Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/asmc/@/dev/alc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/asmc/@/dev/alc/if_alc.c |
/*- * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/alc/if_alc.c 229057 2011-12-31 01:07:01Z yongari $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/rman.h> #include <sys/queue.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_llc.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <netinet/tcp.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <machine/in_cksum.h> #include <dev/alc/if_alcreg.h> #include <dev/alc/if_alcvar.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #undef ALC_USE_CUSTOM_CSUM #ifdef ALC_USE_CUSTOM_CSUM #define ALC_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) #else #define ALC_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #endif MODULE_DEPEND(alc, pci, 1, 1, 1); MODULE_DEPEND(alc, ether, 1, 1, 1); MODULE_DEPEND(alc, miibus, 1, 1, 1); /* Tunables. */ static int msi_disable = 0; static int msix_disable = 0; TUNABLE_INT("hw.alc.msi_disable", &msi_disable); TUNABLE_INT("hw.alc.msix_disable", &msix_disable); /* * Devices supported by this driver. */ static struct alc_ident alc_ident_table[] = { { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024, "Atheros AR8131 PCIe Gigabit Ethernet" }, { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024, "Atheros AR8132 PCIe Fast Ethernet" }, { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024, "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" }, { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024, "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" }, { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024, "Atheros AR8152 v1.1 PCIe Fast Ethernet" }, { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024, "Atheros AR8152 v2.0 PCIe Fast Ethernet" }, { 0, 0, 0, NULL} }; static void alc_aspm(struct alc_softc *, int); static int alc_attach(device_t); static int alc_check_boundary(struct alc_softc *); static int alc_detach(device_t); static void alc_disable_l0s_l1(struct alc_softc *); static int alc_dma_alloc(struct alc_softc *); static void alc_dma_free(struct alc_softc *); static void alc_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int alc_encap(struct alc_softc *, struct mbuf **); static struct alc_ident * alc_find_ident(device_t); #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * alc_fixup_rx(struct ifnet *, struct mbuf *); #endif static void alc_get_macaddr(struct alc_softc *); static void alc_init(void *); static void alc_init_cmb(struct alc_softc *); static void alc_init_locked(struct alc_softc *); static void alc_init_rr_ring(struct alc_softc *); static int alc_init_rx_ring(struct alc_softc *); static void alc_init_smb(struct alc_softc *); static void alc_init_tx_ring(struct alc_softc *); static void alc_int_task(void *, int); static int alc_intr(void *); static int alc_ioctl(struct ifnet *, u_long, caddr_t); static void alc_mac_config(struct alc_softc *); static int alc_miibus_readreg(device_t, int, int); static void alc_miibus_statchg(device_t); static int alc_miibus_writereg(device_t, int, int, int); static int alc_mediachange(struct ifnet *); static void alc_mediastatus(struct ifnet *, struct ifmediareq *); static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *); static void alc_phy_down(struct alc_softc *); static void alc_phy_reset(struct alc_softc *); static int alc_probe(device_t); static void alc_reset(struct alc_softc *); static int alc_resume(device_t); static void alc_rxeof(struct alc_softc *, struct rx_rdesc *); static int alc_rxintr(struct alc_softc *, int); static void alc_rxfilter(struct alc_softc *); static void alc_rxvlan(struct alc_softc *); static void alc_setlinkspeed(struct alc_softc *); static void alc_setwol(struct alc_softc *); static int alc_shutdown(device_t); static void alc_start(struct ifnet *); static void alc_start_locked(struct ifnet *); static void alc_start_queue(struct alc_softc *); static void alc_stats_clear(struct alc_softc *); static void alc_stats_update(struct alc_softc *); static void alc_stop(struct alc_softc *); static void alc_stop_mac(struct alc_softc *); static void alc_stop_queue(struct alc_softc *); static int alc_suspend(device_t); static void alc_sysctl_node(struct alc_softc *); static void alc_tick(void *); static void alc_txeof(struct alc_softc *); static void alc_watchdog(struct alc_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS); static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS); static device_method_t alc_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, alc_probe), DEVMETHOD(device_attach, alc_attach), DEVMETHOD(device_detach, alc_detach), DEVMETHOD(device_shutdown, alc_shutdown), DEVMETHOD(device_suspend, alc_suspend), DEVMETHOD(device_resume, alc_resume), /* MII interface. */ DEVMETHOD(miibus_readreg, alc_miibus_readreg), DEVMETHOD(miibus_writereg, alc_miibus_writereg), DEVMETHOD(miibus_statchg, alc_miibus_statchg), { NULL, NULL } }; static driver_t alc_driver = { "alc", alc_methods, sizeof(struct alc_softc) }; static devclass_t alc_devclass; DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0); DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0); static struct resource_spec alc_res_spec_mem[] = { { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec alc_irq_spec_legacy[] = { { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static struct resource_spec alc_irq_spec_msi[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec alc_irq_spec_msix[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 }; static int alc_miibus_readreg(device_t dev, int phy, int reg) { struct alc_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); /* * For AR8132 fast ethernet controller, do not report 1000baseT * capability to mii(4). Even though AR8132 uses the same * model/revision number of F1 gigabit PHY, the PHY has no * ability to establish 1000baseT link. */ if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) return (0); CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALC_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALC_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { device_printf(sc->alc_dev, "phy read timeout : %d\n", reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } static int alc_miibus_writereg(device_t dev, int phy, int reg, int val) { struct alc_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALC_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALC_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) device_printf(sc->alc_dev, "phy write timeout : %d\n", reg); return (0); } static void alc_miibus_statchg(device_t dev) { struct alc_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t reg; sc = device_get_softc(dev); mii = device_get_softc(sc->alc_miibus); ifp = sc->alc_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->alc_flags &= ~ALC_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->alc_flags |= ALC_FLAG_LINK; break; case IFM_1000_T: if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) sc->alc_flags |= ALC_FLAG_LINK; break; default: break; } } alc_stop_queue(sc); /* Stop Rx/Tx MACs. */ alc_stop_mac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { alc_start_queue(sc); alc_mac_config(sc); /* Re-enable Tx/Rx MACs. */ reg = CSR_READ_4(sc, ALC_MAC_CFG); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active)); } } static void alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct alc_softc *sc; struct mii_data *mii; sc = ifp->if_softc; ALC_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { ALC_UNLOCK(sc); return; } mii = device_get_softc(sc->alc_miibus); mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; ALC_UNLOCK(sc); } static int alc_mediachange(struct ifnet *ifp) { struct alc_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; ALC_LOCK(sc); mii = device_get_softc(sc->alc_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); ALC_UNLOCK(sc); return (error); } static struct alc_ident * alc_find_ident(device_t dev) { struct alc_ident *ident; uint16_t vendor, devid; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); for (ident = alc_ident_table; ident->name != NULL; ident++) { if (vendor == ident->vendorid && devid == ident->deviceid) return (ident); } return (NULL); } static int alc_probe(device_t dev) { struct alc_ident *ident; ident = alc_find_ident(dev); if (ident != NULL) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static void alc_get_macaddr(struct alc_softc *sc) { uint32_t ea[2], opt; uint16_t val; int eeprom, i; eeprom = 0; opt = CSR_READ_4(sc, ALC_OPT_CFG); if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 && (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) { /* * EEPROM found, let TWSI reload EEPROM configuration. * This will set ethernet address of controller. */ eeprom++; switch (sc->alc_ident->deviceid) { case DEVICEID_ATHEROS_AR8131: case DEVICEID_ATHEROS_AR8132: if ((opt & OPT_CFG_CLK_ENB) == 0) { opt |= OPT_CFG_CLK_ENB; CSR_WRITE_4(sc, ALC_OPT_CFG, opt); CSR_READ_4(sc, ALC_OPT_CFG); DELAY(1000); } break; case DEVICEID_ATHEROS_AR8151: case DEVICEID_ATHEROS_AR8151_V2: case DEVICEID_ATHEROS_AR8152_B: case DEVICEID_ATHEROS_AR8152_B2: alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x00); val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val & 0xFF7F); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x3B); val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val | 0x0008); DELAY(20); break; } CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); CSR_WRITE_4(sc, ALC_WOL_CFG, 0); CSR_READ_4(sc, ALC_WOL_CFG); CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) | TWSI_CFG_SW_LD_START); for (i = 100; i > 0; i--) { DELAY(1000); if ((CSR_READ_4(sc, ALC_TWSI_CFG) & TWSI_CFG_SW_LD_START) == 0) break; } if (i == 0) device_printf(sc->alc_dev, "reloading EEPROM timeout!\n"); } else { if (bootverbose) device_printf(sc->alc_dev, "EEPROM not found!\n"); } if (eeprom != 0) { switch (sc->alc_ident->deviceid) { case DEVICEID_ATHEROS_AR8131: case DEVICEID_ATHEROS_AR8132: if ((opt & OPT_CFG_CLK_ENB) != 0) { opt &= ~OPT_CFG_CLK_ENB; CSR_WRITE_4(sc, ALC_OPT_CFG, opt); CSR_READ_4(sc, ALC_OPT_CFG); DELAY(1000); } break; case DEVICEID_ATHEROS_AR8151: case DEVICEID_ATHEROS_AR8151_V2: case DEVICEID_ATHEROS_AR8152_B: case DEVICEID_ATHEROS_AR8152_B2: alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x00); val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val | 0x0080); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x3B); val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val & 0xFFF7); DELAY(20); break; } } ea[0] = CSR_READ_4(sc, ALC_PAR0); ea[1] = CSR_READ_4(sc, ALC_PAR1); sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF; } static void alc_disable_l0s_l1(struct alc_softc *sc) { uint32_t pmcfg; /* Another magic from vendor. */ pmcfg = CSR_READ_4(sc, ALC_PM_CFG); pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 | PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1); pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB; CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); } static void alc_phy_reset(struct alc_softc *sc) { uint16_t data; /* Reset magic from Linux. */ CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET); CSR_READ_2(sc, ALC_GPHY_CFG); DELAY(10 * 1000); CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | GPHY_CFG_SEL_ANA_RESET); CSR_READ_2(sc, ALC_GPHY_CFG); DELAY(10 * 1000); /* DSP fixup, Vendor magic. */ if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) { alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x000A); data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data & 0xDFFF); } if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) { alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x003B); data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data & 0xFFF7); DELAY(20 * 1000); } if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) { alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 0x929D); } if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) { alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 0xB6DD); } /* Load DSP codes, vendor magic. */ data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG18); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) | ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | ANA_SERDES_EN_LCKDT; alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG5); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) & ANA_LONG_CABLE_TH_100_MASK) | ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) & ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW; alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG54); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) | ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) | ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) | ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG4); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) | ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M; alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG0); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); DELAY(1000); /* Disable hibernation. */ alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); data &= ~0x8000; alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x000B); data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); data &= ~0x8000; alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); } static void alc_phy_down(struct alc_softc *sc) { switch (sc->alc_ident->deviceid) { case DEVICEID_ATHEROS_AR8151: case DEVICEID_ATHEROS_AR8151_V2: /* * GPHY power down caused more problems on AR8151 v2.0. * When driver is reloaded after GPHY power down, * accesses to PHY/MAC registers hung the system. Only * cold boot recovered from it. I'm not sure whether * AR8151 v1.0 also requires this one though. I don't * have AR8151 v1.0 controller in hand. * The only option left is to isolate the PHY and * initiates power down the PHY which in turn saves * more power when driver is unloaded. */ alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_BMCR, BMCR_ISO | BMCR_PDOWN); break; default: /* Force PHY down. */ CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW); DELAY(1000); break; } } static void alc_aspm(struct alc_softc *sc, int media) { uint32_t pmcfg; uint16_t linkcfg; ALC_LOCK_ASSERT(sc); pmcfg = CSR_READ_4(sc, ALC_PM_CFG); if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) == (ALC_FLAG_APS | ALC_FLAG_PCIE)) linkcfg = CSR_READ_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL); else linkcfg = 0; pmcfg &= ~PM_CFG_SERDES_PD_EX_L1; pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK); pmcfg |= PM_CFG_MAC_ASPM_CHK; pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT); pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); if ((sc->alc_flags & ALC_FLAG_APS) != 0) { /* Disable extended sync except AR8152 B v1.0 */ linkcfg &= ~0x80; if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B && sc->alc_rev == ATHEROS_AR8152_B_V10) linkcfg |= 0x80; CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL, linkcfg); pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB | PM_CFG_HOTRST); pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT << PM_CFG_L1_ENTRY_TIMER_SHIFT); pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK; pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT << PM_CFG_PM_REQ_TIMER_SHIFT); pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV; } if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { if ((sc->alc_flags & ALC_FLAG_L0S) != 0) pmcfg |= PM_CFG_ASPM_L0S_ENB; if ((sc->alc_flags & ALC_FLAG_L1S) != 0) pmcfg |= PM_CFG_ASPM_L1_ENB; if ((sc->alc_flags & ALC_FLAG_APS) != 0) { if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) pmcfg &= ~PM_CFG_ASPM_L0S_ENB; pmcfg &= ~(PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_BUDS_RX_L1_ENB); pmcfg |= PM_CFG_CLK_SWH_L1; if (media == IFM_100_TX || media == IFM_1000_T) { pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK; switch (sc->alc_ident->deviceid) { case DEVICEID_ATHEROS_AR8152_B: pmcfg |= (7 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; case DEVICEID_ATHEROS_AR8152_B2: case DEVICEID_ATHEROS_AR8151_V2: pmcfg |= (4 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; default: pmcfg |= (15 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; } } } else { pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_BUDS_RX_L1_ENB; pmcfg &= ~(PM_CFG_CLK_SWH_L1 | PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); } } else { pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB); pmcfg |= PM_CFG_CLK_SWH_L1; if ((sc->alc_flags & ALC_FLAG_L1S) != 0) pmcfg |= PM_CFG_ASPM_L1_ENB; } CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); } static int alc_attach(device_t dev) { struct alc_softc *sc; struct ifnet *ifp; char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" }; uint16_t burst; int base, error, i, msic, msixc, state; uint32_t cap, ctl, val; error = 0; sc = device_get_softc(dev); sc->alc_dev = dev; mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0); TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc); sc->alc_ident = alc_find_ident(dev); /* Map the device. */ pci_enable_busmaster(dev); sc->alc_res_spec = alc_res_spec_mem; sc->alc_irq_spec = alc_irq_spec_legacy; error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res); if (error != 0) { device_printf(dev, "cannot allocate memory resources.\n"); goto fail; } /* Set PHY address. */ sc->alc_phyaddr = ALC_PHY_ADDR; /* Initialize DMA parameters. */ sc->alc_dma_rd_burst = 0; sc->alc_dma_wr_burst = 0; sc->alc_rcb = DMA_CFG_RCB_64; if (pci_find_cap(dev, PCIY_EXPRESS, &base) == 0) { sc->alc_flags |= ALC_FLAG_PCIE; sc->alc_expcap = base; burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL); sc->alc_dma_rd_burst = (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12; sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5; if (bootverbose) { device_printf(dev, "Read request size : %u bytes.\n", alc_dma_burst[sc->alc_dma_rd_burst]); device_printf(dev, "TLP payload size : %u bytes.\n", alc_dma_burst[sc->alc_dma_wr_burst]); } if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024) sc->alc_dma_rd_burst = 3; if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024) sc->alc_dma_wr_burst = 3; /* Clear data link and flow-control protocol error. */ val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV); val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP); CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val); CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, CSR_READ_4(sc, ALC_PCIE_PHYMISC) | PCIE_PHYMISC_FORCE_RCV_DET); if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B && pci_get_revid(dev) == ATHEROS_AR8152_B_V10) { val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2); val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK | PCIE_PHYMISC2_SERDES_TH_MASK); val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT; val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT; CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val); } /* Disable ASPM L0S and L1. */ cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP); if ((cap & PCIM_LINK_CAP_ASPM) != 0) { ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL); if ((ctl & 0x08) != 0) sc->alc_rcb = DMA_CFG_RCB_128; if (bootverbose) device_printf(dev, "RCB %u bytes\n", sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128); state = ctl & 0x03; if (state & 0x01) sc->alc_flags |= ALC_FLAG_L0S; if (state & 0x02) sc->alc_flags |= ALC_FLAG_L1S; if (bootverbose) device_printf(sc->alc_dev, "ASPM %s %s\n", aspm_state[state], state == 0 ? "disabled" : "enabled"); alc_disable_l0s_l1(sc); } else { if (bootverbose) device_printf(sc->alc_dev, "no ASPM support\n"); } } /* Reset PHY. */ alc_phy_reset(sc); /* Reset the ethernet controller. */ alc_reset(sc); /* * One odd thing is AR8132 uses the same PHY hardware(F1 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports * the PHY supports 1000Mbps but that's not true. The PHY * used in AR8132 can't establish gigabit link even if it * shows the same PHY model/revision number of AR8131. */ switch (sc->alc_ident->deviceid) { case DEVICEID_ATHEROS_AR8152_B: case DEVICEID_ATHEROS_AR8152_B2: sc->alc_flags |= ALC_FLAG_APS; /* FALLTHROUGH */ case DEVICEID_ATHEROS_AR8132: sc->alc_flags |= ALC_FLAG_FASTETHER; break; case DEVICEID_ATHEROS_AR8151: case DEVICEID_ATHEROS_AR8151_V2: sc->alc_flags |= ALC_FLAG_APS; /* FALLTHROUGH */ default: break; } sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO; /* * It seems that AR813x/AR815x has silicon bug for SMB. In * addition, Atheros said that enabling SMB wouldn't improve * performance. However I think it's bad to access lots of * registers to extract MAC statistics. */ sc->alc_flags |= ALC_FLAG_SMB_BUG; /* * Don't use Tx CMB. It is known to have silicon bug. */ sc->alc_flags |= ALC_FLAG_CMB_BUG; sc->alc_rev = pci_get_revid(dev); sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (bootverbose) { device_printf(dev, "PCI device revision : 0x%04x\n", sc->alc_rev); device_printf(dev, "Chip id/revision : 0x%04x\n", sc->alc_chip_rev); } device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8, CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8); /* Allocate IRQ resources. */ msixc = pci_msix_count(dev); msic = pci_msi_count(dev); if (bootverbose) { device_printf(dev, "MSIX count : %d\n", msixc); device_printf(dev, "MSI count : %d\n", msic); } /* Prefer MSIX over MSI. */ if (msix_disable == 0 || msi_disable == 0) { if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES && pci_alloc_msix(dev, &msixc) == 0) { if (msic == ALC_MSIX_MESSAGES) { device_printf(dev, "Using %d MSIX message(s).