Current Path : /sys/amd64/compile/hs32/machine/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/machine/pmap.h |
/*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD: release/9.1.0/sys/amd64/include/pmap.h 237950 2012-07-02 05:35:55Z alc $ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ /* * Page-directory and page-table entries follow this format, with a few * of the fields not present here and there, depending on a lot of things. */ /* ---- Intel Nomenclature ---- */ #define PG_V 0x001 /* P Valid */ #define PG_RW 0x002 /* R/W Read/Write */ #define PG_U 0x004 /* U/S User/Supervisor */ #define PG_NC_PWT 0x008 /* PWT Write through */ #define PG_NC_PCD 0x010 /* PCD Cache disable */ #define PG_A 0x020 /* A Accessed */ #define PG_M 0x040 /* D Dirty */ #define PG_PS 0x080 /* PS Page size (0=4k,1=2M) */ #define PG_PTE_PAT 0x080 /* PAT PAT index */ #define PG_G 0x100 /* G Global */ #define PG_AVAIL1 0x200 /* / Available for system */ #define PG_AVAIL2 0x400 /* < programmers use */ #define PG_AVAIL3 0x800 /* \ */ #define PG_PDE_PAT 0x1000 /* PAT PAT index */ #define PG_NX (1ul<<63) /* No-execute */ /* Our various interpretations of the above */ #define PG_W PG_AVAIL1 /* "Wired" pseudoflag */ #define PG_MANAGED PG_AVAIL2 #define PG_FRAME (0x000ffffffffff000ul) #define PG_PS_FRAME (0x000fffffffe00000ul) #define PG_PROT (PG_RW|PG_U) /* all protection bits . */ #define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */ /* Page level cache control fields used to determine the PAT type */ #define PG_PDE_CACHE (PG_PDE_PAT | PG_NC_PWT | PG_NC_PCD) #define PG_PTE_CACHE (PG_PTE_PAT | PG_NC_PWT | PG_NC_PCD) /* * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB * (PTE) page mappings have identical settings for the following fields: */ #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \ PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V) /* * Page Protection Exception bits */ #define PGEX_P 0x01 /* Protection violation vs. not present */ #define PGEX_W 0x02 /* during a Write cycle */ #define PGEX_U 0x04 /* access from User mode (UPL) */ #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ #define PGEX_I 0x10 /* during an instruction fetch */ /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KVADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l4, l3, l2, l1) ( \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) /* Initial number of kernel page tables. */ #ifndef NKPT #define NKPT 32 #endif #define NKPML4E 1 /* number of kernel PML4 slots */ #define NKPDPE howmany(NKPT, NPDEPG)/* number of kernel PDP slots */ #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ /* * NDMPML4E is the number of PML4 entries that are used to implement the * direct map. It must be a power of two. */ #define NDMPML4E 2 /* * The *PDI values control the layout of virtual memory. The starting address * of the direct map, which is controlled by DMPML4I, must be a multiple of * its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.) */ #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ #define KPML4I (NPML4EPG-1) /* Top 512GB for KVM */ #define DMPML4I rounddown(KPML4I - NDMPML4E, NDMPML4E) /* Below KVM */ #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #ifndef LOCORE #include <sys/queue.h> #include <sys/_cpuset.h> #include <sys/_lock.h> #include <sys/_mutex.h> typedef u_int64_t pd_entry_t; typedef u_int64_t pt_entry_t; typedef u_int64_t pdp_entry_t; typedef u_int64_t pml4_entry_t; #define PML4ESHIFT (3) #define PDPESHIFT (3) #define PTESHIFT (3) #define PDESHIFT (3) /* * Address of current address space page table maps and directories. */ #ifdef _KERNEL #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define PTmap ((pt_entry_t *)(addr_PTmap)) #define PDmap ((pd_entry_t *)(addr_PDmap)) #define PDPmap ((pd_entry_t *)(addr_PDPmap)) #define PML4map ((pd_entry_t *)(addr_PML4map)) #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) extern u_int64_t KPDPphys; /* physical address of kernel level 3 */ extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ /* * virtual address to page table entry and * to physical address. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ pt_entry_t *vtopte(vm_offset_t); #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) static __inline pt_entry_t pte_load(pt_entry_t *ptep) { pt_entry_t r; r = *ptep; return (r); } static __inline pt_entry_t pte_load_store(pt_entry_t *ptep, pt_entry_t pte) { pt_entry_t r; __asm __volatile( "xchgq %0,%1" : "=m" (*ptep), "=r" (r) : "1" (pte), "m" (*ptep)); return (r); } #define pte_load_clear(pte) atomic_readandclear_long(pte) static __inline void pte_store(pt_entry_t *ptep, pt_entry_t pte) { *ptep = pte; } #define pte_clear(ptep) pte_store((ptep), (pt_entry_t)0ULL) #define pde_store(pdep, pde) pte_store((pdep), (pde)) extern pt_entry_t pg_nx; #endif /* _KERNEL */ /* * Pmap stuff */ struct pv_entry; struct pv_chunk; struct md_page { TAILQ_HEAD(,pv_entry) pv_list; int pat_mode; }; /* * The kernel virtual address (KVA) of the level 4 page table page is always * within the direct map (DMAP) region. */ struct pmap { struct mtx pm_mtx; pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ cpuset_t pm_active; /* active on cpus */ /* spare u_int here due to padding */ struct pmap_statistics pm_stats; /* pmap statistics */ vm_page_t pm_root; /* spare page table pages */ }; typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_ASSERT(pmap, type) \ mtx_assert(&(pmap)->pm_mtx, (type)) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ NULL, MTX_DEF | MTX_DUPOK) #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_list. */ typedef struct pv_entry { vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; } *pv_entry_t; /* * pv_entries are allocated in chunks per-process. This avoids the * need to track per-pmap assignments. */ #define _NPCM 3 #define _NPCPV 168 struct pv_chunk { pmap_t pc_pmap; TAILQ_ENTRY(pv_chunk) pc_list; uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ TAILQ_ENTRY(pv_chunk) pc_lru; struct pv_entry pc_pventry[_NPCPV]; }; #ifdef _KERNEL extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t phys_avail[]; extern vm_paddr_t dump_avail[]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) void pmap_bootstrap(vm_paddr_t *); int pmap_change_attr(vm_offset_t, vm_size_t, int); void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate); void pmap_init_pat(void); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void *pmap_kenter_temporary(vm_paddr_t pa, int i); vm_paddr_t pmap_kextract(vm_offset_t); void pmap_kremove(vm_offset_t); void *pmap_mapbios(vm_paddr_t, vm_size_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); boolean_t pmap_page_is_mapped(vm_page_t m); void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); void pmap_unmapdev(vm_offset_t, vm_size_t); void pmap_invalidate_page(pmap_t, vm_offset_t); void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); void pmap_invalidate_all(pmap_t); void pmap_invalidate_cache(void); void pmap_invalidate_cache_pages(vm_page_t *pages, int count); void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva); #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */