wipe clean */ t = l = r = 0; } /***** Decryption Function *****/ void cast_decrypt(cast_key* key, u_int8_t* inblock, u_int8_t* outblock) { u_int32_t t, l, r; /* Get inblock into l,r */ r = ((u_int32_t)inblock[0] << 24) | ((u_int32_t)inblock[1] << 16) | ((u_int32_t)inblock[2] << 8) | (u_int32_t)inblock[3]; l = ((u_int32_t)inblock[4] << 24) | ((u_int32_t)inblock[5] << 16) | ((u_int32_t)inblock[6] << 8) | (u_int32_t)inblock[7]; /* Do the work */ /* Only do full 16 rounds if key length > 80 bits */ if (key->rounds > 12) { F1(r, l, 15); F3(l, r, 14); F2(r, l, 13); F1(l, r, 12); } F3(r, l, 11); F2(l, r, 10); F1(r, l, 9); F3(l, r, 8); F2(r, l, 7); F1(l, r, 6); F3(r, l, 5); F2(l, r, 4); F1(r, l, 3); F3(l, r, 2); F2(r, l, 1); F1(l, r, 0); /* Put l,r into outblock */ outblock[0] = U_INT8_Ta(l); outblock[1] = U_INT8_Tb(l); outblock[2] = U_INT8_Tc(l); outblock[3] = U_INT8_Td(l); outblock[4] = U_INT8_Ta(r); outblock[5] = U_INT8_Tb(r); outblock[6] = U_INT8_Tc(r); outblock[7] = U_INT8_Td(r); /* Wipe clean */ t = l = r = 0; } /***** Key Schedual *****/ void cast_setkey(cast_key* key, u_int8_t* rawkey, int keybytes) { u_int32_t t[4] = {0, 0, 0, 0}, z[4] = {0, 0, 0, 0}, x[4]; int i; /* Set number of rounds to 12 or 16, depending on key length */ key->rounds = (keybytes <= 10 ? 12 : 16); /* Copy key to workspace x */ for (i = 0; i < 4; i++) { x[i] = 0; if ((i*4+0) < keybytes) x[i] = (u_int32_t)rawkey[i*4+0] << 24; if ((i*4+1) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+1] << 16; if ((i*4+2) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+2] << 8; if ((i*4+3) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+3]; } /* Generate 32 subkeys, four at a time */ for (i = 0; i < 32; i+=4) { switch (i & 4) { case 0: t[0] = z[0] = x[0] ^ cast_sbox5[U_INT8_Tb(x[3])] ^ cast_sbox6[U_INT8_Td(x[3])] ^ cast_sbox7[U_INT8_Ta(x[3])] ^ cast_sbox8[U_INT8_Tc(x[3])] ^ cast_sbox7[U_INT8_Ta(x[2])]; t[1] = z[1] = x[2] ^ cast_sbox5[U_INT8_Ta(z[0])] ^ cast_sbox6[U_INT8_Tc(z[0])] ^ cast_sbox7[U_INT8_Tb(z[0])] ^ cast_sbox8[U_INT8_Td(z[0])] ^ cast_sbox8[U_INT8_Tc(x[2])]; t[2] = z[2] = x[3] ^ cast_sbox5[U_INT8_Td(z[1])] ^ cast_sbox6[U_INT8_Tc(z[1])] ^ cast_sbox7[U_INT8_Tb(z[1])] ^ cast_sbox8[U_INT8_Ta(z[1])] ^ cast_sbox5[U_INT8_Tb(x[2])]; t[3] = z[3] = x[1] ^ cast_sbox5[U_INT8_Tc(z[2])] ^ cast_sbox6[U_INT8_Tb(z[2])] ^ cast_sbox7[U_INT8_Td(z[2])] ^ cast_sbox8[U_INT8_Ta(z[2])] ^ cast_sbox6[U_INT8_Td(x[2])]; break; case 4: t[0] = x[0] = z[2] ^ cast_sbox5[U_INT8_Tb(z[1])] ^ cast_sbox6[U_INT8_Td(z[1])] ^ cast_sbox7[U_INT8_Ta(z[1])] ^ cast_sbox8[U_INT8_Tc(z[1])] ^ cast_sbox7[U_INT8_Ta(z[0])]; t[1] = x[1] = z[0] ^ cast_sbox5[U_INT8_Ta(x[0])] ^ cast_sbox6[U_INT8_Tc(x[0])] ^ cast_sbox7[U_INT8_Tb(x[0])] ^ cast_sbox8[U_INT8_Td(x[0])] ^ cast_sbox8[U_INT8_Tc(z[0])]; t[2] = x[2] = z[1] ^ cast_sbox5[U_INT8_Td(x[1])] ^ cast_sbox6[U_INT8_Tc(x[1])] ^ cast_sbox7[U_INT8_Tb(x[1])] ^ cast_sbox8[U_INT8_Ta(x[1])] ^ cast_sbox5[U_INT8_Tb(z[0])]; t[3] = x[3] = z[3] ^ cast_sbox5[U_INT8_Tc(x[2])] ^ cast_sbox6[U_INT8_Tb(x[2])] ^ cast_sbox7[U_INT8_Td(x[2])] ^ cast_sbox8[U_INT8_Ta(x[2])] ^ cast_sbox6[U_INT8_Td(z[0])]; break; } switch (i & 12) { case 0: case 12: key->xkey[i+0] = cast_sbox5[U_INT8_Ta(t[2])] ^ cast_sbox6[U_INT8_Tb(t[2])] ^ cast_sbox7[U_INT8_Td(t[1])] ^ cast_sbox8[U_INT8_Tc(t[1])]; key->xkey[i+1] = cast_sbox5[U_INT8_Tc(t[2])] ^ cast_sbox6[U_INT8_Td(t[2])] ^ cast_sbox7[U_INT8_Tb(t[1])] ^ cast_sbox8[U_INT8_Ta(t[1])]; key->xkey[i+2] = cast_sbox5[U_INT8_Ta(t[3])] ^ cast_sbox6[U_INT8_Tb(t[3])] ^ cast_sbox7[U_INT8_Td(t[0])] ^ cast_sbox8[U_INT8_Tc(t[0])]; key->xkey[i+3] = cast_sbox5[U_INT8_Tc(t[3])] ^ cast_sbox6[U_INT8_Td(t[3])] ^ cast_sbox7[U_INT8_Tb(t[0])] ^ cast_sbox8[U_INT8_Ta(t[0])]; break; case 4: case 8: key->xkey[i+0] = cast_sbox5[U_INT8_Td(t[0])] ^ cast_sbox6[U_INT8_Tc(t[0])] ^ cast_sbox7[U_INT8_Ta(t[3])] ^ cast_sbox8[U_INT8_Tb(t[3])]; key->xkey[i+1] = cast_sbox5[U_INT8_Tb(t[0])] ^ cast_sbox6[U_INT8_Ta(t[0])] ^ cast_sbox7[U_INT8_Tc(t[3])] ^ cast_sbox8[U_INT8_Td(t[3])]; key->xkey[i+2] = cast_sbox5[U_INT8_Td(t[1])] ^ cast_sbox6[U_INT8_Tc(t[1])] ^ cast_sbox7[U_INT8_Ta(t[2])] ^ cast_sbox8[U_INT8_Tb(t[2])]; key->xkey[i+3] = cast_sbox5[U_INT8_Tb(t[1])] ^ cast_sbox6[U_INT8_Ta(t[1])] ^ cast_sbox7[U_INT8_Tc(t[2])] ^ cast_sbox8[U_INT8_Td(t[2])]; break; } switch (i & 12) { case 0: key->xkey[i+0] ^= cast_sbox5[U_INT8_Tc(z[0])]; key->xkey[i+1] ^= cast_sbox6[U_INT8_Tc(z[1])]; key->xkey[i+2] ^= cast_sbox7[U_INT8_Tb(z[2])]; key->xkey[i+3] ^= cast_sbox8[U_INT8_Ta(z[3])]; break; case 4: key->xkey[i+0] ^= cast_sbox5[U_INT8_Ta(x[2])]; key->xkey[i+1] ^= cast_sbox6[U_INT8_Tb(x[3])]; key->xkey[i+2] ^= cast_sbox7[U_INT8_Td(x[0])]; key->xkey[i+3] ^= cast_sbox8[U_INT8_Td(x[1])]; break; case 8: key->xkey[i+0] ^= cast_sbox5[U_INT8_Tb(z[2])]; key->xkey[i+1] ^= cast_sbox6[U_INT8_Ta(z[3])]; key->xkey[i+2] ^= cast_sbox7[U_INT8_Tc(z[0])]; key->xkey[i+3] ^= cast_sbox8[U_INT8_Tc(z[1])]; break; case 12: key->xkey[i+0] ^= cast_sbox5[U_INT8_Td(x[0])]; key->xkey[i+1] ^= cast_sbox6[U_INT8_Td(x[1])]; key->xkey[i+2] ^= cast_sbox7[U_INT8_Ta(x[2])]; key->xkey[i+3] ^= cast_sbox8[U_INT8_Tb(x[3])]; break; } if (i >= 16) { key->xkey[i+0] &= 31; key->xkey[i+1] &= 31; key->xkey[i+2] &= 31; key->xkey[i+3] &= 31; } } /* Wipe clean */ for (i = 0; i < 4; i++) { t[i] = x[i] = z[i] = 0; } } /* Made in Canada */