Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/acpi/acpi_video/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/acpi/acpi_video/@/kern/kern_time.c |
/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_time.c 225617 2011-09-16 13:58:51Z kmacy $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/limits.h> #include <sys/clock.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysproto.h> #include <sys/eventhandler.h> #include <sys/resourcevar.h> #include <sys/signalvar.h> #include <sys/kernel.h> #include <sys/syscallsubr.h> #include <sys/sysctl.h> #include <sys/sysent.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/posix4.h> #include <sys/time.h> #include <sys/timers.h> #include <sys/timetc.h> #include <sys/vnode.h> #include <vm/vm.h> #include <vm/vm_extern.h> #define MAX_CLOCKS (CLOCK_MONOTONIC+1) static struct kclock posix_clocks[MAX_CLOCKS]; static uma_zone_t itimer_zone = NULL; /* * Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ static int settime(struct thread *, struct timeval *); static void timevalfix(struct timeval *); static void itimer_start(void); static int itimer_init(void *, int, int); static void itimer_fini(void *, int); static void itimer_enter(struct itimer *); static void itimer_leave(struct itimer *); static struct itimer *itimer_find(struct proc *, int); static void itimers_alloc(struct proc *); static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); static void itimers_event_hook_exit(void *arg, struct proc *p); static int realtimer_create(struct itimer *); static int realtimer_gettime(struct itimer *, struct itimerspec *); static int realtimer_settime(struct itimer *, int, struct itimerspec *, struct itimerspec *); static int realtimer_delete(struct itimer *); static void realtimer_clocktime(clockid_t, struct timespec *); static void realtimer_expire(void *); static int kern_timer_create(struct thread *, clockid_t, struct sigevent *, int *, int); static int kern_timer_delete(struct thread *, int); int register_posix_clock(int, struct kclock *); void itimer_fire(struct itimer *it); int itimespecfix(struct timespec *ts); #define CLOCK_CALL(clock, call, arglist) \ ((*posix_clocks[clock].call) arglist) SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); static int settime(struct thread *td, struct timeval *tv) { struct timeval delta, tv1, tv2; static struct timeval maxtime, laststep; struct timespec ts; int s; s = splclock(); microtime(&tv1); delta = *tv; timevalsub(&delta, &tv1); /* * If the system is secure, we do not allow the time to be * set to a value earlier than 1 second less than the highest * time we have yet seen. The worst a miscreant can do in * this circumstance is "freeze" time. He couldn't go * back to the past. * * We similarly do not allow the clock to be stepped more * than one second, nor more than once per second. This allows * a miscreant to make the clock march double-time, but no worse. */ if (securelevel_gt(td->td_ucred, 1) != 0) { if (delta.tv_sec < 0 || delta.tv_usec < 0) { /* * Update maxtime to latest time we've seen. */ if (tv1.tv_sec > maxtime.tv_sec) maxtime = tv1; tv2 = *tv; timevalsub(&tv2, &maxtime); if (tv2.tv_sec < -1) { tv->tv_sec = maxtime.tv_sec - 1; printf("Time adjustment clamped to -1 second\n"); } } else { if (tv1.tv_sec == laststep.tv_sec) { splx(s); return (EPERM); } if (delta.tv_sec > 1) { tv->tv_sec = tv1.tv_sec + 1; printf("Time adjustment clamped to +1 second\n"); } laststep = *tv; } } ts.tv_sec = tv->tv_sec; ts.tv_nsec = tv->tv_usec * 1000; mtx_lock(&Giant); tc_setclock(&ts); resettodr(); mtx_unlock(&Giant); return (0); } #ifndef _SYS_SYSPROTO_H_ struct clock_gettime_args { clockid_t clock_id; struct timespec *tp; }; #endif /* ARGSUSED */ int sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) { struct timespec ats; int error; error = kern_clock_gettime(td, uap->clock_id, &ats); if (error == 0) error = copyout(&ats, uap->tp, sizeof(ats)); return (error); } int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) { struct timeval sys, user; struct proc *p; uint64_t runtime, curtime, switchtime; p = td->td_proc; switch (clock_id) { case CLOCK_REALTIME: /* Default to precise. */ case CLOCK_REALTIME_PRECISE: nanotime(ats); break; case CLOCK_REALTIME_FAST: getnanotime(ats); break; case CLOCK_VIRTUAL: PROC_LOCK(p); PROC_SLOCK(p); calcru(p, &user, &sys); PROC_SUNLOCK(p); PROC_UNLOCK(p); TIMEVAL_TO_TIMESPEC(&user, ats); break; case CLOCK_PROF: PROC_LOCK(p); PROC_SLOCK(p); calcru(p, &user, &sys); PROC_SUNLOCK(p); PROC_UNLOCK(p); timevaladd(&user, &sys); TIMEVAL_TO_TIMESPEC(&user, ats); break; case CLOCK_MONOTONIC: /* Default to precise. */ case CLOCK_MONOTONIC_PRECISE: case CLOCK_UPTIME: case CLOCK_UPTIME_PRECISE: nanouptime(ats); break; case CLOCK_UPTIME_FAST: case CLOCK_MONOTONIC_FAST: getnanouptime(ats); break; case CLOCK_SECOND: ats->tv_sec = time_second; ats->tv_nsec = 0; break; case CLOCK_THREAD_CPUTIME_ID: critical_enter(); switchtime = PCPU_GET(switchtime); curtime = cpu_ticks(); runtime = td->td_runtime; critical_exit(); runtime = cputick2usec(runtime + curtime - switchtime); ats->tv_sec = runtime / 1000000; ats->tv_nsec = runtime % 1000000 * 1000; break; default: return (EINVAL); } return (0); } #ifndef _SYS_SYSPROTO_H_ struct clock_settime_args { clockid_t clock_id; const struct timespec *tp; }; #endif /* ARGSUSED */ int sys_clock_settime(struct thread *td, struct clock_settime_args *uap) { struct timespec ats; int error; if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) return (error); return (kern_clock_settime(td, uap->clock_id, &ats)); } int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) { struct timeval atv; int error; if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) return (error); if (clock_id != CLOCK_REALTIME) return (EINVAL); if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000) return (EINVAL); /* XXX Don't convert nsec->usec and back */ TIMESPEC_TO_TIMEVAL(&atv, ats); error = settime(td, &atv); return (error); } #ifndef _SYS_SYSPROTO_H_ struct clock_getres_args { clockid_t clock_id; struct timespec *tp; }; #endif int sys_clock_getres(struct thread *td, struct clock_getres_args *uap) { struct timespec ts; int error; if (uap->tp == NULL) return (0); error = kern_clock_getres(td, uap->clock_id, &ts); if (error == 0) error = copyout(&ts, uap->tp, sizeof(ts)); return (error); } int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) { ts->tv_sec = 0; switch (clock_id) { case CLOCK_REALTIME: case CLOCK_REALTIME_FAST: case CLOCK_REALTIME_PRECISE: case CLOCK_MONOTONIC: case CLOCK_MONOTONIC_FAST: case CLOCK_MONOTONIC_PRECISE: case CLOCK_UPTIME: case CLOCK_UPTIME_FAST: case CLOCK_UPTIME_PRECISE: /* * Round up the result of the division cheaply by adding 1. * Rounding up is especially important if rounding down * would give 0. Perfect rounding is unimportant. */ ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; break; case CLOCK_VIRTUAL: case CLOCK_PROF: /* Accurately round up here because we can do so cheaply. */ ts->tv_nsec = (1000000000 + hz - 1) / hz; break; case CLOCK_SECOND: ts->tv_sec = 1; ts->tv_nsec = 0; break; case CLOCK_THREAD_CPUTIME_ID: /* sync with cputick2usec */ ts->tv_nsec = 1000000 / cpu_tickrate(); if (ts->tv_nsec == 0) ts->tv_nsec = 1000; break; default: return (EINVAL); } return (0); } static int nanowait; int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) { struct timespec ts, ts2, ts3; struct timeval tv; int error; if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) return (EINVAL); if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) return (0); getnanouptime(&ts); timespecadd(&ts, rqt); TIMESPEC_TO_TIMEVAL(&tv, rqt); for (;;) { error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", tvtohz(&tv)); getnanouptime(&ts2); if (error != EWOULDBLOCK) { if (error == ERESTART) error = EINTR; if (rmt != NULL) { timespecsub(&ts, &ts2); if (ts.tv_sec < 0) timespecclear(&ts); *rmt = ts; } return (error); } if (timespeccmp(&ts2, &ts, >=)) return (0); ts3 = ts; timespecsub(&ts3, &ts2); TIMESPEC_TO_TIMEVAL(&tv, &ts3); } } #ifndef _SYS_SYSPROTO_H_ struct nanosleep_args { struct timespec *rqtp; struct timespec *rmtp; }; #endif /* ARGSUSED */ int sys_nanosleep(struct thread *td, struct nanosleep_args *uap) { struct timespec rmt, rqt; int error; error = copyin(uap->rqtp, &rqt, sizeof(rqt)); if (error) return (error); if (uap->rmtp && !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) return (EFAULT); error = kern_nanosleep(td, &rqt, &rmt); if (error && uap->rmtp) { int error2; error2 = copyout(&rmt, uap->rmtp, sizeof(rmt)); if (error2) error = error2; } return (error); } #ifndef _SYS_SYSPROTO_H_ struct gettimeofday_args { struct timeval *tp; struct timezone *tzp; }; #endif /* ARGSUSED */ int sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) { struct timeval atv; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); error = copyout(&atv, uap->tp, sizeof (atv)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = tz_minuteswest; rtz.tz_dsttime = tz_dsttime; error = copyout(&rtz, uap->tzp, sizeof (rtz)); } return (error); } #ifndef _SYS_SYSPROTO_H_ struct settimeofday_args { struct timeval *tv; struct timezone *tzp; }; #endif /* ARGSUSED */ int sys_settimeofday(struct thread *td, struct settimeofday_args *uap) { struct timeval atv, *tvp; struct timezone atz, *tzp; int error; if (uap->tv) { error = copyin(uap->tv, &atv, sizeof(atv)); if (error) return (error); tvp = &atv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &atz, sizeof(atz)); if (error) return (error); tzp = &atz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) { int error; error = priv_check(td, PRIV_SETTIMEOFDAY); if (error) return (error); /* Verify all parameters before changing time. */ if (tv) { if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); error = settime(td, tv); } if (tzp && error == 0) { tz_minuteswest = tzp->tz_minuteswest; tz_dsttime = tzp->tz_dsttime; } return (error); } /* * Get value of an interval timer. The process virtual and profiling virtual * time timers are kept in the p_stats area, since they can be swapped out. * These are kept internally in the way they are specified externally: in * time until they expire. * * The real time interval timer is kept in the process table slot for the * process, and its value (it_value) is kept as an absolute time rather than * as a delta, so that it is easy to keep periodic real-time signals from * drifting. * * Virtual time timers are processed in the hardclock() routine of * kern_clock.c. The real time timer is processed by a timeout routine, * called from the softclock() routine. Since a callout may be delayed in * real time due to interrupt processing in the system, it is possible for * the real time timeout routine (realitexpire, given below), to be delayed * in real time past when it is supposed to occur. It does not suffice, * therefore, to reload the real timer .it_value from the real time timers * .it_interval. Rather, we compute the next time in absolute time the timer * should go off. */ #ifndef _SYS_SYSPROTO_H_ struct getitimer_args { u_int which; struct itimerval *itv; }; #endif int sys_getitimer(struct thread *td, struct getitimer_args *uap) { struct itimerval aitv; int error; error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); } int kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) { struct proc *p = td->td_proc; struct timeval ctv; if (which > ITIMER_PROF) return (EINVAL); if (which == ITIMER_REAL) { /* * Convert from absolute to relative time in .it_value * part of real time timer. If time for real time timer * has passed return 0, else return difference between * current time and time for the timer to go off. */ PROC_LOCK(p); *aitv = p->p_realtimer; PROC_UNLOCK(p); if (timevalisset(&aitv->it_value)) { getmicrouptime(&ctv); if (timevalcmp(&aitv->it_value, &ctv, <)) timevalclear(&aitv->it_value); else timevalsub(&aitv->it_value, &ctv); } } else { PROC_SLOCK(p); *aitv = p->p_stats->p_timer[which]; PROC_SUNLOCK(p); } return (0); } #ifndef _SYS_SYSPROTO_H_ struct setitimer_args { u_int which; struct itimerval *itv, *oitv; }; #endif int sys_setitimer(struct thread *td, struct setitimer_args *uap) { struct itimerval aitv, oitv; int error; if (uap->itv == NULL) { uap->itv = uap->oitv; return (sys_getitimer(td, (struct getitimer_args *)uap)); } if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) return (error); error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); } int kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, struct itimerval *oitv) { struct proc *p = td->td_proc; struct timeval ctv; if (aitv == NULL) return (kern_getitimer(td, which, oitv)); if (which > ITIMER_PROF) return (EINVAL); if (itimerfix(&aitv->it_value)) return (EINVAL); if (!timevalisset(&aitv->it_value)) timevalclear(&aitv->it_interval); else if (itimerfix(&aitv->it_interval)) return (EINVAL); if (which == ITIMER_REAL) { PROC_LOCK(p); if (timevalisset(&p->p_realtimer.it_value)) callout_stop(&p->p_itcallout); getmicrouptime(&ctv); if (timevalisset(&aitv->it_value)) { callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value), realitexpire, p); timevaladd(&aitv->it_value, &ctv); } *oitv = p->p_realtimer; p->p_realtimer = *aitv; PROC_UNLOCK(p); if (timevalisset(&oitv->it_value)) { if (timevalcmp(&oitv->it_value, &ctv, <)) timevalclear(&oitv->it_value); else timevalsub(&oitv->it_value, &ctv); } } else { PROC_SLOCK(p); *oitv = p->p_stats->p_timer[which]; p->p_stats->p_timer[which] = *aitv; PROC_SUNLOCK(p); } return (0); } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. * tvtohz() always adds 1 to allow for the time until the next clock * interrupt being strictly less than 1 clock tick, but we don't want * that here since we want to appear to be in sync with the clock * interrupt even when we're delayed. */ void realitexpire(void *arg) { struct proc *p; struct timeval ctv, ntv; p = (struct proc *)arg; PROC_LOCK(p); kern_psignal(p, SIGALRM); if (!timevalisset(&p->p_realtimer.it_interval)) { timevalclear(&p->p_realtimer.it_value); if (p->p_flag & P_WEXIT) wakeup(&p->p_itcallout); PROC_UNLOCK(p); return; } for (;;) { timevaladd(&p->p_realtimer.it_value, &p->p_realtimer.it_interval); getmicrouptime(&ctv); if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { ntv = p->p_realtimer.it_value; timevalsub(&ntv, &ctv); callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1, realitexpire, p); PROC_UNLOCK(p); return; } } /*NOTREACHED*/ } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable, and * fix it to have at least minimal value (i.e. if it is less * than the resolution of the clock, round it up.) */ int itimerfix(struct timeval *tv) { if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) tv->tv_usec = tick; return (0); } /* * Decrement an interval timer by a specified number * of microseconds, which must be less than a second, * i.e. < 1000000. If the timer expires, then reload * it. In this case, carry over (usec - old value) to * reduce the value reloaded into the timer so that * the timer does not drift. This routine assumes * that it is called in a context where the timers * on which it is operating cannot change in value. */ int itimerdecr(struct itimerval *itp, int usec) { if (itp->it_value.tv_usec < usec) { if (itp->it_value.tv_sec == 0) { /* expired, and already in next interval */ usec -= itp->it_value.tv_usec; goto expire; } itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } itp->it_value.tv_usec -= usec; usec = 0; if (timevalisset(&itp->it_value)) return (1); /* expired, exactly at end of interval */ expire: if (timevalisset(&itp->it_interval)) { itp->it_value = itp->it_interval; itp->it_value.tv_usec -= usec; if (itp->it_value.tv_usec < 0) { itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } } else itp->it_value.tv_usec = 0; /* sec is already 0 */ return (0); } /* * Add and subtract routines for timevals. * N.B.: subtract routine doesn't deal with * results which are before the beginning, * it just gets very confused in this case. * Caveat emptor. */ void timevaladd(struct timeval *t1, const struct timeval *t2) { t1->tv_sec += t2->tv_sec; t1->tv_usec += t2->tv_usec; timevalfix(t1); } void timevalsub(struct timeval *t1, const struct timeval *t2) { t1->tv_sec -= t2->tv_sec; t1->tv_usec -= t2->tv_usec; timevalfix(t1); } static void timevalfix(struct timeval *t1) { if (t1->tv_usec < 0) { t1->tv_sec--; t1->tv_usec += 1000000; } if (t1->tv_usec >= 1000000) { t1->tv_sec++; t1->tv_usec -= 1000000; } } /* * ratecheck(): simple time-based rate-limit checking. */ int ratecheck(struct timeval *lasttime, const struct timeval *mininterval) { struct timeval tv, delta; int rv = 0; getmicrouptime(&tv); /* NB: 10ms precision */ delta = tv; timevalsub(&delta, lasttime); /* * check for 0,0 is so that the message will be seen at least once, * even if interval is huge. */ if (timevalcmp(&delta, mininterval, >=) || (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { *lasttime = tv; rv = 1; } return (rv); } /* * ppsratecheck(): packets (or events) per second limitation. * * Return 0 if the limit is to be enforced (e.g. the caller * should drop a packet because of the rate limitation). * * maxpps of 0 always causes zero to be returned. maxpps of -1 * always causes 1 to be returned; this effectively defeats rate * limiting. * * Note that we maintain the struct timeval for compatibility * with other bsd systems. We reuse the storage and just monitor * clock ticks for minimal overhead. */ int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) { int now; /* * Reset the last time and counter if this is the first call * or more than a second has passed since the last update of * lasttime. */ now = ticks; if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { lasttime->tv_sec = now; *curpps = 1; return (maxpps != 0); } else { (*curpps)++; /* NB: ignore potential overflow */ return (maxpps < 0 || *curpps < maxpps); } } static void itimer_start(void) { struct kclock rt_clock = { .timer_create = realtimer_create, .timer_delete = realtimer_delete, .timer_settime = realtimer_settime, .timer_gettime = realtimer_gettime, .event_hook = NULL }; itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); register_posix_clock(CLOCK_REALTIME, &rt_clock); register_posix_clock(CLOCK_MONOTONIC, &rt_clock); p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); } int register_posix_clock(int clockid, struct kclock *clk) { if ((unsigned)clockid >= MAX_CLOCKS) { printf("%s: invalid clockid\n", __func__); return (0); } posix_clocks[clockid] = *clk; return (1); } static int itimer_init(void *mem, int size, int flags) { struct itimer *it; it = (struct itimer *)mem; mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); return (0); } static void itimer_fini(void *mem, int size) { struct itimer *it; it = (struct itimer *)mem; mtx_destroy(&it->it_mtx); } static void itimer_enter(struct itimer *it) { mtx_assert(&it->it_mtx, MA_OWNED); it->it_usecount++; } static void itimer_leave(struct itimer *it) { mtx_assert(&it->it_mtx, MA_OWNED); KASSERT(it->it_usecount > 0, ("invalid it_usecount")); if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) wakeup(it); } #ifndef _SYS_SYSPROTO_H_ struct ktimer_create_args { clockid_t clock_id; struct sigevent * evp; int * timerid; }; #endif int sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) { struct sigevent *evp1, ev; int id; int error; if (uap->evp != NULL) { error = copyin(uap->evp, &ev, sizeof(ev)); if (error != 0) return (error); evp1 = &ev; } else evp1 = NULL; error = kern_timer_create(td, uap->clock_id, evp1, &id, -1); if (error == 0) { error = copyout(&id, uap->timerid, sizeof(int)); if (error != 0) kern_timer_delete(td, id); } return (error); } static int kern_timer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id) { struct proc *p = td->td_proc; struct itimer *it; int id; int error; if (clock_id < 0 || clock_id >= MAX_CLOCKS) return (EINVAL); if (posix_clocks[clock_id].timer_create == NULL) return (EINVAL); if (evp != NULL) { if (evp->sigev_notify != SIGEV_NONE && evp->sigev_notify != SIGEV_SIGNAL && evp->sigev_notify != SIGEV_THREAD_ID) return (EINVAL); if ((evp->sigev_notify == SIGEV_SIGNAL || evp->sigev_notify == SIGEV_THREAD_ID) && !_SIG_VALID(evp->sigev_signo)) return (EINVAL); } if (p->p_itimers == NULL) itimers_alloc(p); it = uma_zalloc(itimer_zone, M_WAITOK); it->it_flags = 0; it->it_usecount = 0; it->it_active = 0; timespecclear(&it->it_time.it_value); timespecclear(&it->it_time.it_interval); it->it_overrun = 0; it->it_overrun_last = 0; it->it_clockid = clock_id; it->it_timerid = -1; it->it_proc = p; ksiginfo_init(&it->it_ksi); it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; error = CLOCK_CALL(clock_id, timer_create, (it)); if (error != 0) goto out; PROC_LOCK(p); if (preset_id != -1) { KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); id = preset_id; if (p->p_itimers->its_timers[id] != NULL) { PROC_UNLOCK(p); error = 0; goto out; } } else { /* * Find a free timer slot, skipping those reserved * for setitimer(). */ for (id = 3; id < TIMER_MAX; id++) if (p->p_itimers->its_timers[id] == NULL) break; if (id == TIMER_MAX) { PROC_UNLOCK(p); error = EAGAIN; goto out; } } it->it_timerid = id; p->p_itimers->its_timers[id] = it; if (evp != NULL) it->it_sigev = *evp; else { it->it_sigev.sigev_notify = SIGEV_SIGNAL; switch (clock_id) { default: case CLOCK_REALTIME: it->it_sigev.sigev_signo = SIGALRM; break; case CLOCK_VIRTUAL: it->it_sigev.sigev_signo = SIGVTALRM; break; case CLOCK_PROF: it->it_sigev.sigev_signo = SIGPROF; break; } it->it_sigev.sigev_value.sival_int = id; } if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; it->it_ksi.ksi_code = SI_TIMER; it->it_ksi.ksi_value = it->it_sigev.sigev_value; it->it_ksi.ksi_timerid = id; } PROC_UNLOCK(p); *timerid = id; return (0); out: ITIMER_LOCK(it); CLOCK_CALL(it->it_clockid, timer_delete, (it)); ITIMER_UNLOCK(it); uma_zfree(itimer_zone, it); return (error); } #ifndef _SYS_SYSPROTO_H_ struct ktimer_delete_args { int timerid; }; #endif int sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) { return (kern_timer_delete(td, uap->timerid)); } static struct itimer * itimer_find(struct proc *p, int timerid) { struct itimer *it; PROC_LOCK_ASSERT(p, MA_OWNED); if ((p->p_itimers == NULL) || (timerid < 0) || (timerid >= TIMER_MAX) || (it = p->p_itimers->its_timers[timerid]) == NULL) { return (NULL); } ITIMER_LOCK(it); if ((it->it_flags & ITF_DELETING) != 0) { ITIMER_UNLOCK(it); it = NULL; } return (it); } static int kern_timer_delete(struct thread *td, int timerid) { struct proc *p = td->td_proc; struct itimer *it; PROC_LOCK(p); it = itimer_find(p, timerid); if (it == NULL) { PROC_UNLOCK(p); return (EINVAL); } PROC_UNLOCK(p); it->it_flags |= ITF_DELETING; while (it->it_usecount > 0) { it->it_flags |= ITF_WANTED; msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); } it->it_flags &= ~ITF_WANTED; CLOCK_CALL(it->it_clockid, timer_delete, (it)); ITIMER_UNLOCK(it); PROC_LOCK(p); if (KSI_ONQ(&it->it_ksi)) sigqueue_take(&it->it_ksi); p->p_itimers->its_timers[timerid] = NULL; PROC_UNLOCK(p); uma_zfree(itimer_zone, it); return (0); } #ifndef _SYS_SYSPROTO_H_ struct ktimer_settime_args { int timerid; int flags; const struct itimerspec * value; struct itimerspec * ovalue; }; #endif int sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) { struct proc *p = td->td_proc; struct itimer *it; struct itimerspec val, oval, *ovalp; int error; error = copyin(uap->value, &val, sizeof(val)); if (error != 0) return (error); if (uap->ovalue != NULL) ovalp = &oval; else ovalp = NULL; PROC_LOCK(p); if (uap->timerid < 3 || (it = itimer_find(p, uap->timerid)) == NULL) { PROC_UNLOCK(p); error = EINVAL; } else { PROC_UNLOCK(p); itimer_enter(it); error = CLOCK_CALL(it->it_clockid, timer_settime, (it, uap->flags, &val, ovalp)); itimer_leave(it); ITIMER_UNLOCK(it); } if (error == 0 && uap->ovalue != NULL) error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); return (error); } #ifndef _SYS_SYSPROTO_H_ struct ktimer_gettime_args { int timerid; struct itimerspec * value; }; #endif int sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) { struct proc *p = td->td_proc; struct itimer *it; struct itimerspec val; int error; PROC_LOCK(p); if (uap->timerid < 3 || (it = itimer_find(p, uap->timerid)) == NULL) { PROC_UNLOCK(p); error = EINVAL; } else { PROC_UNLOCK(p); itimer_enter(it); error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, &val)); itimer_leave(it); ITIMER_UNLOCK(it); } if (error == 0) error = copyout(&val, uap->value, sizeof(val)); return (error); } #ifndef _SYS_SYSPROTO_H_ struct timer_getoverrun_args { int timerid; }; #endif int sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) { struct proc *p = td->td_proc; struct itimer *it; int error ; PROC_LOCK(p); if (uap->timerid < 3 || (it = itimer_find(p, uap->timerid)) == NULL) { PROC_UNLOCK(p); error = EINVAL; } else { td->td_retval[0] = it->it_overrun_last; ITIMER_UNLOCK(it); PROC_UNLOCK(p); error = 0; } return (error); } static int realtimer_create(struct itimer *it) { callout_init_mtx(&it->it_callout, &it->it_mtx, 0); return (0); } static int realtimer_delete(struct itimer *it) { mtx_assert(&it->it_mtx, MA_OWNED); /* * clear timer's value and interval to tell realtimer_expire * to not rearm the timer. */ timespecclear(&it->it_time.it_value); timespecclear(&it->it_time.it_interval); ITIMER_UNLOCK(it); callout_drain(&it->it_callout); ITIMER_LOCK(it); return (0); } static int realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) { struct timespec cts; mtx_assert(&it->it_mtx, MA_OWNED); realtimer_clocktime(it->it_clockid, &cts); *ovalue = it->it_time; if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { timespecsub(&ovalue->it_value, &cts); if (ovalue->it_value.tv_sec < 0 || (ovalue->it_value.tv_sec == 0 && ovalue->it_value.tv_nsec == 0)) { ovalue->it_value.tv_sec = 0; ovalue->it_value.tv_nsec = 1; } } return (0); } static int realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, struct itimerspec *ovalue) { struct timespec cts, ts; struct timeval tv; struct itimerspec val; mtx_assert(&it->it_mtx, MA_OWNED); val = *value; if (itimespecfix(&val.it_value)) return (EINVAL); if (timespecisset(&val.it_value)) { if (itimespecfix(&val.it_interval)) return (EINVAL); } else { timespecclear(&val.it_interval); } if (ovalue != NULL) realtimer_gettime(it, ovalue); it->it_time = val; if (timespecisset(&val.it_value)) { realtimer_clocktime(it->it_clockid, &cts); ts = val.it_value; if ((flags & TIMER_ABSTIME) == 0) { /* Convert to absolute time. */ timespecadd(&it->it_time.it_value, &cts); } else { timespecsub(&ts, &cts); /* * We don't care if ts is negative, tztohz