\n", msixc); sc->alc_flags |= ALC_FLAG_MSIX; sc->alc_irq_spec = alc_irq_spec_msix; } else pci_release_msi(dev); } if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 && msic == ALC_MSI_MESSAGES && pci_alloc_msi(dev, &msic) == 0) { if (msic == ALC_MSI_MESSAGES) { device_printf(dev, "Using %d MSI message(s).\n", msic); sc->alc_flags |= ALC_FLAG_MSI; sc->alc_irq_spec = alc_irq_spec_msi; } else pci_release_msi(dev); } } error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq); if (error != 0) { device_printf(dev, "cannot allocate IRQ resources.\n"); goto fail; } /* Create device sysctl node. */ alc_sysctl_node(sc); if ((error = alc_dma_alloc(sc) != 0)) goto fail; /* Load station address. */ alc_get_macaddr(sc); ifp = sc->alc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure.\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = alc_ioctl; ifp->if_start = alc_start; ifp->if_init = alc_init; ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO; if (pci_find_cap(dev, PCIY_PMG, &base) == 0) { ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; sc->alc_flags |= ALC_FLAG_PM; sc->alc_pmcap = base; } ifp->if_capenable = ifp->if_capabilities; /* Set up MII bus. */ error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange, alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY, MIIF_DOPAUSE); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, sc->alc_eaddr); /* VLAN capability setup. */ ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; ifp->if_capenable = ifp->if_capabilities; /* * XXX * It seems enabling Tx checksum offloading makes more trouble. * Sometimes the controller does not receive any frames when * Tx checksum offloading is enabled. I'm not sure whether this * is a bug in Tx checksum offloading logic or I got broken * sample boards. To safety, don't enable Tx checksum offloading * by default but give chance to users to toggle it if they know * their controllers work without problems. */ ifp->if_capenable &= ~IFCAP_TXCSUM; ifp->if_hwassist &= ~ALC_CSUM_FEATURES; /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* Create local taskq. */ sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->alc_tq); if (sc->alc_tq == NULL) { device_printf(dev, "could not create taskqueue.\n"); ether_ifdetach(ifp); error = ENXIO; goto fail; } taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->alc_dev)); if ((sc->alc_flags & ALC_FLAG_MSIX) != 0) msic = ALC_MSIX_MESSAGES; else if ((sc->alc_flags & ALC_FLAG_MSI) != 0) msic = ALC_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { error = bus_setup_intr(dev, sc->alc_irq[i], INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc, &sc->alc_intrhand[i]); if (error != 0) break; } if (error != 0) { device_printf(dev, "could not set up interrupt handler.\n"); taskqueue_free(sc->alc_tq); sc->alc_tq = NULL; ether_ifdetach(ifp); goto fail; } fail: if (error != 0) alc_detach(dev); return (error); } static int alc_detach(device_t dev) { struct alc_softc *sc; struct ifnet *ifp; int i, msic; sc = device_get_softc(dev); ifp = sc->alc_ifp; if (device_is_attached(dev)) { ether_ifdetach(ifp); ALC_LOCK(sc); alc_stop(sc); ALC_UNLOCK(sc); callout_drain(&sc->alc_tick_ch); taskqueue_drain(sc->alc_tq, &sc->alc_int_task); } if (sc->alc_tq != NULL) { taskqueue_drain(sc->alc_tq, &sc->alc_int_task); taskqueue_free(sc->alc_tq); sc->alc_tq = NULL; } if (sc->alc_miibus != NULL) { device_delete_child(dev, sc->alc_miibus); sc->alc_miibus = NULL; } bus_generic_detach(dev); alc_dma_free(sc); if (ifp != NULL) { if_free(ifp); sc->alc_ifp = NULL; } if ((sc->alc_flags & ALC_FLAG_MSIX) != 0) msic = ALC_MSIX_MESSAGES; else if ((sc->alc_flags & ALC_FLAG_MSI) != 0) msic = ALC_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { if (sc->alc_intrhand[i] != NULL) { bus_teardown_intr(dev, sc->alc_irq[i], sc->alc_intrhand[i]); sc->alc_intrhand[i] = NULL; } } if (sc->alc_res[0] != NULL) alc_phy_down(sc); bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq); if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0) pci_release_msi(dev); bus_release_resources(dev, sc->alc_res_spec, sc->alc_res); mtx_destroy(&sc->alc_mtx); return (0); } #define ALC_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) #define ALC_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) static void alc_sysctl_node(struct alc_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct alc_hw_stats *stats; int error; stats = &sc->alc_stats; ctx = device_get_sysctl_ctx(sc->alc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0, sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0, sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation"); /* Pull in device tunables. */ sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; error = resource_int_value(device_get_name(sc->alc_dev), device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod); if (error == 0) { if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN || sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) { device_printf(sc->alc_dev, "int_rx_mod value out of " "range; using default: %d\n", ALC_IM_RX_TIMER_DEFAULT); sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; } } sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; error = resource_int_value(device_get_name(sc->alc_dev), device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod); if (error == 0) { if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN || sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) { device_printf(sc->alc_dev, "int_tx_mod value out of " "range; using default: %d\n", ALC_IM_TX_TIMER_DEFAULT); sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; } } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0, sysctl_hw_alc_proc_limit, "I", "max number of Rx events to process"); /* Pull in device tunables. */ sc->alc_process_limit = ALC_PROC_DEFAULT; error = resource_int_value(device_get_name(sc->alc_dev), device_get_unit(sc->alc_dev), "process_limit", &sc->alc_process_limit); if (error == 0) { if (sc->alc_process_limit < ALC_PROC_MIN || sc->alc_process_limit > ALC_PROC_MAX) { device_printf(sc->alc_dev, "process_limit value out of range; " "using default: %d\n", ALC_PROC_DEFAULT); sc->alc_process_limit = ALC_PROC_DEFAULT; } } tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "ALC statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "Rx MAC statistics"); child = SYSCTL_CHILDREN(tree); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->rx_frames, "Good frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->rx_bcast_frames, "Good broadcast frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->rx_mcast_frames, "Good multicast frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->rx_pause_frames, "Pause control frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames", &stats->rx_control_frames, "Control frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", &stats->rx_crcerrs, "CRC errors"); ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->rx_lenerrs, "Frames with length mismatched"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->rx_bytes, "Good octets"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", &stats->rx_bcast_bytes, "Good broadcast octets"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", &stats->rx_mcast_bytes, "Good multicast octets"); ALC_SYSCTL_STAT_ADD32(ctx, child, "runts", &stats->rx_runts, "Too short frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments", &stats->rx_fragments, "Fragmented frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->rx_pkts_64, "64 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->rx_pkts_65_127, "65 to 127 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->rx_pkts_128_255, "128 to 255 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->rx_pkts_256_511, "256 to 511 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", &stats->rx_pkts_1519_max, "1519 to max frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", &stats->rx_fifo_oflows, "FIFO overflows"); ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", &stats->rx_rrs_errs, "Return status write-back errors"); ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs", &stats->rx_alignerrs, "Alignment errors"); ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered", &stats->rx_pkts_filtered, "Frames dropped due to address filtering"); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->tx_frames, "Good frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->tx_bcast_frames, "Good broadcast frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->tx_mcast_frames, "Good multicast frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->tx_pause_frames, "Pause control frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames", &stats->tx_control_frames, "Control frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", &stats->tx_excess_defer, "Frames with excessive derferrals"); ALC_SYSCTL_STAT_ADD32(ctx, child, "defers", &stats->tx_excess_defer, "Frames with derferrals"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->tx_bytes, "Good octets"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", &stats->tx_bcast_bytes, "Good broadcast octets"); ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", &stats->tx_mcast_bytes, "Good multicast octets"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->tx_pkts_64, "64 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->tx_pkts_65_127, "65 to 127 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->tx_pkts_128_255, "128 to 255 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->tx_pkts_256_511, "256 to 511 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", &stats->tx_pkts_1519_max, "1519 to max frames"); ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls", &stats->tx_single_colls, "Single collisions"); ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", &stats->tx_multi_colls, "Multiple collisions"); ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls", &stats->tx_late_colls, "Late collisions"); ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", &stats->tx_excess_colls, "Excessive collisions"); ALC_SYSCTL_STAT_ADD32(ctx, child, "abort", &stats->tx_abort, "Aborted frames due to Excessive collisions"); ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns", &stats->tx_underrun, "FIFO underruns"); ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", &stats->tx_desc_underrun, "Descriptor write-back errors"); ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->tx_lenerrs, "Frames with length mismatched"); ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); } #undef ALC_SYSCTL_STAT_ADD32 #undef ALC_SYSCTL_STAT_ADD64 struct alc_dmamap_arg { bus_addr_t alc_busaddr; }; static void alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct alc_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct alc_dmamap_arg *)arg; ctx->alc_busaddr = segs[0].ds_addr; } /* * Normal and high Tx descriptors shares single Tx high address. * Four Rx descriptor/return rings and CMB shares the same Rx * high address. */ static int alc_check_boundary(struct alc_softc *sc) { bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end; rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ; rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ; cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ; tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ; /* 4GB boundary crossing is not allowed. */ if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) || (ALC_ADDR_HI(rr_ring_end) != ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) || (ALC_ADDR_HI(cmb_end) != ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) || (ALC_ADDR_HI(tx_ring_end) != ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr))) return (EFBIG); /* * Make sure Rx return descriptor/Rx descriptor/CMB use * the same high address. */ if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) || (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end))) return (EFBIG); return (0); } static int alc_dma_alloc(struct alc_softc *sc) { struct alc_txdesc *txd; struct alc_rxdesc *rxd; bus_addr_t lowaddr; struct alc_dmamap_arg ctx; int error, i; lowaddr = BUS_SPACE_MAXADDR; again: /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->alc_dev), /* parent */ 1, 0, /* alignment, boundary */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_parent_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create DMA tag for Tx descriptor ring. */ error = bus_dma_tag_create( sc->alc_cdata.alc_parent_tag, /* parent */ ALC_TX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ ALC_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_tx_ring_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create Tx ring DMA tag.\n"); goto fail; } /* Create DMA tag for Rx free descriptor ring. */ error = bus_dma_tag_create( sc->alc_cdata.alc_parent_tag, /* parent */ ALC_RX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ ALC_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_rx_ring_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create Rx ring DMA tag.\n"); goto fail; } /* Create DMA tag for Rx return descriptor ring. */ error = bus_dma_tag_create( sc->alc_cdata.alc_parent_tag, /* parent */ ALC_RR_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_RR_RING_SZ, /* maxsize */ 1, /* nsegments */ ALC_RR_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_rr_ring_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create Rx return ring DMA tag.\n"); goto fail; } /* Create DMA tag for coalescing message block. */ error = bus_dma_tag_create( sc->alc_cdata.alc_parent_tag, /* parent */ ALC_CMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_CMB_SZ, /* maxsize */ 1, /* nsegments */ ALC_CMB_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_cmb_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create CMB DMA tag.\n"); goto fail; } /* Create DMA tag for status message block. */ error = bus_dma_tag_create( sc->alc_cdata.alc_parent_tag, /* parent */ ALC_SMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_SMB_SZ, /* maxsize */ 1, /* nsegments */ ALC_SMB_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_smb_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create SMB DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag, (void **)&sc->alc_rdata.alc_tx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->alc_cdata.alc_tx_ring_map); if (error != 0) { device_printf(sc->alc_dev, "could not allocate DMA'able memory for Tx ring.\n"); goto fail; } ctx.alc_busaddr = 0; error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag, sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0); if (error != 0 || ctx.alc_busaddr == 0) { device_printf(sc->alc_dev, "could not load DMA'able memory for Tx ring.\n"); goto fail; } sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag, (void **)&sc->alc_rdata.alc_rx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->alc_cdata.alc_rx_ring_map); if (error != 0) { device_printf(sc->alc_dev, "could not allocate DMA'able memory for Rx ring.\n"); goto fail; } ctx.alc_busaddr = 0; error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag, sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0); if (error != 0 || ctx.alc_busaddr == 0) { device_printf(sc->alc_dev, "could not load DMA'able memory for Rx ring.\n"); goto fail; } sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx return ring. */ error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag, (void **)&sc->alc_rdata.alc_rr_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->alc_cdata.alc_rr_ring_map); if (error != 0) { device_printf(sc->alc_dev, "could not allocate DMA'able memory for Rx return ring.\n"); goto fail; } ctx.alc_busaddr = 0; error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag, sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0); if (error != 0 || ctx.alc_busaddr == 0) { device_printf(sc->alc_dev, "could not load DMA'able memory for Tx ring.\n"); goto fail; } sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr; /* Allocate DMA'able memory and load the DMA map for CMB. */ error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag, (void **)&sc->alc_rdata.alc_cmb, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->alc_cdata.alc_cmb_map); if (error != 0) { device_printf(sc->alc_dev, "could not allocate DMA'able memory for CMB.\n"); goto fail; } ctx.alc_busaddr = 0; error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb, ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0); if (error != 0 || ctx.alc_busaddr == 0) { device_printf(sc->alc_dev, "could not load DMA'able memory for CMB.\n"); goto fail; } sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr; /* Allocate DMA'able memory and load the DMA map for SMB. */ error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag, (void **)&sc->alc_rdata.alc_smb, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->alc_cdata.alc_smb_map); if (error != 0) { device_printf(sc->alc_dev, "could not allocate DMA'able memory for SMB.\n"); goto fail; } ctx.alc_busaddr = 0; error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb, ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0); if (error != 0 || ctx.alc_busaddr == 0) { device_printf(sc->alc_dev, "could not load DMA'able memory for CMB.\n"); goto fail; } sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr; /* Make sure we've not crossed 4GB boundary. */ if (lowaddr != BUS_SPACE_MAXADDR_32BIT && (error = alc_check_boundary(sc)) != 0) { device_printf(sc->alc_dev, "4GB boundary crossed, " "switching to 32bit DMA addressing mode.\n"); alc_dma_free(sc); /* * Limit max allowable DMA address space to 32bit * and try again. */ lowaddr = BUS_SPACE_MAXADDR_32BIT; goto again; } /* * Create Tx buffer parent tag. * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers * so it needs separate parent DMA tag as parent DMA address * space could be restricted to be within 32bit address space * by 4GB boundary crossing. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->alc_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_buffer_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create parent buffer DMA tag.\n"); goto fail; } /* Create DMA tag for Tx buffers. */ error = bus_dma_tag_create( sc->alc_cdata.alc_buffer_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALC_TSO_MAXSIZE, /* maxsize */ ALC_MAXTXSEGS, /* nsegments */ ALC_TSO_MAXSEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_tx_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create Tx DMA tag.\n"); goto fail; } /* Create DMA tag for Rx buffers. */ error = bus_dma_tag_create( sc->alc_cdata.alc_buffer_tag, /* parent */ ALC_RX_BUF_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->alc_cdata.alc_rx_tag); if (error != 0) { device_printf(sc->alc_dev, "could not create Rx DMA tag.\n"); goto fail; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->alc_dev, "could not create Tx dmamap.\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0, &sc->alc_cdata.alc_rx_sparemap)) != 0) { device_printf(sc->alc_dev, "could not create spare Rx dmamap.\n"); goto fail; } for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->alc_dev, "could not create Rx dmamap.