Current Path : /compat/linux/proc/self/root/usr/src/tools/test/testfloat/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //compat/linux/proc/self/root/usr/src/tools/test/testfloat/testsoftfloat.c |
/* =============================================================================== This C source file is part of TestFloat, Release 2a, a package of programs for testing the correctness of floating-point arithmetic complying to the IEC/IEEE Standard for Floating-Point. Written by John R. Hauser. More information is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/TestFloat.html'. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. Derivative works are acceptable, even for commercial purposes, so long as (1) they include prominent notice that the work is derivative, and (2) they include prominent notice akin to these four paragraphs for those parts of this code that are retained. =============================================================================== */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/tools/test/testfloat/testsoftfloat.c 207151 2010-04-24 12:11:41Z marius $"); #include <stdlib.h> #include <signal.h> #include <string.h> #include "milieu.h" #include "fail.h" #include "softfloat.h" #include "slowfloat.h" #include "testCases.h" #include "testLoops.h" static void catchSIGINT( int signalCode ) { if ( stop ) exit( EXIT_FAILURE ); stop = TRUE; } int8 clearFlags( void ) { int8 flags; flags = float_exception_flags; float_exception_flags = 0; return flags; } enum { INT32_TO_FLOAT32 = 1, INT32_TO_FLOAT64, #ifdef FLOATX80 INT32_TO_FLOATX80, #endif #ifdef FLOAT128 INT32_TO_FLOAT128, #endif #ifdef BITS64 INT64_TO_FLOAT32, INT64_TO_FLOAT64, #ifdef FLOATX80 INT64_TO_FLOATX80, #endif #ifdef FLOAT128 INT64_TO_FLOAT128, #endif #endif FLOAT32_TO_INT32, FLOAT32_TO_INT32_ROUND_TO_ZERO, #ifdef BITS64 FLOAT32_TO_INT64, FLOAT32_TO_INT64_ROUND_TO_ZERO, #endif FLOAT32_TO_FLOAT64, #ifdef FLOATX80 FLOAT32_TO_FLOATX80, #endif #ifdef FLOAT128 FLOAT32_TO_FLOAT128, #endif FLOAT32_ROUND_TO_INT, FLOAT32_ADD, FLOAT32_SUB, FLOAT32_MUL, FLOAT32_DIV, FLOAT32_REM, FLOAT32_SQRT, FLOAT32_EQ, FLOAT32_LE, FLOAT32_LT, FLOAT32_EQ_SIGNALING, FLOAT32_LE_QUIET, FLOAT32_LT_QUIET, FLOAT64_TO_INT32, FLOAT64_TO_INT32_ROUND_TO_ZERO, #ifdef BITS64 FLOAT64_TO_INT64, FLOAT64_TO_INT64_ROUND_TO_ZERO, #endif FLOAT64_TO_FLOAT32, #ifdef FLOATX80 FLOAT64_TO_FLOATX80, #endif #ifdef FLOAT128 FLOAT64_TO_FLOAT128, #endif FLOAT64_ROUND_TO_INT, FLOAT64_ADD, FLOAT64_SUB, FLOAT64_MUL, FLOAT64_DIV, FLOAT64_REM, FLOAT64_SQRT, FLOAT64_EQ, FLOAT64_LE, FLOAT64_LT, FLOAT64_EQ_SIGNALING, FLOAT64_LE_QUIET, FLOAT64_LT_QUIET, #ifdef FLOATX80 FLOATX80_TO_INT32, FLOATX80_TO_INT32_ROUND_TO_ZERO, #ifdef BITS64 FLOATX80_TO_INT64, FLOATX80_TO_INT64_ROUND_TO_ZERO, #endif FLOATX80_TO_FLOAT32, FLOATX80_TO_FLOAT64, #ifdef FLOAT128 FLOATX80_TO_FLOAT128, #endif FLOATX80_ROUND_TO_INT, FLOATX80_ADD, FLOATX80_SUB, FLOATX80_MUL, FLOATX80_DIV, FLOATX80_REM, FLOATX80_SQRT, FLOATX80_EQ, FLOATX80_LE, FLOATX80_LT, FLOATX80_EQ_SIGNALING, FLOATX80_LE_QUIET, FLOATX80_LT_QUIET, #endif #ifdef FLOAT128 FLOAT128_TO_INT32, FLOAT128_TO_INT32_ROUND_TO_ZERO, #ifdef BITS64 FLOAT128_TO_INT64, FLOAT128_TO_INT64_ROUND_TO_ZERO, #endif FLOAT128_TO_FLOAT32, FLOAT128_TO_FLOAT64, #ifdef FLOATX80 FLOAT128_TO_FLOATX80, #endif FLOAT128_ROUND_TO_INT, FLOAT128_ADD, FLOAT128_SUB, FLOAT128_MUL, FLOAT128_DIV, FLOAT128_REM, FLOAT128_SQRT, FLOAT128_EQ, FLOAT128_LE, FLOAT128_LT, FLOAT128_EQ_SIGNALING, FLOAT128_LE_QUIET, FLOAT128_LT_QUIET, #endif NUM_FUNCTIONS }; static struct { char *name; int8 numInputs; flag roundingPrecision, roundingMode; flag tininessMode, tininessModeAtReducedPrecision; } functions[ NUM_FUNCTIONS ] = { { 0, 0, 0, 0, 0, 0 }, { "int32_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, { "int32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef FLOATX80 { "int32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef FLOAT128 { "int32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef BITS64 { "int64_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, { "int64_to_float64", 1, FALSE, TRUE, FALSE, FALSE }, #ifdef FLOATX80 { "int64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef FLOAT128 { "int64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, #endif #endif { "float32_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, { "float32_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef BITS64 { "float32_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, { "float32_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "float32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef FLOATX80 { "float32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef FLOAT128 { "float32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "float32_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, { "float32_add", 2, FALSE, TRUE, FALSE, FALSE }, { "float32_sub", 2, FALSE, TRUE, FALSE, FALSE }, { "float32_mul", 2, FALSE, TRUE, TRUE, FALSE }, { "float32_div", 2, FALSE, TRUE, FALSE, FALSE }, { "float32_rem", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, { "float32_eq", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_le", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_lt", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, { "float32_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, { "float64_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef BITS64 { "float64_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, { "float64_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "float64_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, #ifdef FLOATX80 { "float64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef FLOAT128 { "float64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "float64_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, { "float64_add", 2, FALSE, TRUE, FALSE, FALSE }, { "float64_sub", 2, FALSE, TRUE, FALSE, FALSE }, { "float64_mul", 2, FALSE, TRUE, TRUE, FALSE }, { "float64_div", 2, FALSE, TRUE, FALSE, FALSE }, { "float64_rem", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, { "float64_eq", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_le", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_lt", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, { "float64_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, #ifdef FLOATX80 { "floatx80_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, { "floatx80_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef BITS64 { "floatx80_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, { "floatx80_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "floatx80_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, { "floatx80_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, #ifdef FLOAT128 { "floatx80_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "floatx80_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, { "floatx80_add", 2, TRUE, TRUE, FALSE, TRUE }, { "floatx80_sub", 2, TRUE, TRUE, FALSE, TRUE }, { "floatx80_mul", 2, TRUE, TRUE, TRUE, TRUE }, { "floatx80_div", 2, TRUE, TRUE, FALSE, TRUE }, { "floatx80_rem", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_sqrt", 1, TRUE, TRUE, FALSE, FALSE }, { "floatx80_eq", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_le", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_lt", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, { "floatx80_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, #endif #ifdef FLOAT128 { "float128_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, { "float128_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #ifdef BITS64 { "float128_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, { "float128_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, #endif { "float128_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, { "float128_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, #ifdef FLOATX80 { "float128_to_floatx80", 1, FALSE, TRUE, TRUE, FALSE }, #endif { "float128_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, { "float128_add", 2, FALSE, TRUE, FALSE, FALSE }, { "float128_sub", 2, FALSE, TRUE, FALSE, FALSE }, { "float128_mul", 2, FALSE, TRUE, TRUE, FALSE }, { "float128_div", 2, FALSE, TRUE, FALSE, FALSE }, { "float128_rem", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, { "float128_eq", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_le", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_lt", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, { "float128_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, #endif }; enum { ROUND_NEAREST_EVEN = 1, ROUND_TO_ZERO, ROUND_DOWN, ROUND_UP, NUM_ROUNDINGMODES }; enum { TININESS_BEFORE_ROUNDING = 1, TININESS_AFTER_ROUNDING, NUM_TININESSMODES }; static void testFunctionVariety( uint8 functionCode, int8 roundingPrecision, int8 roundingMode, int8 tininessMode ) { uint8 roundingCode; int8 tininessCode; functionName = functions[ functionCode ].name; if ( roundingPrecision == 32 ) { roundingPrecisionName = "32"; } else if ( roundingPrecision == 64 ) { roundingPrecisionName = "64"; } else if ( roundingPrecision == 80 ) { roundingPrecisionName = "80"; } else { roundingPrecisionName = 0; } #ifdef FLOATX80 floatx80_rounding_precision = roundingPrecision; slow_floatx80_rounding_precision = roundingPrecision; #endif switch ( roundingMode ) { default: roundingModeName = 0; roundingCode = float_round_nearest_even; break; case ROUND_NEAREST_EVEN: roundingModeName = "nearest_even"; roundingCode = float_round_nearest_even; break; case ROUND_TO_ZERO: roundingModeName = "to_zero"; roundingCode = float_round_to_zero; break; case ROUND_DOWN: roundingModeName = "down"; roundingCode = float_round_down; break; case ROUND_UP: roundingModeName = "up"; roundingCode = float_round_up; break; } float_rounding_mode = roundingCode; slow_float_rounding_mode = roundingCode; switch ( tininessMode ) { default: tininessModeName = 0; tininessCode = float_tininess_after_rounding; break; case TININESS_BEFORE_ROUNDING: tininessModeName = "before"; tininessCode = float_tininess_before_rounding; break; case TININESS_AFTER_ROUNDING: tininessModeName = "after"; tininessCode = float_tininess_after_rounding; break; } float_detect_tininess = tininessCode; slow_float_detect_tininess = tininessCode; fputs( "Testing ", stderr ); writeFunctionName( stderr ); fputs( ".\n", stderr ); switch ( functionCode ) { case INT32_TO_FLOAT32: test_a_int32_z_float32( slow_int32_to_float32, int32_to_float32 ); break; case INT32_TO_FLOAT64: test_a_int32_z_float64( slow_int32_to_float64, int32_to_float64 ); break; #ifdef FLOATX80 case INT32_TO_FLOATX80: test_a_int32_z_floatx80( slow_int32_to_floatx80, int32_to_floatx80 ); break; #endif #ifdef FLOAT128 case INT32_TO_FLOAT128: test_a_int32_z_float128( slow_int32_to_float128, int32_to_float128 ); break; #endif #ifdef BITS64 case INT64_TO_FLOAT32: test_a_int64_z_float32( slow_int64_to_float32, int64_to_float32 ); break; case INT64_TO_FLOAT64: test_a_int64_z_float64( slow_int64_to_float64, int64_to_float64 ); break; #ifdef FLOATX80 case INT64_TO_FLOATX80: test_a_int64_z_floatx80( slow_int64_to_floatx80, int64_to_floatx80 ); break; #endif #ifdef FLOAT128 case INT64_TO_FLOAT128: test_a_int64_z_float128( slow_int64_to_float128, int64_to_float128 ); break; #endif #endif case