will * fix it. */ } TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, it); } else { callout_stop(&it->it_callout); } return (0); } static void realtimer_clocktime(clockid_t id, struct timespec *ts) { if (id == CLOCK_REALTIME) getnanotime(ts); else /* CLOCK_MONOTONIC */ getnanouptime(ts); } int itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) { struct itimer *it; PROC_LOCK_ASSERT(p, MA_OWNED); it = itimer_find(p, timerid); if (it != NULL) { ksi->ksi_overrun = it->it_overrun; it->it_overrun_last = it->it_overrun; it->it_overrun = 0; ITIMER_UNLOCK(it); return (0); } return (EINVAL); } int itimespecfix(struct timespec *ts) { if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) return (EINVAL); if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) ts->tv_nsec = tick * 1000; return (0); } /* Timeout callback for realtime timer */ static void realtimer_expire(void *arg) { struct timespec cts, ts; struct timeval tv; struct itimer *it; it = (struct itimer *)arg; realtimer_clocktime(it->it_clockid, &cts); /* Only fire if time is reached. */ if (timespeccmp(&cts, &it->it_time.it_value, >=)) { if (timespecisset(&it->it_time.it_interval)) { timespecadd(&it->it_time.it_value, &it->it_time.it_interval); while (timespeccmp(&cts, &it->it_time.it_value, >=)) { if (it->it_overrun < INT_MAX) it->it_overrun++; else it->it_ksi.ksi_errno = ERANGE; timespecadd(&it->it_time.it_value, &it->it_time.it_interval); } } else { /* single shot timer ? */ timespecclear(&it->it_time.it_value); } if (timespecisset(&it->it_time.it_value)) { ts = it->it_time.it_value; timespecsub(&ts, &cts); TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, it); } itimer_enter(it); ITIMER_UNLOCK(it); itimer_fire(it); ITIMER_LOCK(it); itimer_leave(it); } else if (timespecisset(&it->it_time.it_value)) { ts = it->it_time.it_value; timespecsub(&ts, &cts); TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, it); } } void itimer_fire(struct itimer *it) { struct proc *p = it->it_proc; struct thread *td; if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { if (sigev_findtd(p, &it->it_sigev, &td) != 0) { ITIMER_LOCK(it); timespecclear(&it->it_time.it_value); timespecclear(&it->it_time.it_interval); callout_stop(&it->it_callout); ITIMER_UNLOCK(it); return; } if (!KSI_ONQ(&it->it_ksi)) { it->it_ksi.ksi_errno = 0; ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); } else { if (it->it_overrun < INT_MAX) it->it_overrun++; else it->it_ksi.ksi_errno = ERANGE; } PROC_UNLOCK(p); } } static void itimers_alloc(struct proc *p) { struct itimers *its; int i; its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); LIST_INIT(&its->its_virtual); LIST_INIT(&its->its_prof); TAILQ_INIT(&its->its_worklist); for (i = 0; i < TIMER_MAX; i++) its->its_timers[i] = NULL; PROC_LOCK(p); if (p->p_itimers == NULL) { p->p_itimers = its; PROC_UNLOCK(p); } else { PROC_UNLOCK(p); free(its, M_SUBPROC); } } static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) { itimers_event_hook_exit(arg, p); } /* Clean up timers when some process events are being triggered. */ static void itimers_event_hook_exit(void *arg, struct proc *p) { struct itimers *its; struct itimer *it; int event = (int)(intptr_t)arg; int i; if (p->p_itimers != NULL) { its = p->p_itimers; for (i = 0; i < MAX_CLOCKS; ++i) { if (posix_clocks[i].event_hook != NULL) CLOCK_CALL(i, event_hook, (p, i, event)); } /* * According to susv3, XSI interval timers should be inherited * by new image. */ if (event == ITIMER_EV_EXEC) i = 3; else if (event == ITIMER_EV_EXIT) i = 0; else panic("unhandled event"); for (; i < TIMER_MAX; ++i) { if ((it = its->its_timers[i]) != NULL) kern_timer_delete(curthread, i); } if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && its->its_timers[2] == NULL) { free(its, M_SUBPROC); p->p_itimers = NULL; } } }