\n"); goto fail; } } fail: return (error); } static void alc_dma_free(struct alc_softc *sc) { struct alc_txdesc *txd; struct alc_rxdesc *rxd; int i; /* Tx buffers. */ if (sc->alc_cdata.alc_tx_tag != NULL) { for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag); sc->alc_cdata.alc_tx_tag = NULL; } /* Rx buffers */ if (sc->alc_cdata.alc_rx_tag != NULL) { for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->alc_cdata.alc_rx_sparemap != NULL) { bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag, sc->alc_cdata.alc_rx_sparemap); sc->alc_cdata.alc_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag); sc->alc_cdata.alc_rx_tag = NULL; } /* Tx descriptor ring. */ if (sc->alc_cdata.alc_tx_ring_tag != NULL) { if (sc->alc_cdata.alc_tx_ring_map != NULL) bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag, sc->alc_cdata.alc_tx_ring_map); if (sc->alc_cdata.alc_tx_ring_map != NULL && sc->alc_rdata.alc_tx_ring != NULL) bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag, sc->alc_rdata.alc_tx_ring, sc->alc_cdata.alc_tx_ring_map); sc->alc_rdata.alc_tx_ring = NULL; sc->alc_cdata.alc_tx_ring_map = NULL; bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag); sc->alc_cdata.alc_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->alc_cdata.alc_rx_ring_tag != NULL) { if (sc->alc_cdata.alc_rx_ring_map != NULL) bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag, sc->alc_cdata.alc_rx_ring_map); if (sc->alc_cdata.alc_rx_ring_map != NULL && sc->alc_rdata.alc_rx_ring != NULL) bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag, sc->alc_rdata.alc_rx_ring, sc->alc_cdata.alc_rx_ring_map); sc->alc_rdata.alc_rx_ring = NULL; sc->alc_cdata.alc_rx_ring_map = NULL; bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag); sc->alc_cdata.alc_rx_ring_tag = NULL; } /* Rx return ring. */ if (sc->alc_cdata.alc_rr_ring_tag != NULL) { if (sc->alc_cdata.alc_rr_ring_map != NULL) bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag, sc->alc_cdata.alc_rr_ring_map); if (sc->alc_cdata.alc_rr_ring_map != NULL && sc->alc_rdata.alc_rr_ring != NULL) bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag, sc->alc_rdata.alc_rr_ring, sc->alc_cdata.alc_rr_ring_map); sc->alc_rdata.alc_rr_ring = NULL; sc->alc_cdata.alc_rr_ring_map = NULL; bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag); sc->alc_cdata.alc_rr_ring_tag = NULL; } /* CMB block */ if (sc->alc_cdata.alc_cmb_tag != NULL) { if (sc->alc_cdata.alc_cmb_map != NULL) bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map); if (sc->alc_cdata.alc_cmb_map != NULL && sc->alc_rdata.alc_cmb != NULL) bus_dmamem_free(sc->alc_cdata.alc_cmb_tag, sc->alc_rdata.alc_cmb, sc->alc_cdata.alc_cmb_map); sc->alc_rdata.alc_cmb = NULL; sc->alc_cdata.alc_cmb_map = NULL; bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag); sc->alc_cdata.alc_cmb_tag = NULL; } /* SMB block */ if (sc->alc_cdata.alc_smb_tag != NULL) { if (sc->alc_cdata.alc_smb_map != NULL) bus_dmamap_unload(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map); if (sc->alc_cdata.alc_smb_map != NULL && sc->alc_rdata.alc_smb != NULL) bus_dmamem_free(sc->alc_cdata.alc_smb_tag, sc->alc_rdata.alc_smb, sc->alc_cdata.alc_smb_map); sc->alc_rdata.alc_smb = NULL; sc->alc_cdata.alc_smb_map = NULL; bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag); sc->alc_cdata.alc_smb_tag = NULL; } if (sc->alc_cdata.alc_buffer_tag != NULL) { bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag); sc->alc_cdata.alc_buffer_tag = NULL; } if (sc->alc_cdata.alc_parent_tag != NULL) { bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag); sc->alc_cdata.alc_parent_tag = NULL; } } static int alc_shutdown(device_t dev) { return (alc_suspend(dev)); } /* * Note, this driver resets the link speed to 10/100Mbps by * restarting auto-negotiation in suspend/shutdown phase but we * don't know whether that auto-negotiation would succeed or not * as driver has no control after powering off/suspend operation. * If the renegotiation fail WOL may not work. Running at 1Gbps * will draw more power than 375mA at 3.3V which is specified in * PCI specification and that would result in complete * shutdowning power to ethernet controller. * * TODO * Save current negotiated media speed/duplex/flow-control to * softc and restore the same link again after resuming. PHY * handling such as power down/resetting to 100Mbps may be better * handled in suspend method in phy driver. */ static void alc_setlinkspeed(struct alc_softc *sc) { struct mii_data *mii; int aneg, i; mii = device_get_softc(sc->alc_miibus); mii_pollstat(mii); aneg = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch IFM_SUBTYPE(mii->mii_media_active) { case IFM_10_T: case IFM_100_TX: return; case IFM_1000_T: aneg++; break; default: break; } } alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); DELAY(1000); if (aneg != 0) { /* * Poll link state until alc(4) get a 10/100Mbps link. */ for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { mii_pollstat(mii); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE( mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: alc_mac_config(sc); return; default: break; } } ALC_UNLOCK(sc); pause("alclnk", hz); ALC_LOCK(sc); } if (i == MII_ANEGTICKS_GIGE) device_printf(sc->alc_dev, "establishing a link failed, WOL may not work!"); } /* * No link, force MAC to have 100Mbps, full-duplex link. * This is the last resort and may/may not work. */ mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; alc_mac_config(sc); } static void alc_setwol(struct alc_softc *sc) { struct ifnet *ifp; uint32_t reg, pmcs; uint16_t pmstat; ALC_LOCK_ASSERT(sc); alc_disable_l0s_l1(sc); ifp = sc->alc_ifp; if ((sc->alc_flags & ALC_FLAG_PM) == 0) { /* Disable WOL. */ CSR_WRITE_4(sc, ALC_WOL_CFG, 0); reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC); reg |= PCIE_PHYMISC_FORCE_RCV_DET; CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg); /* Force PHY power down. */ alc_phy_down(sc); CSR_WRITE_4(sc, ALC_MASTER_CFG, CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS); return; } if ((ifp->if_capenable & IFCAP_WOL) != 0) { if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) alc_setlinkspeed(sc); CSR_WRITE_4(sc, ALC_MASTER_CFG, CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS); } pmcs = 0; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs); reg = CSR_READ_4(sc, ALC_MAC_CFG); reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | MAC_CFG_BCAST); if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; if ((ifp->if_capenable & IFCAP_WOL) != 0) reg |= MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC); reg |= PCIE_PHYMISC_FORCE_RCV_DET; CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg); if ((ifp->if_capenable & IFCAP_WOL) == 0) { /* WOL disabled, PHY power down. */ alc_phy_down(sc); CSR_WRITE_4(sc, ALC_MASTER_CFG, CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS); } /* Request PME. */ pmstat = pci_read_config(sc->alc_dev, sc->alc_pmcap + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->alc_dev, sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2); } static int alc_suspend(device_t dev) { struct alc_softc *sc; sc = device_get_softc(dev); ALC_LOCK(sc); alc_stop(sc); alc_setwol(sc); ALC_UNLOCK(sc); return (0); } static int alc_resume(device_t dev) { struct alc_softc *sc; struct ifnet *ifp; uint16_t pmstat; sc = device_get_softc(dev); ALC_LOCK(sc); if ((sc->alc_flags & ALC_FLAG_PM) != 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->alc_dev, sc->alc_pmcap + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->alc_dev, sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2); } } /* Reset PHY. */ alc_phy_reset(sc); ifp = sc->alc_ifp; if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; alc_init_locked(sc); } ALC_UNLOCK(sc); return (0); } static int alc_encap(struct alc_softc *sc, struct mbuf **m_head) { struct alc_txdesc *txd, *txd_last; struct tx_desc *desc; struct mbuf *m; struct ip *ip; struct tcphdr *tcp; bus_dma_segment_t txsegs[ALC_MAXTXSEGS]; bus_dmamap_t map; uint32_t cflags, hdrlen, ip_off, poff, vtag; int error, idx, nsegs, prod; ALC_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); m = *m_head; ip = NULL; tcp = NULL; ip_off = poff = 0; if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) { /* * AR813x/AR815x requires offset of TCP/UDP header in its * Tx descriptor to perform Tx checksum offloading. TSO * also requires TCP header offset and modification of * IP/TCP header. This kind of operation takes many CPU * cycles on FreeBSD so fast host CPU is required to get * smooth TSO performance. */ struct ether_header *eh; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_DONTWAIT); /* Release original mbufs. */ m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } ip_off = sizeof(struct ether_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* * Check if hardware VLAN insertion is off. * Additional check for LLC/SNAP frame? */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } tcp = (struct tcphdr *)(mtod(m, char *) + poff); m = m_pullup(m, poff + (tcp->th_off << 2)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } /* * Due to strict adherence of Microsoft NDIS * Large Send specification, hardware expects * a pseudo TCP checksum inserted by upper * stack. Unfortunately the pseudo TCP * checksum that NDIS refers to does not include * TCP payload length so driver should recompute * the pseudo checksum here. Hopefully this * wouldn't be much burden on modern CPUs. * * Reset IP checksum and recompute TCP pseudo * checksum as NDIS specification said. */ ip = (struct ip *)(mtod(m, char *) + ip_off); tcp = (struct tcphdr *)(mtod(m, char *) + poff); ip->ip_sum = 0; tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } *m_head = m; } prod = sc->alc_cdata.alc_tx_prod; txd = &sc->alc_cdata.alc_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check descriptor overrun. */ if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) { bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map); return (ENOBUFS); } bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE); m = *m_head; cflags = TD_ETHERNET; vtag = 0; desc = NULL; idx = 0; /* Configure VLAN hardware tag insertion. */ if ((m->m_flags & M_VLANTAG) != 0) { vtag = htons(m->m_pkthdr.ether_vtag); vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK; cflags |= TD_INS_VLAN_TAG; } if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { /* Request TSO and set MSS. */ cflags |= TD_TSO | TD_TSO_DESCV1; cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) & TD_MSS_MASK; /* Set TCP header offset. */ cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) & TD_TCPHDR_OFFSET_MASK; /* * AR813x/AR815x requires the first buffer should * only hold IP/TCP header data. Payload should * be handled in other descriptors. */ hdrlen = poff + (tcp->th_off << 2); desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->len = htole32(TX_BYTES(hdrlen | vtag)); desc->flags = htole32(cflags); desc->addr = htole64(txsegs[0].ds_addr); sc->alc_cdata.alc_tx_cnt++; ALC_DESC_INC(prod, ALC_TX_RING_CNT); if (m->m_len - hdrlen > 0) { /* Handle remaining payload of the first fragment. */ desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->len = htole32(TX_BYTES((m->m_len - hdrlen) | vtag)); desc->flags = htole32(cflags); desc->addr = htole64(txsegs[0].ds_addr + hdrlen); sc->alc_cdata.alc_tx_cnt++; ALC_DESC_INC(prod, ALC_TX_RING_CNT); } /* Handle remaining fragments. */ idx = 1; } else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) { /* Configure Tx checksum offload. */ #ifdef ALC_USE_CUSTOM_CSUM cflags |= TD_CUSTOM_CSUM; /* Set checksum start offset. */ cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) & TD_PLOAD_OFFSET_MASK; /* Set checksum insertion