FLOAT32_TO_INT32: test_a_float32_z_int32( slow_float32_to_int32, float32_to_int32 ); break; case FLOAT32_TO_INT32_ROUND_TO_ZERO: test_a_float32_z_int32( slow_float32_to_int32_round_to_zero, float32_to_int32_round_to_zero ); break; #ifdef BITS64 case FLOAT32_TO_INT64: test_a_float32_z_int64( slow_float32_to_int64, float32_to_int64 ); break; case FLOAT32_TO_INT64_ROUND_TO_ZERO: test_a_float32_z_int64( slow_float32_to_int64_round_to_zero, float32_to_int64_round_to_zero ); break; #endif case FLOAT32_TO_FLOAT64: test_a_float32_z_float64( slow_float32_to_float64, float32_to_float64 ); break; #ifdef FLOATX80 case FLOAT32_TO_FLOATX80: test_a_float32_z_floatx80( slow_float32_to_floatx80, float32_to_floatx80 ); break; #endif #ifdef FLOAT128 case FLOAT32_TO_FLOAT128: test_a_float32_z_float128( slow_float32_to_float128, float32_to_float128 ); break; #endif case FLOAT32_ROUND_TO_INT: test_az_float32( slow_float32_round_to_int, float32_round_to_int ); break; case FLOAT32_ADD: test_abz_float32( slow_float32_add, float32_add ); break; case FLOAT32_SUB: test_abz_float32( slow_float32_sub, float32_sub ); break; case FLOAT32_MUL: test_abz_float32( slow_float32_mul, float32_mul ); break; case FLOAT32_DIV: test_abz_float32( slow_float32_div, float32_div ); break; case FLOAT32_REM: test_abz_float32( slow_float32_rem, float32_rem ); break; case FLOAT32_SQRT: test_az_float32( slow_float32_sqrt, float32_sqrt ); break; case FLOAT32_EQ: test_ab_float32_z_flag( slow_float32_eq, float32_eq ); break; case FLOAT32_LE: test_ab_float32_z_flag( slow_float32_le, float32_le ); break; case FLOAT32_LT: test_ab_float32_z_flag( slow_float32_lt, float32_lt ); break; case FLOAT32_EQ_SIGNALING: test_ab_float32_z_flag( slow_float32_eq_signaling, float32_eq_signaling ); break; case FLOAT32_LE_QUIET: test_ab_float32_z_flag( slow_float32_le_quiet, float32_le_quiet ); break; case FLOAT32_LT_QUIET: test_ab_float32_z_flag( slow_float32_lt_quiet, float32_lt_quiet ); break; case FLOAT64_TO_INT32: test_a_float64_z_int32( slow_float64_to_int32, float64_to_int32 ); break; case FLOAT64_TO_INT32_ROUND_TO_ZERO: test_a_float64_z_int32( slow_float64_to_int32_round_to_zero, float64_to_int32_round_to_zero ); break; #ifdef BITS64 case FLOAT64_TO_INT64: test_a_float64_z_int64( slow_float64_to_int64, float64_to_int64 ); break; case FLOAT64_TO_INT64_ROUND_TO_ZERO: test_a_float64_z_int64( slow_float64_to_int64_round_to_zero, float64_to_int64_round_to_zero ); break; #endif case FLOAT64_TO_FLOAT32: test_a_float64_z_float32( slow_float64_to_float32, float64_to_float32 ); break; #ifdef FLOATX80 case FLOAT64_TO_FLOATX80: test_a_float64_z_floatx80( slow_float64_to_floatx80, float64_to_floatx80 ); break; #endif #ifdef FLOAT128 case FLOAT64_TO_FLOAT128: test_a_float64_z_float128( slow_float64_to_float128, float64_to_float128 ); break; #endif case FLOAT64_ROUND_TO_INT: test_az_float64( slow_float64_round_to_int, float64_round_to_int ); break; case FLOAT64_ADD: test_abz_float64( slow_float64_add, float64_add ); break; case FLOAT64_SUB: test_abz_float64( slow_float64_sub, float64_sub ); break; case FLOAT64_MUL: test_abz_float64( slow_float64_mul, float64_mul ); break; case FLOAT64_DIV: test_abz_float64( slow_float64_div, float64_div ); break; case FLOAT64_REM: test_abz_float64( slow_float64_rem, float64_rem ); break; case FLOAT64_SQRT: test_az_float64( slow_float64_sqrt, float64_sqrt ); break; case FLOAT64_EQ: test_ab_float64_z_flag( slow_float64_eq, float64_eq ); break; case FLOAT64_LE: test_ab_float64_z_flag( slow_float64_le, float64_le ); break; case FLOAT64_LT: test_ab_float64_z_flag( slow_float64_lt, float64_lt ); break; case FLOAT64_EQ_SIGNALING: test_ab_float64_z_flag( slow_float64_eq_signaling, float64_eq_signaling ); break; case FLOAT64_LE_QUIET: test_ab_float64_z_flag( slow_float64_le_quiet, float64_le_quiet ); break; case FLOAT64_LT_QUIET: test_ab_float64_z_flag( slow_float64_lt_quiet, float64_lt_quiet ); break; #ifdef FLOATX80 case FLOATX80_TO_INT32: test_a_floatx80_z_int32( slow_floatx80_to_int32, floatx80_to_int32 ); break; case FLOATX80_TO_INT32_ROUND_TO_ZERO: test_a_floatx80_z_int32( slow_floatx80_to_int32_round_to_zero, floatx80_to_int32_round_to_zero ); break; #ifdef BITS64 case FLOATX80_TO_INT64: test_a_floatx80_z_int64( slow_floatx80_to_int64, floatx80_to_int64 ); break; case FLOATX80_TO_INT64_ROUND_TO_ZERO: test_a_floatx80_z_int64( slow_floatx80_to_int64_round_to_zero, floatx80_to_int64_round_to_zero ); break; #endif case FLOATX80_TO_FLOAT32: test_a_floatx80_z_float32( slow_floatx80_to_float32, floatx80_to_float32 ); break; case FLOATX80_TO_FLOAT64: test_a_floatx80_z_float64( slow_floatx80_to_float64, floatx80_to_float64 ); break; #ifdef FLOAT128 case FLOATX80_TO_FLOAT128: test_a_floatx80_z_float128( slow_floatx80_to_float128, floatx80_to_float128 ); break; #endif case FLOATX80_ROUND_TO_INT: test_az_floatx80( slow_floatx80_round_to_int, floatx80_round_to_int ); break; case FLOATX80_ADD: test_abz_floatx80( slow_floatx80_add, floatx80_add ); break; case FLOATX80_SUB: test_abz_floatx80( slow_floatx80_sub, floatx80_sub ); break; case FLOATX80_MUL: test_abz_floatx80( slow_floatx80_mul, floatx80_mul ); break; case FLOATX80_DIV: test_abz_floatx80( slow_floatx80_div, floatx80_div ); break; case FLOATX80_REM: test_abz_floatx80( slow_floatx80_rem, floatx80_rem ); break; case FLOATX80_SQRT: test_az_floatx80( slow_floatx80_sqrt, floatx80_sqrt ); break; case FLOATX80_EQ: test_ab_floatx80_z_flag( slow_floatx80_eq, floatx80_eq ); break; case FLOATX80_LE: test_ab_floatx80_z_flag( slow_floatx80_le, floatx80_le ); break; case FLOATX80_LT: test_ab_floatx80_z_flag( slow_floatx80_lt, floatx80_lt ); break; case FLOATX80_EQ_SIGNALING: test_ab_floatx80_z_flag( slow_floatx80_eq_signaling, floatx80_eq_signaling ); break; case FLOATX80_LE_QUIET: test_ab_floatx80_z_flag( slow_floatx80_le_quiet, floatx80_le_quiet ); break; case FLOATX80_LT_QUIET: test_ab_floatx80_z_flag( slow_floatx80_lt_quiet, floatx80_lt_quiet ); break; #endif #ifdef FLOAT128 case FLOAT128_TO_INT32: test_a_float128_z_int32( slow_float128_to_int32, float128_to_int32 ); break; case FLOAT128_TO_INT32_ROUND_TO_ZERO: test_a_float128_z_int32( slow_float128_to_int32_round_to_zero, float128_to_int32_round_to_zero ); break; #ifdef BITS64 case FLOAT128_TO_INT64: test_a_float128_z_int64( slow_float128_to_int64, float128_to_int64 ); break; case FLOAT128_TO_INT64_ROUND_TO_ZERO: test_a_float128_z_int64( slow_float128_to_int64_round_to_zero, float128_to_int64_round_to_zero ); break; #endif case FLOAT128_TO_FLOAT32: test_a_float128_z_float32( slow_float128_to_float32, float128_to_float32 ); break; case FLOAT128_TO_FLOAT64: test_a_float128_z_float64( slow_float128_to_float64, float128_to_float64 ); break; #ifdef FLOATX80 case FLOAT128_TO_FLOATX80: test_a_float128_z_floatx80( slow_float128_to_floatx80, float128_to_floatx80 ); break; #endif case FLOAT128_ROUND_TO_INT: test_az_float128( slow_float128_round_to_int, float128_round_to_int ); break; case FLOAT128_ADD: test_abz_float128( slow_float128_add, float128_add ); break; case FLOAT128_SUB: test_abz_float128( slow_float128_sub, float128_sub ); break; case FLOAT128_MUL: test_abz_float128( slow_float128_mul, float128_mul ); break; case FLOAT128_DIV: test_abz_float128( slow_float128_div, float128_div ); break; case FLOAT128_REM: test_abz_float128( slow_float128_rem, float128_rem ); break; case FLOAT128_SQRT: test_az_float128( slow_float128_sqrt, float128_sqrt ); break; case FLOAT128_EQ: test_ab_float128_z_flag( slow_float128_eq, float128_eq ); break; case FLOAT128_LE: test_ab_float128_z_flag( slow_float128_le, float128_le ); break; case FLOAT128_LT: test_ab_float128_z_flag( slow_float128_lt, float128_lt ); break; case FLOAT128_EQ_SIGNALING: test_ab_float128_z_flag( slow_float128_eq_signaling, float128_eq_signaling ); break; case FLOAT128_LE_QUIET: test_ab_float128_z_flag( slow_float128_le_quiet, float128_le_quiet ); break; case FLOAT128_LT_QUIET: test_ab_float128_z_flag( slow_float128_lt_quiet, float128_lt_quiet ); break; #endif } if ( ( errorStop && anyErrors ) || stop ) exitWithStatus(); } static void testFunction( uint8 functionCode, int8 roundingPrecisionIn, int8 roundingModeIn, int8 tininessModeIn ) { int8 roundingPrecision, roundingMode, tininessMode; roundingPrecision = 32; for (;;) { if ( ! functions[ functionCode ].roundingPrecision ) { roundingPrecision = 0; } else if ( roundingPrecisionIn ) { roundingPrecision = roundingPrecisionIn; } for ( roundingMode = 1; roundingMode < NUM_ROUNDINGMODES; ++roundingMode ) { if ( ! functions[ functionCode ].roundingMode ) { roundingMode = 0; } else if ( roundingModeIn ) { roundingMode = roundingModeIn; } for ( tininessMode = 1; tininessMode < NUM_TININESSMODES; ++tininessMode ) { if ( ( roundingPrecision == 32 ) || ( roundingPrecision == 64 ) ) { if ( ! functions[ functionCode ] .tininessModeAtReducedPrecision ) { tininessMode = 0; } else if ( tininessModeIn ) { tininessMode = tininessModeIn; } } else { if ( ! functions[ functionCode ].tininessMode ) { tininessMode = 0; } else if ( tininessModeIn ) { tininessMode = tininessModeIn; } } testFunctionVariety( functionCode, roundingPrecision, roundingMode, tininessMode ); if ( tininessModeIn || ! tininessMode ) break; } if ( roundingModeIn || ! roundingMode ) break; } if ( roundingPrecisionIn || ! roundingPrecision ) break; if ( roundingPrecision == 80 ) { break; } else if ( roundingPrecision == 64 ) { roundingPrecision = 80; } else if ( roundingPrecision == 32 ) { roundingPrecision = 64; } } } int main( int argc, char **argv ) { char *argPtr; flag functionArgument; uint8 functionCode; int8 operands, roundingPrecision, roundingMode, tininessMode; fail_programName = "testsoftfloat"; if ( argc <= 1 ) goto writeHelpMessage; testCases_setLevel( 1 ); trueName = "true"; testName = "soft"; errorStop = FALSE; forever = FALSE; maxErrorCount = 20; trueFlagsPtr = &slow_float_exception_flags; testFlagsFunctionPtr = clearFlags; functionArgument = FALSE; functionCode = 0; operands = 0; roundingPrecision = 0; roundingMode = 0; tininessMode = 0; --argc; ++argv; while ( argc && ( argPtr = argv[ 0 ] ) ) { if ( argPtr[ 0 ] == '-' ) ++argPtr; if ( strcmp( argPtr, "help" ) == 0 ) { writeHelpMessage: fputs( "testsoftfloat [<option>...] <function>\n" " <option>: (* is default)\n" " -help --Write this message and exit.\n" " -level <num> --Testing level <num> (1 or 2).\n" " * -level 1\n" " -errors <num> --Stop each function test after <num> errors.\n" " * -errors 20\n" " -errorstop --Exit after first function with any error.\n" " -forever --Test one function repeatedly (implies `-level 2').\n" #ifdef FLOATX80 " -precision32 --Only test rounding precision equivalent to float32.\n" " -precision64 --Only test rounding precision equivalent to float64.\n" " -precision80 --Only test maximum rounding precision.\n" #endif " -nearesteven --Only test rounding to nearest/even.\n" " -tozero --Only test rounding to zero.\n" " -down --Only test rounding down.\n" " -up --Only test rounding up.\n" " -tininessbefore --Only test underflow tininess before rounding.\n" " -tininessafter --Only test underflow tininess after rounding.