position of TCP/UDP. */ cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) << TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK; #else if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) cflags |= TD_IPCSUM; if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) cflags |= TD_TCPCSUM; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) cflags |= TD_UDPCSUM; /* Set TCP/UDP header offset. */ cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) & TD_L4HDR_OFFSET_MASK; #endif } for (; idx < nsegs; idx++) { desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag); desc->flags = htole32(cflags); desc->addr = htole64(txsegs[idx].ds_addr); sc->alc_cdata.alc_tx_cnt++; ALC_DESC_INC(prod, ALC_TX_RING_CNT); } /* Update producer index. */ sc->alc_cdata.alc_tx_prod = prod; /* Finally set EOP on the last descriptor. */ prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT; desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->flags |= htole32(TD_EOP); /* Swap dmamap of the first and the last. */ txd = &sc->alc_cdata.alc_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; return (0); } static void alc_start(struct ifnet *ifp) { struct alc_softc *sc; sc = ifp->if_softc; ALC_LOCK(sc); alc_start_locked(ifp); ALC_UNLOCK(sc); } static void alc_start_locked(struct ifnet *ifp) { struct alc_softc *sc; struct mbuf *m_head; int enq; sc = ifp->if_softc; ALC_LOCK_ASSERT(sc); /* Reclaim transmitted frames. */ if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT) alc_txeof(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (alc_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { /* Sync descriptors. */ bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE); /* Kick. Assume we're using normal Tx priority queue. */ CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX, (sc->alc_cdata.alc_tx_prod << MBOX_TD_PROD_LO_IDX_SHIFT) & MBOX_TD_PROD_LO_IDX_MASK); /* Set a timeout in case the chip goes out to lunch. */ sc->alc_watchdog_timer = ALC_TX_TIMEOUT; } } static void alc_watchdog(struct alc_softc *sc) { struct ifnet *ifp; ALC_LOCK_ASSERT(sc); if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer) return; ifp = sc->alc_ifp; if ((sc->alc_flags & ALC_FLAG_LINK) == 0) { if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; alc_init_locked(sc); return; } if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; alc_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) alc_start_locked(ifp); } static int alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct alc_softc *sc; struct ifreq *ifr; struct mii_data *mii; int error, mask; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > (sc->alc_ident->max_framelen - sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) || ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 && ifr->ifr_mtu > ETHERMTU)) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { ALC_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; /* AR813x/AR815x has 13 bits MSS field. */ if (ifp->if_mtu > ALC_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_TSO; VLAN_CAPABILITIES(ifp); } ALC_UNLOCK(sc); } break; case SIOCSIFFLAGS: ALC_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->alc_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) alc_rxfilter(sc); else alc_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) alc_stop(sc); sc->alc_if_flags = ifp->if_flags; ALC_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: ALC_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) alc_rxfilter(sc); ALC_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->alc_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: ALC_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= ALC_CSUM_FEATURES; else ifp->if_hwassist &= ~ALC_CSUM_FEATURES; } if ((mask & IFCAP_TSO4) != 0 && (ifp->if_capabilities & IFCAP_TSO4) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((ifp->if_capenable & IFCAP_TSO4) != 0) { /* AR813x/AR815x has 13 bits MSS field. */ if (ifp->if_mtu > ALC_TSO_MTU) { ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_TSO; } else ifp->if_hwassist |= CSUM_TSO; } else ifp->if_hwassist &= ~CSUM_TSO; } if ((mask & IFCAP_WOL_MCAST) != 0 && (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0 && (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; alc_rxvlan(sc); } if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTSO) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); ALC_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void alc_mac_config(struct alc_softc *sc) { struct mii_data *mii; uint32_t reg; ALC_LOCK_ASSERT(sc); mii = device_get_softc(sc->alc_miibus); reg = CSR_READ_4(sc, ALC_MAC_CFG); reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | MAC_CFG_SPEED_MASK); if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; } CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } static void alc_stats_clear(struct alc_softc *sc) { struct smb sb, *smb; uint32_t *reg; int i; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->alc_rdata.alc_smb; /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else { for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { CSR_READ_4(sc, ALC_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { CSR_READ_4(sc, ALC_TX_MIB_BASE + i); i += sizeof(uint32_t); } } } static void alc_stats_update(struct alc_softc *sc) { struct alc_hw_stats *stat; struct smb sb, *smb; struct ifnet *ifp; uint32_t *reg; int i; ALC_LOCK_ASSERT(sc); ifp = sc->alc_ifp; stat = &sc->alc_stats; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->alc_rdata.alc_smb; if (smb->updated == 0) return; } else { smb = &sb; /* Read Rx statistics. */ for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i); i += sizeof(uint32_t); } } /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_rrs_errs += smb->rx_rrs_errs; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_abort += smb->tx_abort; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls * 2 + smb->tx_late_colls + smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; /* * XXX * tx_pkts_truncated counter looks suspicious. It constantly * increments with no sign of Tx errors. This may indicate * the counter name is not correct one so I've removed the * counter in output errors. */ ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + smb->tx_underrun; ifp->if_ipackets += smb->rx_frames; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_rrs_errs + smb->rx_alignerrs; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static int alc_intr(void *arg) { struct alc_softc *sc; uint32_t status; sc = (struct alc_softc *)arg; status = CSR_READ_4(sc, ALC_INTR_STATUS); if ((status & ALC_INTRS) == 0) return (FILTER_STRAY); /* Disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT); taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task); return (FILTER_HANDLED); } static void alc_int_task(void *arg, int pending) { struct alc_softc *sc; struct ifnet *ifp; uint32_t status; int more; sc = (struct alc_softc *)arg; ifp = sc->alc_ifp; status = CSR_READ_4(sc, ALC_INTR_STATUS); ALC_LOCK(sc); if (sc->alc_morework != 0) { sc->alc_morework = 0; status |= INTR_RX_PKT; } if ((status & ALC_INTRS) == 0) goto done; /* Acknowledge interrupts but still disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT); more = 0; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if ((status & INTR_RX_PKT) != 0) { more = alc_rxintr(sc, sc->alc_process_limit); if (more == EAGAIN) sc->alc_morework = 1; else if (more == EIO) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; alc_init_locked(sc); ALC_UNLOCK(sc); return; } } if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST | INTR_TXQ_TO_RST)) != 0) { if ((status & INTR_DMA_RD_TO_RST) != 0) device_printf(sc->alc_dev, "DMA read error! -- resetting\n"); if ((status & INTR_DMA_WR_TO_RST) != 0) device_printf(sc->alc_dev, "DMA write error! -- resetting\n"); if ((status & INTR_TXQ_TO_RST) != 0) device_printf(sc->alc_dev, "TxQ reset! -- resetting\n"); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; alc_init_locked(sc); ALC_UNLOCK(sc); return; } if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) alc_start_locked(ifp); } if (more == EAGAIN || (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) { ALC_UNLOCK(sc); taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task); return; } done: if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { /* Re-enable interrupts if we're running. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF); } ALC_UNLOCK(sc); } static void alc_txeof(struct alc_softc *sc) { struct ifnet *ifp; struct alc_txdesc *txd; uint32_t cons, prod; int prog; ALC_LOCK_ASSERT(sc); ifp = sc->alc_ifp; if (sc->alc_cdata.alc_tx_cnt == 0) return; bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE); if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD); prod = sc->alc_rdata.alc_cmb->cons; } else prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX); /* Assume we're using normal Tx priority queue. */ prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >> MBOX_TD_CONS_LO_IDX_SHIFT; cons = sc->alc_cdata.alc_tx_cons; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ for (prog = 0; cons != prod; prog++, ALC_DESC_INC(cons, ALC_TX_RING_CNT)) { if (sc->alc_cdata.alc_tx_cnt <= 0) break; prog++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->alc_cdata.alc_tx_cnt--; txd = &sc->alc_cdata.alc_txdesc[cons]; if (txd->tx_m != NULL) { /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD); sc->alc_cdata.alc_tx_cons = cons; /* * Unarm watchdog timer only when there is no pending * frames in Tx queue. */ if (sc->alc_cdata.alc_tx_cnt == 0) sc->alc_watchdog_timer = 0; } static int alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd) { struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX; #ifndef __NO_STRICT_ALIGNMENT m_adj(m, sizeof(uint64_t)); #endif if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag, sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap; sc->alc_cdata.alc_rx_sparemap = map; bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rxd->rx_desc->addr = htole64(segs[0].ds_addr); return (0); } static int alc_rxintr(struct alc_softc *sc, int count) { struct ifnet *ifp; struct rx_rdesc *rrd; uint32_t nsegs, status; int rr_cons, prog; bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, sc->alc_cdata.alc_rr_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE); rr_cons = sc->alc_cdata.alc_rr_cons; ifp = sc->alc_ifp; for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) { if (count-- <= 0) break; rrd = &sc->alc_rdata.alc_rr_ring[rr_cons]; status = le32toh(rrd->status); if ((status & RRD_VALID) == 0) break; nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo)); if (nsegs == 0) { /* This should not happen! */ device_printf(sc->alc_dev, "unexpected segment count -- resetting\n"); return (EIO); } alc_rxeof(sc, rrd); /* Clear Rx return status. */ rrd->status = 0; ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT); sc->alc_cdata.alc_rx_cons += nsegs; sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT; prog += nsegs; } if (prog > 0) { /* Update the consumer index. */ sc->alc_cdata.alc_rr_cons = rr_cons; /* Sync Rx return descriptors. */ bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, sc->alc_cdata.alc_rr_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Sync updated Rx descriptors such that controller see * modified buffer addresses. */ bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE); /* * Let controller know availability of new Rx buffers. * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors * it may be possible to update ALC_MBOX_RD0_PROD_IDX * only when Rx buffer pre-fetching is required. In * addition we already set ALC_RX_RD_FREE_THRESH to * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However * it still seems that pre-fetching needs more * experimentation. */ CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); } return (count > 0 ? 0 : EAGAIN); } #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * alc_fixup_rx(struct ifnet *ifp, struct mbuf *m) { struct mbuf *n; int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 3; if (m->m_next == NULL) { for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= 6; return (m); } /* * Append a new mbuf to received mbuf chain and copy ethernet * header from the mbuf chain. This can save lots of CPU * cycles for jumbo frame. */ MGETHDR(n, M_DONTWAIT, MT_DATA); if (n == NULL) { ifp->if_iqdrops++; m_freem(m); return (NULL); } bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); m->m_data += ETHER_HDR_LEN; m->m_len -= ETHER_HDR_LEN; n->m_len = ETHER_HDR_LEN; M_MOVE_PKTHDR(n, m); n->m_next = m; return (n); } #endif /* Receive a frame. */ static void alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd) { struct alc_rxdesc *rxd; struct ifnet *ifp; struct mbuf *mp, *m; uint32_t rdinfo, status, vtag; int count, nsegs, rx_cons; ifp = sc->alc_ifp; status = le32toh(rrd->status); rdinfo = le32toh(rrd->rdinfo); rx_cons = RRD_RD_IDX(rdinfo); nsegs = RRD_RD_CNT(rdinfo); sc->alc_cdata.alc_rxlen = RRD_BYTES(status); if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * ring. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. * * Force network stack compute checksum for * errored frames. */ status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK; if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0) return; } for (count = 0; count < nsegs; count++, ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) { rxd = &sc->alc_cdata.alc_rxdesc[rx_cons]; mp = rxd->rx_m; /* Add a new receive buffer to the ring. */ if (alc_newbuf(sc, rxd) != 0) { ifp->if_iqdrops++; /* Reuse Rx buffers. */ if (sc->alc_cdata.alc_rxhead != NULL) m_freem(sc->alc_cdata.alc_rxhead); break; } /* * Assume we've received a full sized frame. * Actual size is fixed when we encounter the end of * multi-segmented frame. */ mp->m_len = sc->alc_buf_size; /* Chain received mbufs. */ if (sc->alc_cdata.alc_rxhead == NULL) { sc->alc_cdata.alc_rxhead = mp; sc->alc_cdata.alc_rxtail = mp; } else { mp->m_flags &= ~M_PKTHDR; sc->alc_cdata.alc_rxprev_tail = sc->alc_cdata.alc_rxtail; sc->alc_cdata.alc_rxtail->m_next = mp; sc->alc_cdata.alc_rxtail = mp; } if (count == nsegs - 1) { /* Last desc. for this frame. */ m = sc->alc_cdata.alc_rxhead; m->m_flags |= M_PKTHDR; /* * It seems that L1C/L2C controller has no way * to tell hardware to strip CRC bytes. */ m->m_pkthdr.len = sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN; if (nsegs > 1) { /* Set last mbuf size. */ mp->m_len = sc->alc_cdata.alc_rxlen - (nsegs - 1) * sc->alc_buf_size; /* Remove the CRC bytes in chained mbufs. */ if (mp->m_len <= ETHER_CRC_LEN) { sc->alc_cdata.alc_rxtail = sc->alc_cdata.alc_rxprev_tail; sc->alc_cdata.alc_rxtail->m_len -= (ETHER_CRC_LEN - mp->m_len); sc->alc_cdata.alc_rxtail->m_next = NULL; m_freem(mp); } else { mp->m_len -= ETHER_CRC_LEN; } } else m->m_len = m->m_pkthdr.len; m->m_pkthdr.rcvif = ifp; /* * Due to hardware bugs, Rx checksum offloading * was intentionally disabled. */ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && (status & RRD_VLAN_TAG) != 0) { vtag = RRD_VLAN(le32toh(rrd->vtag)); m->m_pkthdr.ether_vtag = ntohs(vtag); m->m_flags |= M_VLANTAG; } #ifndef __NO_STRICT_ALIGNMENT m = alc_fixup_rx(ifp, m); if (m != NULL) #endif { /* Pass it on. */ ALC_UNLOCK(sc); (*ifp->if_input)(ifp, m); ALC_LOCK(sc); } } } /* Reset mbuf chains. */ ALC_RXCHAIN_RESET(sc); } static void alc_tick(void *arg) { struct alc_softc *sc; struct mii_data *mii; sc = (struct alc_softc *)arg; ALC_LOCK_ASSERT(sc); mii = device_get_softc(sc->alc_miibus); mii_tick(mii); alc_stats_update(sc); /* * alc(4) does not rely on Tx completion interrupts to reclaim * transferred buffers. Instead Tx completion interrupts are * used to hint for scheduling Tx task. So it's necessary to * release transmitted buffers by kicking Tx completion * handler. This limits the maximum reclamation delay to a hz. */ alc_txeof(sc); alc_watchdog(sc); callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc); } static void alc_reset(struct alc_softc *sc) { uint32_t reg; int i; reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF; reg |= MASTER_OOB_DIS_OFF | MASTER_RESET; CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); for (i = ALC_RESET_TIMEOUT; i > 0; i--) { DELAY(10); if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0) break; } if (i == 0) device_printf(sc->alc_dev, "master reset timeout!\n"); for (i = ALC_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg); } static void alc_init(void *xsc) { struct alc_softc *sc; sc = (struct alc_softc *)xsc; ALC_LOCK(sc); alc_init_locked(sc); ALC_UNLOCK(sc); } static void alc_init_locked(struct alc_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, rxf_hi, rxf_lo; ALC_LOCK_ASSERT(sc); ifp = sc->alc_ifp; mii = device_get_softc(sc->alc_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel any pending I/O. */ alc_stop(sc); /* * Reset the chip to a known state. */ alc_reset(sc); /* Initialize Rx descriptors. */ if (alc_init_rx_ring(sc) != 0) { device_printf(sc->alc_dev, "no memory for Rx buffers.\n"); alc_stop(sc); return; } alc_init_rr_ring(sc); alc_init_tx_ring(sc); alc_init_cmb(sc); alc_init_smb(sc); /* Enable all clocks. */ CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0); /* Reprogram the station address. */ bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, ALC_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]); /* * Clear WOL status and disable all WOL feature as WOL * would interfere Rx operation under normal environments. */ CSR_READ_4(sc, ALC_WOL_CFG); CSR_WRITE_4(sc, ALC_WOL_CFG, 0); /* Set Tx descriptor base addresses. */ paddr = sc->alc_rdata.alc_tx_ring_paddr; CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We don't use high priority ring. */ CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0); /* Set Tx descriptor counter. */ CSR_WRITE_4(sc, ALC_TD_RING_CNT, (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK); /* Set Rx descriptor base addresses. */ paddr = sc->alc_rdata.alc_rx_ring_paddr; CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We use one Rx ring. */ CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0); /* Set Rx descriptor counter. */ CSR_WRITE_4(sc, ALC_RD_RING_CNT, (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK); /* * Let hardware split jumbo frames into alc_max_buf_sized chunks. * if it do not fit the buffer size. Rx return descriptor holds * a counter that indicates how many fragments were made by the * hardware. The buffer size should be multiple of 8 bytes. * Since hardware has limit on the size of buffer size, always * use the maximum value. * For strict-alignment architectures make sure to reduce buffer * size by 8 bytes to make room for alignment fixup. */ #ifndef __NO_STRICT_ALIGNMENT sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t); #else sc->alc_buf_size = RX_BUF_SIZE_MAX; #endif CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size); paddr = sc->alc_rdata.alc_rr_ring_paddr; /* Set Rx return descriptor base addresses. */ CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We use one Rx return ring. */ CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0); /* Set Rx return descriptor counter. */ CSR_WRITE_4(sc, ALC_RRD_RING_CNT, (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK); paddr = sc->alc_rdata.alc_cmb_paddr; CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); paddr = sc->alc_rdata.alc_smb_paddr; CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) { /* Reconfigure SRAM - Vendor magic. */ CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0); CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100); CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000); CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0); CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0); CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0); CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000); CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000); } /* Tell hardware that we're ready to load DMA blocks. */ CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD); /* Configure interrupt moderation timer. */ reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT; reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT; CSR_WRITE_4(sc, ALC_IM_TIMER, reg); /* * We don't want to automatic interrupt clear as task queue * for the interrupt should know interrupt status. */ reg = MASTER_SA_TIMER_ENB; if (ALC_USECS(sc->alc_int_rx_mod) != 0) reg |= MASTER_IM_RX_TIMER_ENB; if (ALC_USECS(sc->alc_int_tx_mod) != 0) reg |= MASTER_IM_TX_TIMER_ENB; CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); /* * Disable interrupt re-trigger timer. We don't want automatic * re-triggering of un-ACKed interrupts. */ CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0)); /* Configure CMB. */ if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4); CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000)); } else CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0)); /* * Hardware can be configured to