\n" " <function>:\n" " int32_to_<float> <float>_add <float>_eq\n" " <float>_to_int32 <float>_sub <float>_le\n" " <float>_to_int32_round_to_zero <float>_mul <float>_lt\n" #ifdef BITS64 " int64_to_<float> <float>_div <float>_eq_signaling\n" " <float>_to_int64 <float>_rem <float>_le_quiet\n" " <float>_to_int64_round_to_zero <float>_lt_quiet\n" " <float>_to_<float>\n" " <float>_round_to_int\n" " <float>_sqrt\n" #else " <float>_to_<float> <float>_div <float>_eq_signaling\n" " <float>_round_to_int <float>_rem <float>_le_quiet\n" " <float>_sqrt <float>_lt_quiet\n" #endif " -all1 --All 1-operand functions.\n" " -all2 --All 2-operand functions.\n" " -all --All functions.\n" " <float>:\n" " float32 --Single precision.\n" " float64 --Double precision.\n" #ifdef FLOATX80 " floatx80 --Extended double precision.\n" #endif #ifdef FLOAT128 " float128 --Quadruple precision.\n" #endif , stdout ); return EXIT_SUCCESS; } else if ( strcmp( argPtr, "level" ) == 0 ) { if ( argc < 2 ) goto optionError; testCases_setLevel( atoi( argv[ 1 ] ) ); --argc; ++argv; } else if ( strcmp( argPtr, "level1" ) == 0 ) { testCases_setLevel( 1 ); } else if ( strcmp( argPtr, "level2" ) == 0 ) { testCases_setLevel( 2 ); } else if ( strcmp( argPtr, "errors" ) == 0 ) { if ( argc < 2 ) { optionError: fail( "`%s' option requires numeric argument", argv[ 0 ] ); } maxErrorCount = atoi( argv[ 1 ] ); --argc; ++argv; } else if ( strcmp( argPtr, "errorstop" ) == 0 ) { errorStop = TRUE; } else if ( strcmp( argPtr, "forever" ) == 0 ) { testCases_setLevel( 2 ); forever = TRUE; } #ifdef FLOATX80 else if ( strcmp( argPtr, "precision32" ) == 0 ) { roundingPrecision = 32; } else if ( strcmp( argPtr, "precision64" ) == 0 ) { roundingPrecision = 64; } else if ( strcmp( argPtr, "precision80" ) == 0 ) { roundingPrecision = 80; } #endif else if ( ( strcmp( argPtr, "nearesteven" ) == 0 ) || ( strcmp( argPtr, "nearest_even" ) == 0 ) ) { roundingMode = ROUND_NEAREST_EVEN; } else if ( ( strcmp( argPtr, "tozero" ) == 0 ) || ( strcmp( argPtr, "to_zero" ) == 0 ) ) { roundingMode = ROUND_TO_ZERO; } else if ( strcmp( argPtr, "down" ) == 0 ) { roundingMode = ROUND_DOWN; } else if ( strcmp( argPtr, "up" ) == 0 ) { roundingMode = ROUND_UP; } else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) { tininessMode = TININESS_BEFORE_ROUNDING; } else if ( strcmp( argPtr, "tininessafter" ) == 0 ) { tininessMode = TININESS_AFTER_ROUNDING; } else if ( strcmp( argPtr, "all1" ) == 0 ) { functionArgument = TRUE; functionCode = 0; operands = 1; } else if ( strcmp( argPtr, "all2" ) == 0 ) { functionArgument = TRUE; functionCode = 0; operands = 2; } else if ( strcmp( argPtr, "all" ) == 0 ) { functionArgument = TRUE; functionCode = 0; operands = 0; } else { for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode ) { if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) { break; } } if ( functionCode == NUM_FUNCTIONS ) { fail( "Invalid option or function `%s'", argv[ 0 ] ); } functionArgument = TRUE; } --argc; ++argv; } if ( ! functionArgument ) fail( "Function argument required" ); (void) signal( SIGINT, catchSIGINT ); (void) signal( SIGTERM, catchSIGINT ); if ( functionCode ) { if ( forever ) { if ( ! roundingPrecision ) roundingPrecision = 80; if ( ! roundingMode ) roundingMode = ROUND_NEAREST_EVEN; } testFunction( functionCode, roundingPrecision, roundingMode, tininessMode ); } else { if ( operands == 1 ) { for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode ) { if ( functions[ functionCode ].numInputs == 1 ) { testFunction( functionCode, roundingPrecision, roundingMode, tininessMode ); } } } else if ( operands == 2 ) { for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode ) { if ( functions[ functionCode ].numInputs == 2 ) { testFunction( functionCode, roundingPrecision, roundingMode, tininessMode ); } } } else { for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode ) { testFunction( functionCode, roundingPrecision, roundingMode, tininessMode ); } } } exitWithStatus(); }