issue SMB interrupt based * on programmed interval. Since there is a callout that is * invoked for every hz in driver we use that instead of * relying on periodic SMB interrupt. */ CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0)); /* Clear MAC statistics. */ alc_stats_clear(sc); /* * Always use maximum frame size that controller can support. * Otherwise received frames that has larger frame length * than alc(4) MTU would be silently dropped in hardware. This * would make path-MTU discovery hard as sender wouldn't get * any responses from receiver. alc(4) supports * multi-fragmented frames on Rx path so it has no issue on * assembling fragmented frames. Using maximum frame size also * removes the need to reinitialize hardware when interface * MTU configuration was changed. * * Be conservative in what you do, be liberal in what you * accept from others - RFC 793. */ CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen); /* Disable header split(?) */ CSR_WRITE_4(sc, ALC_HDS_CFG, 0); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, ALC_IPG_IFG_CFG, ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, ALC_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* * Set TSO/checksum offload threshold. For frames that is * larger than this threshold, hardware wouldn't do * TSO/checksum offloading. */ CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) & TSO_OFFLOAD_THRESH_MASK); /* Configure TxQ. */ reg = (alc_dma_burst[sc->alc_dma_rd_burst] << TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK; if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) reg >>= 1; reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) & TXQ_CFG_TD_BURST_MASK; CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE); /* Configure Rx free descriptor pre-fetching. */ CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH, ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) | ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK)); /* * Configure flow control parameters. * XON : 80% of Rx FIFO * XOFF : 30% of Rx FIFO */ if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) { reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN); rxf_hi = (reg * 8) / 10; rxf_lo = (reg * 3) / 10; CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH, ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & RX_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & RX_FIFO_PAUSE_THRESH_HI_MASK)); } if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) CSR_WRITE_4(sc, ALC_SERDES_LOCK, CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN | SERDES_PHY_CLK_SLOWDOWN); /* Disable RSS until I understand L1C/L2C's RSS logic. */ CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0); CSR_WRITE_4(sc, ALC_RSS_CPU, 0); /* Configure RxQ. */ reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & RXQ_CFG_RD_BURST_MASK; reg |= RXQ_CFG_RSS_MODE_DIS; if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0) reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M; CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); /* Configure DMA parameters. */ reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI; reg |= sc->alc_rcb; if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) reg |= DMA_CFG_CMB_ENB; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) reg |= DMA_CFG_SMB_ENB; else reg |= DMA_CFG_SMB_DIS; reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) << DMA_CFG_RD_BURST_SHIFT; reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) << DMA_CFG_WR_BURST_SHIFT; reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & DMA_CFG_RD_DELAY_CNT_MASK; reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & DMA_CFG_WR_DELAY_CNT_MASK; CSR_WRITE_4(sc, ALC_DMA_CFG, reg); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Actual reconfiguration of MAC for resolved speed/duplex * is followed after detection of link establishment. * AR813x/AR815x always does checksum computation regardless * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to * have bug in protocol field in Rx return structure so * these controllers can't handle fragmented frames. Disable * Rx checksum offloading until there is a newer controller * that has sane implementation. */ reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK); if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0) reg |= MAC_CFG_SPEED_10_100; else reg |= MAC_CFG_SPEED_1000; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); /* Set up the receive filter. */ alc_rxfilter(sc); alc_rxvlan(sc); /* Acknowledge all pending interrupts and clear it. */ CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0); sc->alc_flags &= ~ALC_FLAG_LINK; /* Switch to the current media. */ mii_mediachg(mii); callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } static void alc_stop(struct alc_softc *sc) { struct ifnet *ifp; struct alc_txdesc *txd; struct alc_rxdesc *rxd; uint32_t reg; int i; ALC_LOCK_ASSERT(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp = sc->alc_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->alc_flags &= ~ALC_FLAG_LINK; callout_stop(&sc->alc_tick_ch); sc->alc_watchdog_timer = 0; alc_stats_update(sc); /* Disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_MASK, 0); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); alc_stop_queue(sc); /* Disable DMA. */ reg = CSR_READ_4(sc, ALC_DMA_CFG); reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB); reg |= DMA_CFG_SMB_DIS; CSR_WRITE_4(sc, ALC_DMA_CFG, reg); DELAY(1000); /* Stop Rx/Tx MACs. */ alc_stop_mac(sc); /* Disable interrupts which might be touched in taskq handler. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); /* Reclaim Rx buffers that have been processed. */ if (sc->alc_cdata.alc_rxhead != NULL) m_freem(sc->alc_cdata.alc_rxhead); ALC_RXCHAIN_RESET(sc); /* * Free Tx/Rx mbufs still in the queues. */ for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } static void alc_stop_mac(struct alc_softc *sc) { uint32_t reg; int i; ALC_LOCK_ASSERT(sc); /* Disable Rx/Tx MAC. */ reg = CSR_READ_4(sc, ALC_MAC_CFG); if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } for (i = ALC_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALC_IDLE_STATUS); if (reg == 0) break; DELAY(10); } if (i == 0) device_printf(sc->alc_dev, "could not disable Rx/Tx MAC(0x%08x)!\n", reg); } static void alc_start_queue(struct alc_softc *sc) { uint32_t qcfg[] = { 0, RXQ_CFG_QUEUE0_ENB, RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB, RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB, RXQ_CFG_ENB }; uint32_t cfg; ALC_LOCK_ASSERT(sc); /* Enable RxQ. */ cfg = CSR_READ_4(sc, ALC_RXQ_CFG); cfg &= ~RXQ_CFG_ENB; cfg |= qcfg[1]; CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg); /* Enable TxQ. */ cfg = CSR_READ_4(sc, ALC_TXQ_CFG); cfg |= TXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg); } static void alc_stop_queue(struct alc_softc *sc) { uint32_t reg; int i; ALC_LOCK_ASSERT(sc); /* Disable RxQ. */ reg = CSR_READ_4(sc, ALC_RXQ_CFG); if ((reg & RXQ_CFG_ENB) != 0) { reg &= ~RXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); } /* Disable TxQ. */ reg = CSR_READ_4(sc, ALC_TXQ_CFG); if ((reg & TXQ_CFG_ENB) != 0) { reg &= ~TXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_TXQ_CFG, reg); } for (i = ALC_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALC_IDLE_STATUS); if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->alc_dev, "could not disable RxQ/TxQ (0x%08x)!\n", reg); } static void alc_init_tx_ring(struct alc_softc *sc) { struct alc_ring_data *rd; struct alc_txdesc *txd; int i; ALC_LOCK_ASSERT(sc); sc->alc_cdata.alc_tx_prod = 0; sc->alc_cdata.alc_tx_cons = 0; sc->alc_cdata.alc_tx_cnt = 0; rd = &sc->alc_rdata; bzero(rd->alc_tx_ring, ALC_TX_RING_SZ); for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE); } static int alc_init_rx_ring(struct alc_softc *sc) { struct alc_ring_data *rd; struct alc_rxdesc *rxd; int i; ALC_LOCK_ASSERT(sc); sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1; sc->alc_morework = 0; rd = &sc->alc_rdata; bzero(rd->alc_rx_ring, ALC_RX_RING_SZ); for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_desc = &rd->alc_rx_ring[i]; if (alc_newbuf(sc, rxd) != 0) return (ENOBUFS); } /* * Since controller does not update Rx descriptors, driver * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE * is enough to ensure coherence. */ bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE); /* Let controller know availability of new Rx buffers. */ CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); return (0); } static void alc_init_rr_ring(struct alc_softc *sc) { struct alc_ring_data *rd; ALC_LOCK_ASSERT(sc); sc->alc_cdata.alc_rr_cons = 0; ALC_RXCHAIN_RESET(sc); rd = &sc->alc_rdata; bzero(rd->alc_rr_ring, ALC_RR_RING_SZ); bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, sc->alc_cdata.alc_rr_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void alc_init_cmb(struct alc_softc *sc) { struct alc_ring_data *rd; ALC_LOCK_ASSERT(sc); rd = &sc->alc_rdata; bzero(rd->alc_cmb, ALC_CMB_SZ); bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void alc_init_smb(struct alc_softc *sc) { struct alc_ring_data *rd; ALC_LOCK_ASSERT(sc); rd = &sc->alc_rdata; bzero(rd->alc_smb, ALC_SMB_SZ); bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void alc_rxvlan(struct alc_softc *sc) { struct ifnet *ifp; uint32_t reg; ALC_LOCK_ASSERT(sc); ifp = sc->alc_ifp; reg = CSR_READ_4(sc, ALC_MAC_CFG); if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) reg |= MAC_CFG_VLAN_TAG_STRIP; else reg &= ~MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } static void alc_rxfilter(struct alc_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; ALC_LOCK_ASSERT(sc); ifp = sc->alc_ifp; bzero(mchash, sizeof(mchash)); rxcfg = CSR_READ_4(sc, ALC_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); if ((ifp->if_flags & IFF_BROADCAST) != 0) rxcfg |= MAC_CFG_BCAST; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) rxcfg |= MAC_CFG_PROMISC; if ((ifp->if_flags & IFF_ALLMULTI) != 0) rxcfg |= MAC_CFG_ALLMULTI; mchash[0] = 0xFFFFFFFF; mchash[1] = 0xFFFFFFFF; goto chipit; } if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); } if_maddr_runlock(ifp); chipit: CSR_WRITE_4(sc, ALC_MAR0, mchash[0]); CSR_WRITE_4(sc, ALC_MAR1, mchash[1]); CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg); } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (arg1 == NULL) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, ALC_PROC_MIN, ALC_PROC_MAX)); } static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX)); }